
WWW.COMPUTER.ORG/SOFTWARE

Storytelling for Software
Professionals // 9

In Defense of Boring // 16

Beyond Data Mining // 92

MAY/JUNE 2013

Contents | Zoom in | Zoom out Search Issue | Next PageFor navigation instructions please click here

Contents | Zoom in | Zoom out Search Issue | Next PageFor navigation instructions please click here

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=PCOVER 1E1
http://www.qmags.com/clickthrough.asp?url=www.ieee.org/&id=18138&adid=PCOVER 1E2
http://www.qmags.com/clickthrough.asp?url=www.computer.org/&id=18138&adid=PCOVER 1E3

T H E
C O M P L E T E

P I C T U R E

Super Early Bird Savings!
REGISTER BY APRIL 5 AND

SAVE UP TO $400
GROUPS OF 3+ SAVE EVEN MORE!

EXPLORE THE FULL PROGRAM AT

adc-bsc-west.techwell.com

PMI® members can earn
PDUs at both events

Two Conferences in One Location
Register and attend sessions from both events!

June 2–7, 2013
Las Vegas, NV
Caesars Palace

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=http://adc-bsc-west.techwell.com&id=18138&adid=PCOVER 2A1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

Focused on Your Future
Now when you join or renew your IEEE Computer
Society membership, you can choose the
membership package focused specifi cally on
advancing your career:

 ■ Software and Systems—includes IEEE Software
Digital Edition

 ■ Information and Communication Technologies
(ICT)—includes IT Professional Digital Edition

 ■ Security and Privacy—includes IEEE Security &
Privacy Digital Edition

 ■ Computer Engineering—includes IEEE Micro
Digital Edition

In addition to receiving your monthly issues of
Computer magazine, hundreds of online courses and
books, and savings on publications and conferences,
each package includes never-before-offered benefi ts:

 ■ A digital edition of the most requested leading
publication specifi c to your interest

 ■ A monthly digital newsletter developed
exclusively for your focus area

 ■ Your choice of three FREE webinars from the
extensive IEEE Computer Society selection

 ■ Downloads of 12 free articles of your choice from
IEEE Computer Society Digital Library (CSDL)

 ■ Discounts on training courses specifi c to your
focus area

The Community for Technology Leaders

Join or renew today at www.computer.org/membership

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/membership&id=18138&adid=P1A1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

FOCUS
SAFETY-CRITICAL SOFTWARE

25 Guest Editors’ Introduction
Safety-Critical Software
Xabier Larrucea, Annie Combelles, and John Favaro

28 Model-Based Development and Formal
Methods in the Railway Industry
Alessio Ferrari, Alessandro Fantechi, Stefania Gnesi,
and Gianluca Magnani

35 Validating Software Reliability Early
through Statistical Model Checking
Youngjoo Kim, Okjoo Choi, Moonzoo Kim,
Jongmoon Baik, and Tai-Hyo Kim

42 Engineering Air Traffi c Control Systems
with a Model-Driven Approach
Gabriella Carrozza, Mauro Faella, Francesco Fucci,
Roberto Pietrantuono, and Stefano Russo

50 Testing or Formal Verifi cation: DO-178C
Alternatives and Industrial Experience
Yannick Moy, Emmanuel Ledinot, Hervé Delseny,
Virginie Wiels, and Benjamin Monate

58 Strategic Traceability for
Safety-Critical Projects
Patrick Mäder, Paul L. Jones, Yi Zhang,
and Jane Cleland-Huang

67 Flight Control Software:
Mistakes Made and Lessons Learned
Yogananda Jeppu

73 SCEPYLT: An Information
System for Fighting Terrorism
Jesús Cano and Roberto Hernández

FEATURE

80 Software Sketchifying: Bringing
Innovation into Software Development
Željko Obrenović

INSIGHTS

9 Storytelling for Software Professionals
Arjen Uittenbogaard

Building the Community of Leading Software Practitioners

www.computer.org/software

SW model
architecture

phase

SW
requirements

phase

Model
integration

phase

Model
module test

phase

va

Model
module

design phase

Code phase

Trace

PIT software
software test
model (UTP)

PIT
test model

(UTP)

M

M • Compli

Software
architecture

 standards
ng integrity

2825

42 50 80

TABLE OF CONTENTS
May/June 2013MMaayy//Juunnee 2013

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

M
U

LT
IM

E
D

IA

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P2E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

4 From the Editor
Sharing Your Story
Forrest Shull

13 Requirements
Are Requirements Alive
and Kicking?
Jane Cleland-Huang

16 On Computing
In Defense of Boring
Grady Booch

18 Tools of the Trade
Systems Software
Diomidis Spinellis

20 Software Technology
Software Agents in Industrial
Automation Systems
Stephan Pech

87 Impact
The Generational Impact
of Software
Anne-Francoise Rutkowski,
Carol Saunders, and Les Hatton

92 Sounding Board
Beyond Data Mining
Tim Menzies

DEPARTMENTS

MISCELLANEOUS
 7 How to Reach Us

 14 Call for Papers:
 Green Software

 15 Call for Papers:
 Next Generation
 Mobile Computing

 24 IEEE Computer
 Society Information

 86 Advertiser Information

For more information on computing
topics, visit the Computer Society Digital
Library at www.computer.org/csdl.

EDITOR IN CHIEF
Forrest Shull

fshull@computer.org
EDITOR IN CHIEF EMERITUS:

Hakan Erdogmus, Kalemun Research

ASSOCIATE
EDITORS IN CHIEF

Computing Now: Maurizio Morisio,
Politecnico di Torino; maurizio.morisio@polito.it

Design/Architecture: Uwe Zdun,
University of Vienna; uwe.zdun@univie.ac.at

Development Infrastructures and Tools:
Thomas Zimmermann, Microsoft Research;

tzimmer@microsoft.com

Distributed and Enterprise Software:
John Grundy, Swinburne University of Technology;

jgrundy@swin.edu.au

Empirical Studies: Tore Dybå, SINTEF;
Tore.Dyba@sintef.no.

Insights and Experience Reports: Linda Rising,
consultant; linda@lindarising.org

Human and Social Aspects:
Margaret-Anne (Peggy) Storey, University of Victoria,

Canada; mstorey@uvic.ca

Management: John Favaro, Intecs; john@favaro.net

Processes: Wolfgang Strigel, consultant;
strigel@qalabs.com

Programming Languages and Paradigms:
Adam Welc, Oracle Labs; adamwwelc@gmail.com

Quality: Annie Combelles, inspearit;
annie.combelles@inspearit.com

Requirements: Neil Maiden, City University
London; cc559@soi.city.ac.uk

Jane Cleland-Huang, DePaul University;
jhuang@cti.depaul.edu

DEPARTMENT EDITORS
Impact: Michiel van Genuchten, mtonyx

Les Hatton, Kingston University

On Architecture: Grady Booch, IBM Research

Pragmatic Architect: Frank Buschmann, Siemens

Requirements: Jane Cleland-Huang, DePaul University

Software Technology: Christof Ebert, Vector

Sounding Board: Philippe Kruchten,
University of British Columbia

Tools of the Trade: Diomidis Spinellis,
Athens University of Economics and Business

Voice of Evidence: Tore Dybå, SINTEF
Helen Sharp, The Open University

ADVISORY BOARD
Ipek Ozkaya, Software Engineering Institute (Chair)

Pekka Abrahamsson, Free University of Bozen-Bolzano

Ayse Basar Bener, Ryerson University

Jan Bosch, Chalmers Univ. of Technology

Anita Carleton, Carnegie Mellon University

Taku Fujii, Osaka Gas Information
System Research Institute

Robert L. Glass, Computing Trends

Kevlin Henney, consultant

Gregor Hohpe, Google

Dorothy McKinney, Lockhead Martin Space Systems

Grigori Melnik, Microsoft

Ramesh Padmanabhan, NSE.IT

Girish Suryanarayana, Siemens Corporate
Research & Technologies

Douglas R. Vogel, City Univ. of Hong Kong

Rebecca Wirfs-Brock, Wirfs-Brock Associates
Olaf Zimmermann, ABB Corporate Research

See www.computer.org/software
-multimedia for multimedia content
related to the features in this issue.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/csdl&id=18138&adid=P3E2
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software-multimedia&id=18138&adid=P3E1
mailto:fshull@computer.org
mailto:maurizio.morisio@polito.it
mailto:uwe.zdun@univie.ac.at
mailto:tzimmer@microsoft.com
mailto:jgrundy@swin.edu.au
mailto:Tore.Dyba@sintef.no
mailto:linda@lindarising.org
mailto:mstorey@uvic.ca
mailto:john@favaro.net
mailto:strigel@qalabs.com
mailto:adamwwelc@gmail.com
mailto:annie.combelles@inspearit.com
mailto:cc559@soi.city.ac.uk
mailto:jhuang@cti.depaul.edu
http://www.qmags.com/clickthrough.asp?url=www.sfiprogram.org&id=18138&adid=P3E3
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

4 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Editor in Chief: Forrest Shull
Fraunhofer Center for Experimental Software
Engineering, fshull@computer.org

IEEE Software To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement the developers and managers who want to keep up with rapid technology change.

IEEE SOFTWARE ACCEPTS less than
25 percent of the articles submitted for
consideration, and I’m keenly aware
that all of those submissions—whether
eventually accepted or rejected—entail
many hours of effort on the part of au-
thors, reviewers, and magazine staff.

In addition to being selective, IEEE
Software is also a somewhat unique
venue. Our mandate is to be the author-
ity on translating software theory into
practice—meaning that while we’re in-
terested in rigorous and well-tested re-
search results, those results also need to

be explained in a way that can reach our
intended reader (the refl ective software
practitioner) and help her understand
something important about the soft-
ware profession. For this reason, we pri-
oritize writing with an accessible style
and relatively tight word limits. Good
advice for juggling these constraints can
be found in articles written by my pre-
decessors as editor in chief, Steve Mc-

Connell and Hakan Erdogmus.1,2 To
add to what they’ve written, in this ar-
ticle, I’d like to focus on a special type of
submission: the experience report.

I’m an advocate of experience re-
ports because I’m a fi rm believer in
just about any approach that stands a
chance of improving the communica-
tion between software research and
practice. Here at IEEE Software, we
receive fewer experience reports than
other types of submissions, and this is
understandable. I realize how tough
it can be, as a professional developer,

to get the time to refl ect on an experi-
ence and write about it, and I appreci-
ate those who do so. Although it can be
diffi cult, the effort to produce an expe-
rience report is almost always reward-
ing and helps the author refl ect on the
true causes for success and failure amid
all the noise and pressure of day-to-day
deadlines. Well-written experience re-
ports can be among the most compel-

ling pieces that we publish in IEEE
Software.

In this article, I’d like to take the time
to refl ect, myself, on what we are look-
ing for in experience reports and provide
some guidance that can help authors.

What Is It, and What Does It Do?
An increasing number of conferences
and periodicals in software engineer-
ing are featuring experience reports.
From a quick and admittedly subjective
perusal of the author guidelines, how-
ever, the calls for experience reports
often seem to suffer from the lack of a
clear defi nition of exactly what is being
sought. This is a danger because—es-
pecially in research-focused venues—
without a clear defi nition, experience
reports are often perceived as the place
to send work that won’t be accepted in
normal technical tracks.

But experience reports are an impor-
tant type of article in their own right—
not just technical pieces that didn’t
quite make the bar. Experience reports
should provide a benefi t that more “tra-
ditional” research studies cannot: this
is a bit of an oversimplifi cation, but
let’s call this benefi t “depth”—that is, a
more detailed and nuanced understand-
ing of what happened in a single envi-
ronment (or single project). Experience
reports, in describing a single environ-
ment, can only describe what happened

Sharing Your Story
Forrest Shull

FROM THE EDITOR

Our mandate is to be the authority
on translating software theory
into practice.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

V
I

D
E

O

mailto:fshull@computer.org
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://youtu.be/0ll4oTYHKi0
http://online.qmags.com/media/ISW/2013/May-June/video_isw0513_04v1w.swf

MAY/JUNE 2013 | IEEE SOFTWARE 5

to the authors; they don’t provide suf-
fi cient data to argue that if other teams
follow the same approach, they can
confi dently expect the same outcome.
To make up for this lack, a good expe-
rience report provides enough of a nar-
rative to discuss with confi dence why a
certain result was seen.

IEEE Software is interested in pub-
lishing experience reports for a number
of reasons. In my mind, the most im-
portant is that they help keep research
grounded. Our fi eld has self-organized
in such a way that many software re-
searchers aren’t familiar with the con-
temporary experience of working in
a software development environment,
and sharing that vision can help keep
research focused on compelling prob-
lems and help produce results capable of
operating under reasonable constraints.

Software professionals can also benefi t
from hearing about what development is
like in other contexts. None of us have
the time or opportunity to experience
all types of environments, and many
of us can fi nd some benefi t in looking
at practices in other types of organiza-
tions. A developer in Silicon Valley, for
instance, might fi nd some value in look-
ing at practices on systems at NASA,
and a NASA developer might fi nd value
in understanding more about the devel-
opment of mobile apps.

Other reasons for valuing experience
reports are that they can often provide
the most practical advice to practitio-
ners. I often respond with more interest
and curiosity to someone telling me a
story (“Oh, look, someone who is do-
ing similar work to mine swears by this
tool—I think I’d better give it a closer

STAFF
Lead Editor

Brian Brannon
bbrannon@computer.org

Manager, Editorial Services
Jenny Stout

Editors
Camber Agrelius and Linda World

Publications Coordinator
software@computer.org

Production and Design Editor,
Webmaster

Jennie Zhu-Mai

Contributor
Alex Torres

Cover Artist
Eero Johannes

Director, Products & Services
Evan Butterfi eld

Senior Manager, Editorial Services
Robin Baldwin

Senior Business Development Manager
Sandra Brown

Membership Development Manager
Cecelia Huffman

Senior Advertising Coordinator
Marian Anderson

manderson@computer.org

CS PUBLICATIONS BOARD

Thomas M. Conte (chair), Alain April,
David Bader, Angela R. Burgess, Greg Byrd,

Koen DeBosschere, Frank E. Ferrante,
Paolo Montuschi, Linda I. Shafer,

and Per Stenström

MAGAZINE
OPERATIONS COMMITTEE

Paolo Montuschi (Chair), Erik R. Altman,
Nigel Davies, Lars Heide, Simon Liu,

Cecilia Metra, Shari Lawrence Pfl eeger,
Michael Rabinovich, Forrest Shull,

John R. Smith, Gabriel Taubin,
George K. Thiruvathukal, Ron Vetter,

and Daniel Zeng

Editorial: All submissions are subject to editing
for clarity, style, and space. Unless otherwise

stated, bylined articles and departments,
as well as product and service descriptions,

refl ect the author’s or fi rm’s opinion. Inclusion in
IEEE Software does not necessarily constitute endorse-

ment by IEEE or the IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s
Web-based system, ScholarOne, at

http://mc.manuscriptcentral.com/sw-cs. Be sure to se-
lect the right manuscript type when submitting. Articles
must be original and not exceed 4,700 words including

fi gures and tables, which count for 200 words each.

IEEE prohibits discrimination, harassment and
bullying: For more information, visit www.ieee.org/

web/aboutus/whatis/policies/p9-26.html.

SOFTWARE EXPERTS SUMMIT 2013
One of my goals as editor in chief has been to fi nd ways to get the excellent ex-
perience reports and the latest research found in every issue of IEEE Software
to software practitioners in new and more convenient ways. For example, we’ve
been reaching out through our digital edition, through new media such as audio
and video fi les, and through discussion forums. One of the most exciting of these
new initiatives is the Software Experts Summit, a public event that showcases
many of the thought leaders associated with the magazine during a day of pre-
sentations, panel discussions, and networking.

Timed to coincide with the publication of our upcoming July/August 2013 is-
sue looking at the impact of software analytics on decision making (“Software
Analytics—So What?”), our theme this year is “Smart Data.” We’ll be tackling
the question of how organizations can best make reliable, secure, and quick de-
cisions on datasets of many types, despite the challenges we all face with

using even small sets of data to guide decision making due to inconsistent
data structures,
making sense of the incredible diversity of data and media in which they are
embedded, and
effectively using the technologies that create and manage data.

The event will be Wednesday, 17 July 2013, at the Microsoft Conference
Center in Redmond, Washington. For more information, see our website at www.
computer.org/ses13 and the ad on the back cover of this issue.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.ieee.org/web/aboutus/whatis/policies/p9-26.html&id=18138&adid=P5E3
http://www.qmags.com/clickthrough.asp?url=http://mc.manuscriptcentral.com/sw-cs&id=18138&adid=P5E2
http://www.qmags.com/clickthrough.asp?url=www.computer.org/ses13&id=18138&adid=P5E1
mailto:bbrannon@computer.org
mailto:software@computer.org
mailto:manderson@computer.org
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

6 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FROM THE EDITOR

look”) than to reams of data (“This
tool vendor claims to have reduced the
amount of effort needed for the job and
claims that 9 out of 10 customers are
highly satisfi ed”). I assume that other
humans are motivated in similar ways.

Finally, experience reports can pro-
vide fast feedback to the community
on new technologies or approaches
being advocated. Long before anyone
can have enough data to start to con-
sider statistically signifi cant effects,
we may be able to share success (or
failure) stories from individual proj-
ects. These should be taken with the
appropriate caveats, of course, just
like any study. But if the results of the
experience report are compelling, they
can help readers understand whether

this is an area worth expending time
and effort on.

Why do I mention all of this?
Mainly so that prospective authors can
use this as fodder for their own article
reviews prior to submission. The single
most important thing that any author
can do as part of a self-critique is to
think of the reader. Will an experience
report help a reader keep up with what
she needs to know to be effective in the
software profession?

Tell Me a Story
Potential authors who ask for feed-
back from me on abstracts of planned
papers will almost always get a re-
sponse structured around the follow-
ing set of questions.

Environment
Is it clear what type of environment
your story takes place in? Other read-
ers would like to benefi t from your in-
sights, but they need to have a good
sense of how likely your fi ndings are
to translate to their projects. If you’re
building a website app and I’m building
embedded satellite software, I might
fi nd your story thought-provoking, but
I might approach the idea of applying
the same techniques in my work more
carefully.

Focus
Is it clear what you did? What method,
tool, or practice did you apply? In short,
what is your story about? If a reader
fi nds your experience compelling and
is willing to try it out in his own work,
would he know what to do or where to
get more info? Above all, keep focus.
Don’t describe everything you did on the
project. Be ruthless in down-selecting to
just those facts that support the coherent
story you’re trying to tell. When choos-
ing the focus of that story, keep in mind
that IEEE Software has a broad cover-
age area, and we’re interested in meth-
ods and tools related to the nuts and
bolts of software development as well as
management and human factors issues.

Results
What were the results of what you
did—and how do you know that those
results were caused by the method, tool,
or practice you’re advocating? Our re-
viewers are looking for reports that de-
scribe a concrete result. If you’re telling
me a story that revolves around apply-
ing a new approach (let’s say an auto-
mated tool that attempts to detect hid-
den technical debt items), you have to
tell me the end of the story. How well
did the tool work? Was the project a
success—and was that success traceable
back to the tool in any meaningful way?

When it comes to describing re-
sults, there are other issues to con-

MULTIMEDIA EDITOR SOUGHT

Given our effort in moving beyond print, the position of multimedia editor is a central
and important one for the magazine. We’re currently looking for candidates who
would be interested in taking on this role.

The role entails:

overseeing the multimedia production schedule, and making sure that we have
sufficient multimedia pieces allocated for upcoming issues;
coordinating with our department editors, special issue guest editors, Software
Engineering Radio (www.se-radio.net) podcasters, the EIC, and IEEE Computer
Society staff to track progress and suggest opportunities; and
suggesting hot topics and important thought leaders that could be the focus of
work by our multimedia teams.

This is a high-visibility position and one that provides the opportunity to interact
with software engineering thought leaders. Moreover, the multimedia editor will be
working with a great, productive, and fun team.

Interested? Please contact lead editor Brian Brannon at bbrannon@computer.
org for more information or to send an application, which should be comprised of a
cover letter and resume or CV. Applicants should have a proven ability to manage
projects and deliver reliably.

We express our sincere thanks to Bob Rosenstein of the Software Engineering
Institute. Bob served as multimedia editor for the fi rst year of our digital edition and
helped defi ne the role. We’re grateful for the guidance and help he gave us in getting
this important new project off the ground, and wish him all the best with his new
responsibilities at the SEI!

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

__

http://www.qmags.com/clickthrough.asp?url=www.se-radio.net&id=18138&adid=P6E1
mailto:bbrannon@computer.org
mailto:bbrannon@computer.org
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P6E2
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

FROM THE EDITOR

sider. How do you know that your re-
sults really mean? And how would a
reader have confidence that your story
can be trusted? We don’t expect expe-
rience reports to have reams of hard,
quantitative data, but there are other
ways of addressing this issue. When
appropriate, these might include sub-
jective forms of evidence such as feed-
back from key stakeholders or manage-
ment—in this case, the more specific
the author can be, the more convincing
the story tends to be. Direct quotes can
be helpful in this regard. Comparison
to prior projects is always useful, as a
way to show what has changed as a re-
sult of the new approach. Often, what
the author’s organization is willing to
do on the basis of the results speaks
volumes. If the results are convincing
enough to impact day-to-day practices
across other projects, then they’re prob-
ably compelling enough for readers to
pay attention to.

Also, when describing results, au-
thors shouldn’t claim to have found a
silver bullet. Readers appreciate a care-
ful weighing of pros and cons and it’s
very rare indeed to be able to see prog-
ress on one dimension without trade-
offs on others. Truly great experience
reports are those that look at multiple
types of impact—say, a tool’s impact
on the eternal triangle of project cost,
quality, and schedule. If a tool really
helps improve the delivered quality of
a product, what does a project have to
give up for that result—a substantial
amount of extra effort? An impact on
the schedule? And how about one-time
costs like investments in training?

Where to Go from Here
I welcome experience reports submit-
ted through the usual channels. But if
all of the above constraints seem daunt-
ing, don’t despair. Our Insights depart-
ment, helmed by Linda Rising, was es-
tablished especially to help—in fact,
the one on page 9 of this issue focuses

on stories. Proposals to Insights are re-
viewed by Linda and her distinguished
advisory board and, if accepted, shep-
herding is provided. Please see Linda’s
inaugural column for much more help-
ful information and guidance.3

I f I could boil all of this guidance
down to a simple test, it would
be this: Is there more to an article

than just a description of, “we did this”
or “we built this”? Is there a meaning-
ful principle exemplified through an
experience report that readers will care
about, be intrigued by, and possibly
think of applying themselves? Linda
has compared a good experience report
to a project retrospective: “We not only
want teams to look back and say what
happened, but we also want analysis.”

I couldn’t put it better than that.
And, like Linda, I remain excited by
the idea of hearing more reflection and
analysis from the ambitious software
development projects going on through-
out the industry today—with results we
can all learn from together.

References
1. S. McConnell, “How to Write a Good Techni-

cal Article,” IEEE Software, vol. 19, no. 5,
2002, pp. 5–7.

2. H. Erdogmus, “Tips for Software Authors,”
IEEE Software, vol. 24, no. 5, 2007, pp. 5–7.

3. L. Rising, “Telling Our Stories,” IEEE Soft-
ware, vol. 27, no. 3, 2010, pp. 6–7.

FORREST SHULL is a division director at the
Fraunhofer Center for Experimental Software
Engineering in Maryland, a nonprofit research and
tech transfer organization, where he leads the
Measurement and Knowledge Management Division.
He’s also an adjunct professor at the University of
Maryland College Park and editor in chief of IEEE
Software. Contact him at fshull@computer.org.

HOW TO
REACH US

WRITERS

For detailed information on submitting articles,
write for our Editorial Guidelines

(software@computer.org) or access
www.computer.org/software/author.htm.

LETTERS TO THE EDITOR

Send letters to

Editor, IEEE Software
10662 Los Vaqueros Circle

Los Alamitos, CA 90720
software@computer.org

Please provide an email address
or daytime phone number with your letter.

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/software/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

Send change-of-address
requests for magazine subscriptions

to address.change@ieee.org.
Be sure to specify IEEE Software.

MEMBERSHIP
CHANGE OF ADDRESS

Send change-of-address requests for
IEEE and Computer Society membership to

member.services@ieee.org.

MISSING
OR DAMAGED COPIES

If you are missing an issue or you
received a damaged copy, contact

help@computer.org.

REPRINTS OF ARTICLES

For price information or to order reprints,
send email to software@computer.org

or fax +1 714 821 4010.

REPRINT PERMISSION

To obtain permission to reprint an article,
contact the Intellectual Property Rights Office

at copyrights@ieee.org.

MAY/JUNE 2013 | IEEE SOFTWARE 7

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=http://ComputingNow.computer.org&id=18138&adid=P7E4
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software/subscribe&id=18138&adid=P7E3
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P7E2
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software/author.htm&id=18138&adid=P7E1
mailto:software@computer.org
mailto:software@computer.org
mailto:address.change@ieee.org
mailto:member.services@ieee.org
mailto:help@computer.org
mailto:software@computer.org
mailto:copyrights@ieee.org
mailto:fshull@computer.org
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

computer.org/software

More value, more content, more resources
The new multi-faceted IEEE Software offers exclusive video and web extras that you can access
only through this enhanced digital version. Dive deeper into the latest technical developments
with a magazine that is:

Searchable—Quickly find the latest
information in your fields of interest.
Access the digital archives, and save
what’s most relevant to you.

Linked—Click on table of contents links
and instantly go to the articles
you want to read first. Article links go
to additional references to deepen your
new discoveries.

Engaging—Experience concepts as they
come to life through related audio, video,
animation, and more. Email authors
directly. Even apply for jobs through
convenient ad links.

Mobile—Read the issue anytime,
anywhere, at your convenience—on your
laptop, iPad, or other mobile device.

Now Available
in Enhanced Digital Format

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P8A1
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P8A2
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P8A3
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P8A4
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E MAY/JUNE 2013 | IEEE SOFTWARE 9

AS LONG AS humans have existed,
stories have been told. It’s my claim
that we as software designers and IT
architects can benefi t much more from
this ancient craft than we currently do.
A good story is much more powerful
than any UML diagram can ever be.
Telling stories can effectively commu-
nicate your message; listening to them
helps you better understand your users’
needs. Crafting stories together with
your stakeholders builds a common vi-
sion of the system.

Getting Attention
When I fi rst started training people
about agile development, my presenta-
tions contained many slides on Scrum.
They had descriptions of the different
roles and responsibilities, the types of
work products, and the distinct types
of meetings. You’ve probably had simi-
lar experiences in projects with presen-
tations for management teams, user
groups, or analysts. Your slides showed
the details, covered all the arguments,
and came to a well-founded conclu-

sion and advice. Nevertheless, I’m sure
that those presentations didn’t reso-
nate with your audience. People tried
to comprehend the information and oc-
casionally even asked a sharp question
about something on a slide, but most
of the time, they were looking at their
watches as their thoughts wandered out
of the room.

One day, I decided to do things dif-
ferently. I crafted a story about the situ-
ation in our project and used it at the
beginning of my presentation. As soon
as I started with “Once upon a time,”
I noticed everyone perk up. During the
tale, people stayed with me and I even
saw a smile or two. The story was a
welcome break between the other talks.
Sure, it didn’t cover all technicalities,
but at least everyone paid attention and
could retell it. Isn’t that a giant step for-
ward, to have a shared basis, a com-
mon ground for all stakeholders?

What would you rather listen to, a
story about people you can relate to—
people of fl esh and blood, with real
feelings, who are puzzled by problems
that seem real and relevant for the sit-
uation at hand—or a PowerPoint pre-
sentation that covers the basic facts in
excruciating detail? Which of the two
would you remember the next day or
maybe even the following year?

Example 1: Stories about Your Message
Our home-grown object request bro-
ker had to be replaced. For years, we
kept building on it, but now it was very
brittle. We had already raised the issue
a couple of times, but convincing man-
agement that we needed serious invest-
ment in it wasn’t easy: “We’ve managed
fi ne so far—why buy expensive new
software if the old stuff still works?”

Storytelling
for Software
Professionals
Arjen Uittenbogaard, inspearit

The fi rst book I read about storytelling was by
David Armstrong, then vice president of Armstrong
International. I was skeptical at fi rst, but got caught up
in the stories. As I got more into patterns, I found that
in trying to tell readers about my context, problems,
forces, solutions, and resulting context, I was simply
trying to tell a good story. Over time, I learned that
the better the story, the more useful the pattern. I still
believe this 20 years later. The following article is not
only about storytelling, but it tells its own good tale. So,
sit back and enjoy! —Linda Rising, Associate Editor

INSIGHTS: STORYTELLING

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

10 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

INSIGHTS: STORYTELLING

In this context, I wrote a fairy
tale about a castle (see the sidebar)
and started telling it. It worked.
The story had an open end for start-
ing the conversation: “Dear CEO, if
you were the king, what would you
do?” As if by magic, this led us into
the discussion with our management
about business-IT alignment that we
had been looking for. Before we had
this story, we were talking in techni-
cal terms to an audience that didn’t
under stand or care. Talking in the
domain of a fairy tale, however,
paved the way to a real discussion of
the problems at hand.

Example 2: Feeling the Pain
I tell the story about the Soviet econ-
omist in Rotterdam a lot (see the

sidebar), especially in coaching and
trainings. I can explain to software
designers or IT architects why big de-
sign up front doesn’t work, and I can
explain to managers that in a complex
world, it’s no longer possible to con-
trol everything. But if I use complex-
ity theory and systems thinking to ex-
plain it, everyone nods, thinking they
understand. However, they won’t actu-
ally feel the angst that comes with let-
ting go. They won’t feel the fear that
comes with having to trust others. Un-
til you have felt that fear yourself, you
don’t truly understand the message.
The story about the Soviet economist
brings you closer to this feeling. You
can empathize with the Soviet econo-
mist and with his despair: “How can
this possibly work?!”

Listening and Understanding
The power of stories can also be ap-
plied when gathering information. Call
it information analysis or requirements
engineering—your task is to fi nd and
listen to the stories being told.

Up until about 15 years ago, our
requirements specifi cations and in-
formation analyses consisted of long
lists of statements that started with
“The system shall…” or “The system
should….” Although this wording
and format was sometimes required
for legal reasons, seeing the forest for
the trees was diffi cult. Then Ivar Ja-
cobsson introduced use cases, which
provided a logical structure for users:
one use case per user goal. Of all tech-
niques in the UML, use cases come
closest to stories. After all, they have
a protagonist (the user) and a series of
events leading that person toward a
goal. But they’re intentionally analyti-
cal—if they’re stories, they’re stories
with all the life sucked out of them. Be-
fore we can specify use cases, we have
to go out and talk to users. They have
to tell us about their work, about what
they like and where improvements are
needed, about where they’re satisfi ed
and where they see room for improve-
ment. Users tell us stories, which we
turn into use cases.

Learning and Sense Making
I fi rmly believe that having templates
for work products will never be suffi -
cient. Only by using and sharing your
experiences with them and swapping
anecdotes will you get better at your
job. Therefore, I urged the members of
one team for quite some time to stop
discussing the templates and start us-
ing them. At every retrospective, I
asked for volunteers to tell about their
experiences. For several months no one
did, until one day Enno told his story.

He had been working on the vision
document for the project and was try-
ing to fi ll the template: “It was of no

CRAFTING A STORY: GUIDELINES
FOR DOING IT YOURSELF

I like metaphoric stories very much, but maybe you prefer more realistic ones. Sto-
ries can be anecdotes or they can be entirely made up. In my experience, either of
these classes can work or fail. Here are some basic guidelines for crafting stories
that work:

Whether the story is realistic or metaphoric, anecdotal or made up, it has to be
true, meaning the message it conveys must be authentic. Otherwise, the story
reads like a lie, and your audience will know; they will sense that something is
wrong, and you won’t be believed.
Every story has a protagonist. This is the one character that your audience will
empathize with, the hero. When looking for a metaphoric story, freely associ-
ate to find your protagonist. Ask yourself, if this organization/problem/system
were a vehicle, what vehicle would it be? What if it were an animal, fairy tale
character, or other profession?
Stories with too many themes or messages will be complex at best but more
often tend to be boring. Kill your darlings. Less is more.
Your story will be about how the hero reaches his or her goal by overcoming
one or more obstacles. Of course, tragic stories exist in which the hero doesn’t
reach this goal, but for the purposes of motivation and inspiration, these end-
ings aren’t appropriate.
Try it out. Test your story by telling it to different audiences and finding out if its
message comes across. If not, keep adapting the story until it does.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P10E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 11

use. It was as if I had to invent every-
thing all over. None of the sections
made sense.” He talked about the dif-
fi culties he had encountered, includ-
ing stakeholders that he couldn’t reach
and the sponsor who didn’t want to
talk about his problems and needs. As
his story went on, we learned how he
had dealt with these situations: “The
template was of no use, so I created my
own spreadsheet. It helped me collect
the minimal information I needed.”
The interesting thing was his conclu-
sion: “I have learned a lot about mak-
ing a vision. Looking back, I think I
could have used the template after all,
if only I had understood it better.” Not
only had Enno described some lessons
he had learned, but by telling his story,
he also taught us a valuable lesson:
there will be obstacles, but they can be
conquered. (Also, be pragmatic about
those templates.)

EXAMPLE 1: THE CASTLE FAIRY TALE
Once upon a time, there was a king and a queen. They were
happy together and ruled the country to the satisfaction of all.
They lived in a beautiful castle with a large hall, a guest tower, a
huge inner court, and a moat surrounding it. One beautiful day,
a baby prince was born. As the boy grew up, he would need to
have his own rooms to sleep, play, exercise, and study in, so
while the queen was still pregnant, carpenters and servants
emptied, cleaned, and redecorated one of the towers for him.
When the prince was two years old, a second prince was born.
And shortly after that, two princesses and another prince en-
tered the family. Of course, all were entitled to their own rooms,
so every time a baby was born, the castle was restructured
slightly. Fortunately, not everything needed to be built anew
each time—some rooms could be shared. Nevertheless, some
puzzling was required with the arrival of every little prince or
princess.

The children grew up, fell in love with other nearby royals,
and married. The king and queen invited the couples to come
and live in the castle, which they all did, but as they required
more privacy than they did as children, the castle again had to

be renovated. Towers were made higher. Some of the rooms at
the exterior of the castle were extended over the moat. Parts of
the inner court were claimed for new rooms. Luckily, the king
employed a great master builder and skillful masons and plumb-
ers. No challenge was too big. Soon, the large hall wasn’t large
anymore, and the inner court had to renamed “courtlet.”

After some more years, the fi rst grandchildren were born.
Like their parents before, they too were entitled to their own
rooms. Annexes were enlarged and supported with ingenious
scaffolding. Arches were built between towers to support them,
and once an arch was in place, it in turn provided more space to
build upon. But when the fi fth baby of the fi fth prince was born,
all options were exhausted. Until then, the master builder had
been able to fi nd solutions time and again. But now, the plumb-
ing had become an intricate knot. The interior walls blended into
exterior walls in such ways that no further rebuilding was pos-
sible. If the towers went any higher, they would collapse.

The master builder was desperate and asked for an audi-
ence with the king. For this youngest grandchild, there was no
room in the castle…

EXAMPLE 2:
A SOVIET ECONOMIST IN ROTTERDAM

Many years ago in the Soviet Union, the Kremlin made fi ve-year plans that, I’m told,
determined who was allowed to buy what in which quantities on what date and with
which supplier. Back in those days, a Soviet economist was visiting a Dutch col-
league for a conference at Rotterdam University.

They were driving along the highway when the Dutch professor took an exit
to a gas station to fuel his car. When they got back on the road, the Soviet looked
puzzled: “What a remarkable coincidence….” The Dutchman asked what he was
wondering about. “Well, exactly on the day you’re allotted this amount of gasoline at
this gas station, you’re actually passing it on your way to the conference!” Now the
Dutchman was puzzled, which provoked the Soviet economist to say, “Ah, of course!
Because you’re a professor, you have some privileges.” The Dutch professor shook
his head. “Or it is because of the conference: you’re allowed to fuel up during these
days?” When the response remained negative, a worrying thought dawned on the
Soviet: “Are you telling me that each and every car on this highway is allowed to buy
any amount of gasoline at any gas station at any time he desires?”

The Dutch professor acknowledged that things went like that over here. “But that
can’t possibly work!” the Soviet exclaimed.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

12 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

INSIGHTS: STORYTELLING

Finding a Common Vision
Kent Beck introduced the system meta-
phor to guide all development: a sim-
ple shared story about how the system
works. For example, comparing the
system to a castle gives business and IT
stakeholders a similar vision. The en-
tire team chooses the system metaphor,
typically at project kickoff. Using asso-

ciation and discussing which metaphor
resonates best helps the team jell and
build a common vision.

If a metaphor is a picture worth a
thousand words, I would suggest that
a story is even more valuable. In the
context of a component-based develop-
ment project, the architects wanted a
good metaphor for their generic com-

ponents. They wanted this metaphor
to help them convince projects to re-
use components instead of building
everything themselves. In the meta-
phor workshop, two architects brought
stories in which they compared them-
selves to traveling salesmen trying to
sell their goods. The third architect
told the story of the stone soup (http://
en.wikipedia.org/wiki /Stone_soup).
The difference was striking. Up to that
point, the architects had been trying
to push their components to reluctant
projects. The stone soup story sug-
gested a radically different approach:
let’s make the component library so
attractive that the projects will gladly
contribute to it! This insight had a
great impact, and from that point for-
ward, instead of drafting blueprints
and making projects comply, the archi-
tects started cooperating and harvest-
ing whatever useful components the
projects brought to the table.

O f course, stories aren’t the
panacea for every problem
at hand, and of course, you

might still fail when using a story. If
you didn’t craft a good one, the wrong
message might come across. Sometimes
your audience is only in the mood for
hard facts. Certainly, telling too long
a story can do harm. But I’ve learned
that most often you yourself are the
biggest obstacle: if you aren’t convinced
that telling the story will work, your
hesitation will show. If you fi nd your-
self in this spot, try out your story in a
safe-to-fail environment.

Most of the time, stories do work, so
tell them, listen to them, and, working
with others, craft them.

On Computing
podcast

www.computer.org/oncomputing

ABOUT THE AUTHOR

ARJEN UITTENBOGAARD is a trainer, coach, and storyteller at inspearit,
working in requirements engineering, agile teamwork, and scenario planning.
At the Saturn 2012 conference, his presentation “Mythology for IT Architects”
won the New Directions Award. Contact him at arjen.uittenbogaard@inspearit.
com or arjen@verhalenmaker.nl.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=http://ComputingNow.computer.org&id=18138&adid=P12E2
http://www.qmags.com/clickthrough.asp?url=www.computer.org/oncomputing&id=18138&adid=P12A1
http://www.qmags.com/clickthrough.asp?url=http://en.wikipedia.org/wiki/Stone_soup&id=18138&adid=P12E1
mailto:arjen.uittenbogaard@inspearit.com
mailto:arjen.uittenbogaard@inspearit.com
mailto:arjen@verhalenmaker.nl
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P12E3
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E MAY/JUNE 2013 | IEEE SOFTWARE 13

Editor: Jane Cleland-Huang
DePaul University,
jhuang@cs.depaul.edu

Are Requirements Alive
and Kicking?
Jane Cleland-Huang

ABOUT 10 YEARS ago, I attended a
large meeting for requirements engi-
neers and business analysts in Europe.
At that time, one of the organizers
asked how many of us thought agile
methods would signifi cantly impact the
way mainstream companies developed
software and managed requirements.
None of us raised our hands.

In hindsight, of course this seems
particularly shortsighted. In our de-
fense, most of the people in that room
had invested a signifi cant amount of
time developing techniques for improv-
ing the requirements process. We knew
how important it was to identify rel-
evant stakeholders, proactively elicit
requirements, analyze them carefully,

identify trade-offs, emerge and nego-
tiate confl icts, and specify clearly and
unambiguously what the system needed
to do and how it needed to be done. At
that time, the agile movement seemed
to be tell ing us to throw these practices
away, threatening the whole concept of
requirements as we knew it.

On the other hand, around the same

time, I coauthored a book with Mark
Denne, then from Sun Microsystems,
called Software by Numbers: Low Risk,

High Return Development (Prentice Hall,
2003), in which we laid out a highly
incremental, ROI-driven approach to
prioritizing and sequencing features.
What I didn’t then realize is that we
had serendipitously discovered an idea
that fi t naturally into the agile devel-
opment process. Our approach still
assumed that we would identify stake-
holders and work with them to discover
their needs, but instead of laying out a
long-term development plan, it used a
simple fi nancial analysis to fi gure out
which features (architectural or func-
tional) to build fi rst. Furthermore, the

approach embraced change by allow-
ing the upcoming set of features to be
determined as the project progressed.
Consequently, I came to realize how
requirements and agility could live side
by side.

So, why am I focusing on agility in
a column on requirements? For my de-
but installment of this column, I want

to discuss the challenges that impact
requirements processes today and the
context in which most of us deal with
requirements. Agility is certainly one of
the major infl uences.

Changing Times
As an academic, I’ve had the oppor-
tunity to engage in industrial projects
of many sizes. Some of these projects
are very linear in nature and basically
follow the typical waterfall model,
whereas others are agile and fully em-
brace concepts such as informal user
stories, short delivery cycles, and
changing requirements. From my per-
spective, both kinds of projects have
had their own challenges, but in the
end, both kinds of projects have been
successful.

The bottom line is that the IT en-
vironment we work in today is sim-
ply different from the environment 10
years ago, and for this column to con-
tinue to address pertinent topics, it’s es-
sential that we understand the critical
forces that drive requirements today.

For example, we can no longer as-
sume that projects will be preceded by
stringent, up-front processes in which
we carefully elicit all the requirements
and then design a complete solution be-
fore jumping into the actual develop-
ment process. There are many assump-
tions that we might have made a decade
ago that simply aren’t true today.

We can no longer assume that
it’s possible to bring all stakeholders

REQUIREMENTS

I came to realize how requirements
and agility could live side by side.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

mailto:jhuang@cs.depaul.edu
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

14 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

REQUIREMENTS

together in the same room at the same
time for face-to-face meetings. In
many current projects, stakeholders
are distributed around the globe, and
sometimes the only way to reach them
all is by leveraging social networking
and collaboration tools. This intro-
duces numerous challenges. How can
we make our tools more effective so
that meetings made up of people from
different continents produce meaning-
ful discussions that bring forth real is-
sues and result in a deep understand-
ing of stakeholder needs?

We’re gaining a far deeper under-
standing of the synergies between re-
quirements and architectural design. In
fact, in many cases, new requirements
are introduced to an existing system,
and previous architectural, platform,

and hardware decisions create con-
straints on the viability of new feature
requests. Although it’s true that almost
anything is possible, it’s also true that
some requirements are far easier to de-
liver than others and that existing so-
lutions can facilitate or hinder future
change. So, how does this more incre-
mental life cycle affect the way we elicit
and manage requirements?

Software development environments
(not just the stakeholders) are becom-
ing increasingly global in nature. When
the outsourcing trend began a decade
or so ago, we had fairly clear hand-off
points in the life cycle. That line is far
fuzzier now. Outsourcing companies
are now often responsible for not just
coding and testing but also the require-
ments elicitation process. We must con-

sider how this affects project success
and how we can ensure that project
goals and requirements are fully ex-
plored and understood when the people
eliciting the requirements aren’t even
on the same continent as the primary
stakeholders.

New Demands
There’s also a move to push up the ab-
straction level of the software devel-
opment effort by specifying software
requirements as models and then auto-
matically generating code from those
models. In the world of model-driven
development (MDD), how do we en-
sure that requirements are specified
correctly in models and verify that the
generated code actually satisfies stake-
holders concerns?

www.ireb.org The home of Requirements Engineering

So you are already a

IEEE SOFTWARE CALL FOR PAPERS

Green Software
Information technologies (IT) requiring vast amount of energy
and other resources are used in almost every field and process.
Green IT is the study and practice of using computing resources
efficiently to reduce negative impacts on the environment. Green
IT is applicable to various high-tech domains, such as datacenters,
mobile computing, and embedded systems. Recently, global carbon
dioxide emissions reached 9.1 billion tons, the highest level in hu-
man history—49 percent higher than in 1990 (the Kyoto reference
year). At least 2 percent of global carbon dioxide emissions can
be attributed to IT systems, and further increases are expected,
with new IT systems being deployed daily. Therefore, reducing the
energy consumption and related carbon dioxide emission of IT sys-
tems is a crucial requirement. Reducing energy consumption also
leads to reduced maintenance expenses and costs of ownership,
giving manufacturers a competitive advantage.

Questions?
For more information about the focus, contact the guest editors:

Ayse Basar Bener, Ryerson University: ayse.bener@ryerson.ca
Maurizio Morisio, Politecnico di Torino:
maurizio.morisio@polito.it
Andriy Miranskyy, IBM Toronto Software Lab:
andriy@ca.ibm.com

Full call for paper: www.computer.org/software/cfp1
Full author guidelines: www.computer.org/software/author.htm
Submission details: software@computer.org
Submit an article: https://mc.manuscriptcentral.com/sw-cs

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=https://mc.manuscriptcentral.com/sw-cs&id=18138&adid=P14A4
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software/author.htm&id=18138&adid=P14A3
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software/cfp1&id=18138&adid=P14A2
http://www.qmags.com/clickthrough.asp?url=www.ireb.org&id=18138&adid=P14A1
mailto:ayse.bener@ryerson.ca
mailto:maurizio.morisio@polito.it
mailto:andriy@ca.ibm.com
mailto:software@computer.org
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P14E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 15

REQUIREMENTS

Yet another challenge comes from
the increasing desire for systems, es-
pecially Web services, to adapt at
runtime to changes in their environ-
ments. One of my graduate students
recently told me that his company’s
attempt to achieve adaptation failed
primarily because it didn’t know how
to clearly specify requirements for
adaptive systems, and therefore never
fully understood the system’s goals.
As industry increasingly moves to-
ward building adaptive systems, we
must find better ways to specify ad-
aptation goals.

And what about safety-critical soft-
ware development? In critical systems,
it’s particularly important to perform
a rigorous risk analysis, identify haz-
ards and faults, and then specify miti-
gating requirements, which are care-
fully tracked throughout the system’s
development. How should the require-
ments process be conducted so that the
end result is a carefully constructed
assurance or safety case that demon-
strates a system is safe for use? What

requirements techniques are effective
in these kinds of environments?

Although the IT environment has
changed over the years, the impor-
tance of eliciting and understanding
requirements is timeless. The end re-
sult may be represented in different
ways—as traditional “shall” state-
ments, use cases, sketches, user stories,
acceptance tests, formal logic, goal
models, or state charts. However, as
long as we continue to build software
systems and care whether those sys-
tems meet the needs of our customers
and other stakeholders, then we must
continue to emphasize the importance
of understanding, analyzing, and spec-
ifying requirements.

I n taking over this column from
Neil, I realize that I have some
metaphorically large shoes to fill.

Neil brought us eight years of wisdom,
debate, and sometimes hilarity in the
form of Colin Codephirst. I’m not even
going to try to fill those shoes. Instead,

I hope we can go on a new journey that
winds its way through new challenges
that emerge along the way. I hope to
discuss current issues related to re-
quirements and to take on some of the
most controversial issues head on.

We must continue our quest to learn
better ways to work with stakehold-
ers to discover requirements, embrace
change, deliver safe systems, engage
distributed stakeholders, and support
innovation and change. Although the
challenges are endless, the benefits are
immense. Requirements are very much
alive and kicking!

If you have ideas for requirements-
related topics that you would like to see
discussed, please email me at jhuang@
cs.depaul.edu.

JANE CLELAND-HUANG is an associate profes-
sor at DePaul University. Contact her at jhuang@
cs.depaul.edu.

IEEE SOFTWARE CALL FOR PAPERS

Mobile Computing

Ubiquitous, pervasive mobile computing is all around us. We use
mobile computing not only when we interact with our smart-
phones to connect with friends and family across states and coun-
tries, but also when we use ticketing systems on a bus or train to
work or home, purchase food from a mobile vendor at a park,
watch videos and listen to music on our phones and portable mu-
sic playing devices. In other words, mobile computing is not only
the interaction of smart phones with each other. Any computation
system that is expected to move and interact with end users or
other computational systems despite potential changes in network
connectivity—including loss of connectivity or changes in type
of connectivity or access point—participates in mobile comput-
ing infrastructure, and the number of such systems is expected to
grow significantly each year over the coming decades.

Questions?
For more information about the focus, contact the guest editors:

James Edmondson, Carnegie Mellon Software Engineering
Institute: jredmondson@sei.cmu.edu
William Anderson, Carnegie Mellon Software Engineering
Institute
Joe Loyall, BBN
Jeff Gray, University of Alabama
Jules White, Virginia Tech
Klaus Schmid, University of Hildesheim

Full call for paper: www.computer.org/software/cfp2
Full author guidelines: www.computer.org/software/author.htm
Submission details: software@computer.org
Submit an article: https://mc.manuscriptcentral.com/sw-cs

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=https://mc.manuscriptcentral.com/sw-cs&id=18138&adid=P15A1
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software/author.htm&id=18138&adid=P15A3
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software/cfp2&id=18138&adid=P15A2
http://www.qmags.com/clickthrough.asp?url=http://ComputingNow.computer.org&id=18138&adid=P15E1
mailto:jhuang@cs.depaul.edu
mailto:jhuang@cs.depaul.edu
mailto:jredmondson@sei.cmu.edu
mailto:software@computer.org
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

16 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Editor: Grady Booch
IBM, grady@
computingthehumanexperience.com

In Defense of Boring
Grady Booch

ON COMPUTING

THE PURPOSE of good software is to
make the complex appear simple.

Complexity is the key factor in the
cost of software and the time it takes
to develop and evolve it. If you reduce
Barry Boehm’s software economics
model down to its essence, you’ll see
that this cost/time is a function of the
complexity of the system, raised to the
power of process times the team, times
the tools (and weighted in that order,
from the most to the least signifi cant).
Having the right tools helps—having
the right team helps far more—but
whatever you can do to control com-
plexity has the most signifi cant im-
pact on a system’s development life
cycle. Furthermore, a good process will
dampen complexity, while a bad pro-
cess will amplify it.

There’s also a subtle yet important
interaction between an organization’s
process and its team. The very best

teams will embody an emergent pro-
cess that’s perfectly tuned to its cul-
ture, its domain, and its history. This
is the nature of all highly effective
teams, wherein the process becomes a
part of the atmosphere. However, to
paraphrase Garrison Keillor’s descrip-
tion of Lake Woebegone, every orga-
nization likes to believe that theirs is

a place where all their developers are
strong, all their code is good looking,
and all their system metrics are above
average. Nonetheless, on average, the
average developer is average. This
means that this process/team relation-
ship is far more complex: the stronger
the team (and the greater the risk to or
value of the system), the less that a high
ceremony process is needed. The bet-
ter the team (and the less risk or value
present), there can and there must be a
reduction in ceremony.

As it turns out, all of this is very
hard to do.

The Dynamics of Complexity
First, as Fred Brooks has told us time and
again (and as we need to be reminded
time and again), there’s an essential com-
plexity to software, a complexity that’s
inescapable and irreducible. Build your-
self a natural language question/answer

system, manage the textual and visual
brain droppings of about a billion us-
ers, craft a vehicle that can semiauton-
omously explore an alien planet: these
are all things that multiple people spend
multiple careers trying to get right.

Second, however, there is self-
imposed, accidental complexity. Stick
your head inside the workings of any 1

to 10 million SLOC system, and most
of the time you will see a muddle. Yes,
there will be obvious lines of demarca-
tion, faults where you can observe the
impact of some major technical or busi-
ness tectonic shift, and reoccurring fos-
sils in the software’s geological levels,
laid down by different individuals with
different styles over different times.
The most signifi cant design decisions
are probably visible, evident in the ma-
jor edifi ces and refl ected in the dark
corners of the system. Nonetheless,
I’ve yet to see any ultra-large software-
intensive system without some vestigial
organs and strange irregularities. This
is the very nature of how large systems
evolve, be they natural, organic, or
human-made.

To that end, the best we can do is
simply strive to manage complexity.
We can neither reduce nor eliminate a
system’s intrinsic complexity. From a
system’s engineering perspective, this
is where we apply all the tricks of our
trade to devise crisp abstractions, a
good separation of concerns, and a bal-
anced distribution of responsibilities. A
discipline of steady incremental and it-
erative executable releases helps to steer
a project in the right direction, which
is not necessarily the direction fi rst en-
visioned. A discipline of patterns serves
to establish the system’s texture and at-
tends to crosscutting concerns. A disci-
pline of refactoring is hence the result
of combining the best practices of a
rhythm of releases with the motifs of
textures. Refactoring helps to take off
the sharp, unnecessary edges of a brit-
tle system. When done right, the result
is positively, beautifully, breathtakingly
boring. As it should be.

On average, the average
developer is average.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

A
U

D
I

O

http://www.qmags.com/clickthrough.asp?url=www.computingthehumanexperience.com&id=18138&adid=P16E1
mailto:grady@computingthehumanexperience.com
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 17

ON COMPUTING

Smooth Edges
These concepts apply not only to the in-
side of a software-intensive system but
also to its outside. When used as a part
of a system of systems, the edges of any
subsystem must play well with others,
especially with others that didn’t even
exist at the time you built your system.
If a subsystem offers up APIs or ser-
vices that are awkward to use, too fi ne-
grained, too big, or just plain irregular,
then you have a problem. That’s not
boring, because you’ll fi nd you have to
force a fi t by writing some one-off code
that hides the evils of the existing inter-
face, bridges the gaps, and sometimes
routes around it, either by jumping
across levels of abstraction or replacing
some functionality entirely. When the
edges of a subsystem are well designed,
they are approachable and understand-
able, they snap together easily with
other edges, and their behavior is pre-
dictable. Hence, they are boring.

On one hand, we seek to build soft-
ware-intensive systems that are innova-
tive, elegant, and supremely useful. On
the other, computing technology as a
thing unto itself is not the place of en-
during value, and therefore as comput-
ing fi lls the spaces of our world, it be-
comes boring. And, that’s a very good
and desirable thing.

This is the perspective of boredom
as seen from inside a software-intensive
system looking out. Looking at such a
system from the outside in is an entirely
different matter. Let us then look at
software through the lens of the human
experience.

Technological Babysitting
Recently, I was in Silicon Valley, where
I did a little shopping. I’m a people-
watcher, and a charming young boy,
perhaps three or four years old, caught
my eye. He was with his father, and
the two were apparently waiting for
the boy’s mother, who was trying on
clothes. Time and again, the young

boy tried to engage his father’s atten-
tion, to no avail. Completely frustrated
with the interruption of wherever the
father’s thoughts were taking him, the
dad whipped out a smartphone, put on
a movie, and shoved it under his son’s
face. The father continued looking out
into space, while the child, slack-jawed,
focused on the movie, his face bathed
in the usual smartphone glow (a phe-
nomenon I call receiving an iTan).

In the father’s defense, he might
have been having a Really Bad Day, but
I don’t think so. Rather, the father was
medicating his son with an iPhone. In
so doing, using Sherry Turkle’s termi-
nology, the father and son could now be
alone together. This is a scene I see play
out all the time. I’m no longer surprised
when, walking along the beach, I see a
whale breaching, only to look back at
the shore and see a family, heads down
in their smart devices, oblivious to the
world beyond their screens. I suppose,
using a title from the Grant Naylor
book, they found their computing ex-
perience to be Better Than Life.

I am an expert in computing, not in
children (although my wife is, as a child
and family therapist who was in private
practice), and I have no children of my
own (although we have been godpar-
ents to about a dozen kids and have also
brought a single mother and her child
into our household for a few years).
That said, I recognize when technology
is being used as a substitute for real-
ity, and what I was witnessing was one
such case. From my perspective, a child
needs time to dream, and while tablets
and such are useful in moderation, they
are never a substitute for human inter-
action, especially when one is learning
how to grow up.

Turkle’s Alone Together and Carr’s
The Shallows offer some evidence of
the effect that technology has upon us
when we immerse ourselves inside it,
at the expense of being fully present in
the world. There is work to be done to

deeply, scientifi cally understand the im-
plications of computing, but nonethe-
less…look! Squirrel!!!

S orry, I was distracted there for
a moment.

But that’s the point. We
don’t yet know fully the implications of
intimate computing on the individual,
nor likely will we for a generation or
so. While I’m confi dent that the human
spirit will adapt, I’m also certain that
all of us—especially children—need
some boredom in our life. The inten-
tional use of computing is a good thing,
even if that means intentionally not us-
ing that technology from time to time,
as a sort of digital sabbatical.

As such, we need more boring soft-
ware, software that’s so fundamentally
boring that it disappears. If you must
have a tablet in a child’s face, then de-
vise a killer app that would engage the
child and the people in the immediate
vicinity in such a way that they’re re-
quired to interact with one another.
Perhaps this might be an augmented
reality app for a child’s game of I Spy,
or counting or spelling games that are
contextual to the world around the
child. You know, stuff that is part of
the boring real world.

Now that’s the kind of boring soft-
ware we need much more of.

See www.computer.org/software
-multimedia for multimedia
content related to this article.

GRADY BOOCH is an IBM Fellow and one of the
UML’s original authors. He’s currently developing
Computing: The Human Experience, a major trans-
media project for public broadcast. Contact him at
grady@computingthehumanexperience.com.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software-multimedia&id=18138&adid=P17E1
mailto:grady@computingthehumanexperience.com
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

18 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Editor: Diomidis Spinellis
Athens University of Economics
and Business, dds@aueb.gr

Systems Software
Diomidis Spinellis

SYSTEMS SOFTWARE IS the low-level
infrastructure that applications run on:
the operating systems, language run-
times, libraries, databases, application
servers, and many other components
that churn our bits 24/7. It’s the mother
of all code.

In contrast to application software,
which is constructed to meet specifi c
use cases and business objectives, sys-
tems software should be able to serve
correctly any reasonable workload.
Consequently, it must be extremely re-
liable and effi cient. When it works like
that, it’s a mighty tool that lets applica-
tions concentrate on meeting their us-
ers’ needs. When it doesn’t, the failures
are often spectacular. Let’s see how we
go about creating such software.

Writing
As an applications programmer, the
fi rst rule to consider when writing a
vitally required piece of systems soft-
ware is “don’t.” To paraphrase the
unfortunate 1843 remark of the US

Patent Offi ce Commissioner Henry
Ellsworth, most of the systems soft-
ware that’s required has already been
written. So, discuss your needs with
colleagues and mentors, aiming to pin
down the existing component that will
fi t your needs. The component could
be a message queue manager, a data
store, an embedded real-time operat-
ing system, an application server, a
service bus, a distributed cache—the
list is endless. The challenge is often
simply to pin down the term for the
widget you’re looking for.

Once you start writing, focus on the
data structures and algorithms you’ll
adopt. You’re building infrastructure
and therefore you can make few, if any,
assumptions about your workload. Use
reasonably effi cient algorithms to avoid
surprising your clients with resource
hoarding and unwelcomed bottlenecks.
If a design can let you serve requests in
nearly constant time, your clients will
expect you to implement such a behav-
ior. In such a case, it’s unreasonable for
the time you take to service a request
to increase with the number of elements
you’ve served.

The data structures you choose
should also gracefully accommodate
the workload without placing any ar-
tifi cial limits on it. That’s not as easy
as it sounds: you’re most likely to pro-
gram in C and lack access to the so-
phisticated container libraries available
in higher-level application frameworks.
Use dynamically expanding buffers,

memory pools, or linked lists to handle
arbitrary amounts of data.

Error-checking is a related problem.
The C language doesn’t offer excep-
tions, which you’re obliged to catch,
so functions return error codes, which
you should check scrupulously. If you
fail to do that, your code might lose
data or crash and burn. As an example,
at the time of writing, the GNU time
and Windows route commands will si-
lently lose their output if redirected to a
full disk. Recovery from most errors is
diffi cult, but your code should handle
those well-documented cases in which
the proper response to an error or short
result is to retry the operation.

Then come the nitty-gritty details
that affect effi ciency. Be a good citi-
zen by having your code block when it
has nothing to do. Looking around for
work in a polling loop wastes precious
resources. Instead, determine who
might have something for your process,
and use the POSIX select and poll calls
to wait until such work becomes avail-
able. Design your system’s communica-
tion patterns using this pattern, so that
a lack of work will idle all its processes.

Modern memory is at least an order
of magnitude slower than the CPU, so
stay away from it. Avoid repeatedly
processing data in memory. Cache
intermediate results, and try to obtain
all the data you need from a memory
location with a single access. Where
possible, sidestep memory copying. For
instance, the POSIX mmap system call

TOOLS OF THE TRADE

Post your comments online
by visiting the column’s blog:

www.spinellis.gr/tools

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

A
U

D
I

O

http://www.qmags.com/clickthrough.asp?url=www.spinellis.gr/tools&id=18138&adid=P18E1
mailto:dds@aueb.gr
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 19

TOOLS OF THE TRADE

allows you to transfer data between
fi les and your application without
having the operating system copy it
to its buffers, while the readv and writev
calls allow you to combine data from
multiple buffers into a single I/O
request. These two things save you the
cost of copying data into a single buffer
or that of multiple system calls (another
fi ne way to waste CPU time). Thus,
you exploit the goodies that modern
hardware and operating systems offer
you to make your code more effi cient.

Although intricate dependencies on
lower layers are fair game for systems
software, horizontal ones aren’t. Sys-
tems software should be free-standing
as much as possible; your client soft-
ware is likely struggling to balance
multiple confl icting requirements. Ar-
riving at the party with your own long
list of uninvited guests isn’t polite.
Therefore, eschew dependencies on ob-
scure libraries, tricky-to-install compo-
nents, and large frameworks that might
not be available by default. Make your
software play well with package man-
agement systems, allowing its painless
installation and updating.

In contrast to application software,
where the lack of a thick manual can
be a virtue, systems software should be
accurately and comprehensively doc-
umented. The documentation is the
contract you draw with clients; strive
to write precisely how your tool will
behave, how it can be confi gured, and
how it can fail.

Testing
Testing systems software can be tricky
because it often contains complex al-
gorithms that are subjected to gruel-
ing stress levels. Instead of the leisurely
input that many application programs
receive from the keyboard and mouse
over a working day, systems software
typically has to deal with machine-
generated input arriving through a fi re
hose over a period of months. Worse,

input coming from the outside world
can even be maliciously crafted for di-
verse nefarious purposes.

You can accelerate stress testing your
software by confi guring your testing
environment to exercise its edge cases.
For instance, if your software’s dynam-
ically grown buffers are 64-Kbytes, test
its behavior when they’re just 16 bytes.
If you expect to service 10 clients,
check what happens when you service
500. On top of that, write a test har-

ness to feed your software with a huge
number of test requests of all shapes
and sizes.

You can go a step further by ac-
tively downgrading the environment
in which your software runs. We saw
the importance of error checking; you
can verify how you handle errors by in-
troducing faults behind your software’s
back using tools like the libfi ou library
(http://blitiri.com.ar/p/libfi u/) or Chaos
Monkey.

Debugging
Debugging systems software when rare,
nondeterministic errors crop up is just
as diffi cult as testing it. These aptly-
named heisenbugs will appear only
when input, timing conditions, and the
software’s internal state line up. Re-
producing such errors can take days of
stress testing. Good luck tracing them
by single-stepping through a debugger.
Worse, a decent debugger might not
even be available, either because your
code runs on a resource-constrained
system or because your code is part of

the infrastructure in which the debug-
ger would normally run,

The solution to this problem involves
instrumenting your software with copi-
ous amounts of confi gurable logging.
This will present the software’s internal
state, data structures, and how one step
leads to another. Hopefully, you can re-
produce the error with logging turned
on and then locate its cause by trawl-
ing through the detailed log records. I
recently had a case where just 3 out of

7 million requests were mishandled.
I was fortunate, for I could fi nd a rare
misalignment issue in the logs. Some col-
leagues were less lucky and had to hook
a logical analyzer in the computer’s guts
to locate an operating system error.

S o, with mean and lean code,
paranoid testing, and compre-
hensive logging, you’ll write

the systems software that your applica-
tions deserve.

DIOMIDIS SPINELLIS is a professor in the Depart-
ment of Management Science and Technology at
the Athens University of Economics and Business
and the author of the books Code Reading and Code
Quality: The Open Source Perspective (Addison-
Wesley, 2003, 2006). Contact him at dds@aueb.gr.

See www.computer.org/software
-multimedia for multimedia
content related to this article.

See ww
ltim
en

Accelerate stress testing your software,
by confi guring the testing environment
to exercise its edge cases.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software-multimedia&id=18138&adid=P19E2
http://www.qmags.com/clickthrough.asp?url=http://blitiri.com.ar/p/libfiu/&id=18138&adid=P19E1
mailto:dds@aueb.gr
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

20 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Editor: Christof Ebert
Vector Consulting Services
christof.ebert@vector.com

SOFTWARE
TECHNOLOGY

Software Agents in
Industrial Automation
Systems
Stephan Pech

In recent years, agent-oriented software engineering has evolved
into a powerful software engineering paradigm. Agents enable
abstractions not only from the problem domain but also toward
dynamic solutions that evolve in real time, depending on environmental
stimuli to the software system. Agents complement the structured
development of reliable industrial automation software systems by
providing the necessary fl exibility and adaptability. Author Stephan
Pech looks at the engineering of agent-oriented systems and provides
practical guidance to get started. I look forward to hearing from
both readers and prospective column authors about this column and
the technologies you want to know more about. —Christof Ebert

HIGHLY DEVELOPED INDUSTRIAL auto-
mation (IA) systems are the result of long-
term engineering experience and the core ele-
ments of several different fi elds of industry.
By integrating technologies and application
domains, IA software systems tend to be-
come collections of distributed service-pro-
vider and service-consumer elements that are
interlinked during runtime by dynamically
defi ned workfl ows.1 This leads to increas-
ing complexity in the overall software sys-
tem and its associated applications, requiring
some sort of dynamic adaption to changing
requirements and interfaces. Because agent-
oriented software engineering is a mature
software engineering methodology, it can
address this need, complementing the struc-
tured development of reliable IA software

systems by providing the necessary fl exibility
and adaptability.2

Compared to ordinary enterprise envi-
ronments, IA environments have a differ-
ent use context. Their inclusion of various
roles, such as engineers, process person-
nel, and managers, along with their differ-
ent views on systems, is challenging. Fur-
thermore, the diverse IA system landscape
breeds multiple individual solutions that are
diffi cult to scale and maintain. To tackle
these challenges, researchers have devel-
oped miscellaneous middleware and knowl-
edge-intensive expert systems to automate
human processes and provide technology-
independent access to information. How-
ever, such solutions still lack adequate user-
oriented assistance.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

mailto:christof.ebert@vector.com
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 21

SOFTWARE TECHNOLOGY

Software agents can help close this
gap: their autonomy, proactivity, goal
orientation, interaction, and mobil-
ity provide much needed flexibility at
runtime.3 Moreover, depending on the
system’s design goals, these charac-
teristics don’t have to appear simulta-
neously. The basic concepts of agent
orientation make up the next steps—
specifically, toward the development
of flexible and adaptable agent-based
software systems. Conceptual consid-
erations of how to design a specific
software system are shifting from the
solution space (specific technologies)
to the problem space (specific work-
ing routines), and the implemented
software modules are becoming more
and more “intelligent” because they
decide their own control flow.3 These
characteristics make software agents
uniquely qualified for use in dynamic
environments such as IA and are the
major benefits compared to conven-
tional system design methodologies.
Having control flows and decision
processes distributed to autonomous

software agents leads to a decoupling
of system elements and to reduced cen-
tralized complexity.

Exemplary Agent-Based
Application Scenarios
The software agent community has
developed several agent-based ap-
plications in the IA domain. Table 1
gives a brief overview of some specific
examples.4–7

Application Scenario
in Plant Automation
Typical industrial plants in the process
industry consist of many process and
information systems. To holistically
handle the tasks related to process op-
timization, the information aggregated
in the enterprise resource planning sys-
tem isn’t sufficient alone. Additional
information from other systems must
be manually collated, which can be an
elaborate task for process personnel.
Research in this area shows that we can
separate the entire query process into
partial query steps that software agents

can handle independently and thus pro-
vide partial results.7 These query steps
constitute the atomic building blocks of
more sophisticated queries. We can also
reuse them to query a variety of other
data sources. But due to the tremen-
dous amount of possible queries and
the resulting combinational alterna-
tives, it isn’t feasible to foresee all pos-
sible options in an information system’s
development phase. We therefore must
combine relevant partial query steps
for runtime, which indicates the use of
software agents.

At the architectural level, design de-
cisions for a multiagent system’s struc-
ture focus on the decomposition of sys-
tem functionalities and the connection
to heterogeneous data sources. This is
based on the comprehensive represen-
tation of system elements through soft-
ware agents and ontologies. The out-
come is a layered architecture—as in
Figure 1—that contains three functional
and cooperative layers as well as two
different types of ontologies. In general,
ontologies provide the preconditions

TA
B

L
E

 1 Examples of agent-based concepts in industry applications.

Use context Current challenges Supporting tools
Emerging benefits
using software agents

Agent-based
engineering in plant
automation4

Manual human processes to handle the
engineering of an industrial automation
(IA) plant for technical components,
functionalities, and information

Computer-aided design and
engineering tools

Active technical support for IA plant
engineering processes; autonomous
investigation of evolving technical
correlations within plants

Agent-based dynamic
scheduling for flexible
manufacturing
systems5

Dedicated resources and statically
defined jobs on shop floor resulting in
fixed workflows; inability to react to
manufacturing disturbances

Computerized, numerically
controlled software systems;
automatic guided transport
vehicles

Flexible and dynamic scheduling
of available shop floor resources
to requested jobs; production flow
scheduled to maximize the utilization
of these resources

Agent-based
monitoring systems in
process automation6

Requirements for increasing production
effectiveness resulting in integrated
production systems; only a few process
operators monitoring a lot of changing
values in process operations

Device maintenance,
optimization, diagnostic,
reporting, and monitoring tools;
integrated process automation
and control systems

Process personnel supported to
cope with an increasing amount of
responsibilities; software agents
autonomously fulfilling knowledge
handling and data processing tasks

Agent-based
information retrieval
for IA systems7

Heterogeneity of the data infrastructure
itself and the diverse system landscape
in IA systems; individual solutions that
are challenging to use and maintain

Business intelligence systems,
specific industrial software
systems, knowledge-based
systems

The information user’s workflow gets
structured, leading to better search
results and higher efficiency in the
information retrieval workflow

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

22 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

SOFTWARE TECHNOLOGY

for establishing cross-domain semantic
queries. Domain ontologies represent
domain-specifi c knowledge, whereas
global domains provide a global view of
information.

Within a research project, we de-
fi ned and evaluated four different agent
roles, each of which is assigned to
one of the following agent types: user
agents (UAs) assist users in composing
queries and provide user interaction,
and query management agents (QMAs)
work on solving queries by cooperat-
ing with UAs and query agents (QAs)
within the network. QAs help compile
query plans, which information re-
trieval agents (IRAs) use to query data
sources. QAs then cooperate with IRAs
to abstract data storage out of data
management and can therefore process
queries on any type of data source.

The advantage of the concep-
tual separation of IRAs and the data
sources’ information and communi-
cation models is the fl exible extensi-
bility concerning new data sources at
runtime. Semantic Web technologies
frequently apply ontology-based infor-
mation integration concepts to explic-
itly describe data source semantics. In
our concept of agent-based informa-
tion retrieval, ontologies are regarded
as classes, entities, properties, and re-
lationships that describe a standard-
ized terminology exchanged between
agents. The cross-domain connection
of terms within the different ontologies
fosters a consistent view of the different
data sources and guarantees consistent
data management. With the automated
compilation of queries, workfl ows con-
ducted by software agents can reduce

the number of errors otherwise intro-
duced by human information users.

Applicability of the
Agent-Based Concept
A major criterion for assessing the ap-
plicability of this agent-based con-
cept is its seamless integration in an
information-driven industrial environ-
ment. Compared to development from
scratch, there’s less effort to adapt to
heterogeneous interfaces, communica-
tion protocols, and proprietary soft-
ware systems. With regard to raising
effi ciency, fl exibility, and adaptability,
the agent-based concept contributes
positively in different ways.

Table 2 shows a selection of several
standards, methodologies, and agent
platforms that support the implementa-
tion of agent-based systems.8,9 From a
practitioner’s view, the following issues
are of particular importance:

The quality of search results is im-
portant in determining how the
user’s information needs are cov-
ered. For manually executed que-
ries, the range and the accuracy of
search results depends primarily on
user-specifi c knowledge about the
application domain. With support
from an agent-based information
system, the user’s workfl ow is both
structured and repeatable.
Flexibility during an IA’s operating
phase—especially for dynamic in-
formation retrieval instead of stati-
cally planned queries—is most ap-
parent when a modifi cation of the
information environment structur-
ally changes the data models. By us-
ing ontologies, the efforts for nec-
essary changes can be reduced to a
minimum—the adaptation of the
ontologies itself. Other wise—fol-
lowing conventional approaches—
the whole system architecture has
to be adapted to the modifi ed data
models.

Information user

QMAQMA

UA UA UA

Domain
ontology

QA QA QA

IRA IRA IRA

Top-level
ontology

s

Da
ta

 re
tr

ie
va

l l
ay

er
Da

ta
 p

ro
ce

ss
in

g
la

ye
r

Us
er

 in
te

ra
ct

io
n

la
ye

r

Information user Information user

e D e D e

Agent

FIGURE 1. Information retrieval concept using software agents. This fi gure depicts four

agent types: user agents (UAs) assist information users in composing queries and provide user

interaction, and query management agents (QMAs) work on solving queries by cooperating

with UAs and query agents (QAs) within the network. QAs help compile query plans, which

information retrieval agents (IRAs) use to query data sources.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P22E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 23

SOFTWARE TECHNOLOGY

System independency of the agent-
based information retrieval concept
is one of the features that were fol-
lowed with the realization. This
deals with several different facets:
independence from the control of
the technical process, the techni-
cally independent access to data
sources, and the flexible building of
the query structure and semantics.

In spite of the agent-based concept’s
advantages, it has some limitations as
well. For instance, as multiagent systems

are a community of autonomous soft-
ware entities, there’s no guarantee that
all of the assigned queries are answered
in time. One reason is the nondetermin-
istic behavior of the agent collabora-
tion itself. But because the information
retrieval process is independent from
the control functionality of the IA, this
doesn’t matter in most cases.

T he main benefit of using soft-
ware agents in IA is the com-
bined application of agent-

oriented software engineering with
other fields, such as semantic technolo-
gies. Software agents provide flexibility,
which is often the key requirement for
creating software system architectures
that can evolve during runtime.

References
1. A.P. Kalogeras et al., “Vertical Integration of

Enterprise Industrial Systems Utilizing Web
Services,” IEEE Trans. Industrial Informat-
ics, vol. 2, no. 2, 2006, pp. 120–128.

TA
B

L
E

 2 Standards, methodologies, and platforms that support
the implementation of agent-based concepts.

Name Type Description Reference

Foundation for
Intelligent Physical
Agents (FIPA)

Standard FIPA is the IEEE Computer Society standards organization for agents
and multiagent systems; it promotes agent-based technology and the
interoperability of its standards with other technologies.

www.fipa.org

Agent Platform Special
Interest Group
(Agent PSIG)

Standard Agent PSIG works with the Object Management Group platform to
promote standard agent modeling languages, specifications, and
techniques in the area of agent technology.

http://agent.omg.org

Multiagent Systems
Engineering (MaSE)

Methodology MaSE is a general methodology for developing heterogeneous
multiagent systems using graphically based models in UML to describe
the system elements and the internal agent design. It’s strongly
oriented on the Unified Process and supports capturing agent goals,
defining roles and tasks, and describing interaction possibilities.

“An Overview of
the Multiagent
Systems Engineering
Methodology”8

Process for Agent
Societies Specification
and Implementation
(PASSI)

Methodology PASSI is a UML-based methodology for the specification and
implementation of multiagent systems. It integrates design models and
concepts from both object- and agent-oriented software engineering.

“A CASE Tool
Supported
Methodology for the
Design of Multi-agent
Systems”9

Whitestein Living
Systems Technology
Suite (LS/TS)

Platform LS/TS is an industry-grade, Java-based development and runtime
platform for the development and execution of agent-oriented software
systems. It supports the main concepts of autonomic computing and
comprises a set of development tools. The LS/TS API supports OWL
and therefore allows semantic communication.

www.whitestein.com

Java Agent
Development
Framework (JADE)

Platform JADE is an open source software framework fully implemented in Java.
It simplifies the implementation and operation of multiagent systems.
The agent platform can be distributed across machines (including
mobile devices), which might or might not run the same OS.

http://jade.tilab.com

Cognitive Agent
Architecture (Cougaar)

Platform Cougaar is an open source, Java-based architecture for the
construction of large-scale distributed agent-based applications
with minimal consideration for the underlying architecture and
infrastructure. Cougaar can be easily integrated with libraries and other
technology platforms and supports the development of distributed real-
time, peer-to-peer applications.

www.cougaar.org

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.cougaar.org&id=18138&adid=P23E5
http://www.qmags.com/clickthrough.asp?url=http://jade.tilab.com&id=18138&adid=P23E4
http://www.qmags.com/clickthrough.asp?url=www.whitestein.com&id=18138&adid=P23E3
http://www.qmags.com/clickthrough.asp?url=http://agent.omg.org&id=18138&adid=P23E2
http://www.qmags.com/clickthrough.asp?url=www.fipa.org&id=18138&adid=P23E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

24 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

SOFTWARE TECHNOLOGY

2. H. Mubarak, “Developing Flexible Software
Using Agent-Oriented Software Engineer-
ing,” IEEE Software, vol. 25, no. 5, 2008, pp.
12–15.

3. M. Wooldridge, An Introduction to Multi-
Agent Systems, 2nd ed., Wiley, 2009.

4. T. Wagner, “An Agent-Oriented Approach to
Industrial Automation Systems,” Proc. 3rd
Int’l Symp. Multi-agent Systems, Large Com-
plex Systems, and E-Businesses, Springer,
2003, pp. 314–328.

5. I. Badr, “An Agent-Based Scheduling Frame-
work for Flexible Manufacturing Systems,”
Proc. Int’l Conf. Industrial Eng., IEEE, 2008,
pp. 465–470.

6. T. Pirttioja, “Applying Agent Technology to
Constructing Flexible Monitoring Systems
in Process Automation,” PhD dissertation,
Faculty of Electronics, Communications and
Automation, Helsinki University of Technol-
ogy, 2008.

7. S. Pech and P. Göhner, “Multi-agent Informa-
tion Retrieval in Heterogeneous Industrial
Automation Environments,” Proc. 6th Int’l
Workshop Agents and Data Mining Interac-
tion (ADMI 10), Springer, 2010, pp. 27–39.

8. M.F. Wood and S.A. DeLoach, “An Overview
of the Multiagent Systems Engineering
Methodology,” Proc. 1st Int’l Workshop
Agent Oriented Software Eng., LNCS 1957,
Springer, 2001, pp. 207–221.

9. M. Cossentino and C. Potts, “A CASE Tool
Supported Methodology for the Design of
Multi-agent Systems,” Proc. 2002 Int’l Conf.
Software Eng. Research and Practice (SERP
02), CSREA, 2002, pp. 295–306.

STEPHAN PECH is a former scientific staff
member at the Institute of Industrial Automation and
Software Engineering at the University of Stuttgart.
He currently works as an automation engineer at
BASF SE. His main research area is in manufacturing
execution systems and applications. Contact him at
stephan.pech@ias.uni-stuttgart.de.

PURPOSE: The IEEE Computer Society is the world’s largest association of computing

professionals and is the leading provider of technical information in the field.

MEMBERSHIP: Members receive the monthly magazine Computer, discounts, and

opportunities to serve (all activities are led by volunteer members). Membership is open to

all IEEE members, affiliate society members, and others interested in the computer field.

COMPUTER SOCIETY WEBSITE: www.computer.org

Next Board Meeting: 13–14 June 2013, Seattle, WA, USA

EXECUTIVE COMMITTEE
President: David Alan Grier

President-Elect: Dejan S. Milojicic; Past President: John W. Walz; VP, Standards

Activities: Charlene (“Chuck”) J. Walrad; Secretary: David S. Ebert; Treasurer: Paul K.

Joannou; VP, Educational Activities: Jean-Luc Gaudiot; VP, Member & Geographic

Activities: Elizabeth L. Burd (2nd VP); VP, Publications: Tom M. Conte (1st VP); VP,

Professional Activities: Donald F. Shafer; VP, Technical & Conference Activities: Paul

R. Croll; 2013 IEEE Director & Delegate Division VIII: Roger U. Fujii; 2013 IEEE Director

& Delegate Division V: James W. Moore; 2013 IEEE Director-Elect & Delegate

Division V: Susan K. (Kathy) Land

BOARD OF GOVERNORS
Term Expiring 2013: Pierre Bourque, Dennis J. Frailey, Atsuhiro Goto, André Ivanov,

Dejan S. Milojicic, Paolo Montuschi, Jane Chu Prey, Charlene (“Chuck”) J. Walrad

Term Expiring 2014: Jose Ignacio Castillo Velazquez, David. S. Ebert, Hakan

Erdogmus, Gargi Keeni, Fabrizio Lombardi, Hironori Kasahara, Arnold N. Pears

Term Expiring 2015: Ann DeMarle, Cecilia Metra, Nita Patel, Diomidis Spinellis,

Phillip Laplante, Jean-Luc Gaudiot, Stefano Zanero

EXECUTIVE STAFF
Executive Director: Angela R. Burgess; Associate Executive Director & Director,

Governance: Anne Marie Kelly; Director, Finance & Accounting: John Miller;

Director, Information Technology & Services: Ray Kahn; Director, Membership

Development: Violet S. Doan; Director, Products & Services: Evan Butterfield;

Director, Sales & Marketing: Chris Jensen

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700, Washington, D.C. 20036-4928

Phone: Fax: +1 202 728 9614

Email: hq.ofc@computer.org

Los Alamitos:

Phone: Email: help@computer.org

Membership & Publication Orders

Phone: Fax: Email: help@computer.org

Asia/Pacific: Watanabe Building, 1-4-2 Minami-Aoyama, Minato-ku, Tokyo 107-

Phone: Fax: Email: tokyo.ofc@

computer.org

IEEE BOARD OF DIRECTORS
President: Peter W. Staecker; President-Elect: Roberto de Marca; Past President:

Gordon W. Day; Secretary: Marko Delimar; Treasurer: John T. Barr; Director &

President, IEEE-USA: Marc T. Apter; Director & President, Standards Association:

Karen Bartleson; Director & VP, Educational Activities: Michael R. Lightner; Director

& VP, Membership and Geographic Activities: Ralph M. Ford; Director & VP,

Publication Services and Products: Gianluca Setti; Director & VP, Technical Activities:

Robert E. Hebner; Director & Delegate Division V: James W. Moore; Director &

Delegate Division VIII: Roger U. Fujii

revised 22 Jan. 2013

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=http://ComputingNow.computer.org&id=18138&adid=P24E3
http://www.qmags.com/clickthrough.asp?url=www.computer.org&id=18138&adid=P24E1
mailto:hq.ofc@computer.org
mailto:help@computer.org
mailto:help@computer.org
mailto:tokyo.ofc@computer.org
mailto:tokyo.ofc@computer.org
mailto:stephan.pech@ias.uni-stuttgart.de
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P24E2
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E MAY/JUNE 2013 | IEEE SOFTWARE 25

TODAY, WE LIVE IN A WORLD IN
WHICH OUR SAFETY IS MORE AND
MORE DEPENDENT ON SOFTWARE-
INTENSIVE SYSTEMS. This is the case for
the aeronautic, automotive, medical, nuclear, and
railway sectors, as well as many more. Organizations
everywhere are struggling to fi nd cost-effective meth-
ods to deal with the enormous increase in size and
complexity of these systems, while simultaneously re-
specting the need to ensure their safety. Consequently,
we’re witnessing the ad hoc emergence of a renewed

Safety-Critical
Software

Xabier Larrucea, Tecnalia

Annie Combelles, inspearit Group

John Favaro, Intecs SpA

FOCUS: GUEST EDITORS’ INTRODUCTION

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

26 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: GUEST EDITORS’ INTRODUCTION

discipline of safety-critical software
systems development as a broad range
of software engineering methods, tools,
and frameworks are revisited from a
safety-related perspective. A major goal
of this special issue of IEEE Software is
to take stock of these individual initia-
tives and try to see the bigger picture.

Complexity Scales
As an example of important paradigms
currently being revisited in a safety-
related context, Thales recently an-
nounced the use of object-oriented tech-
nologies and agile software development
methodologies to optimize its safety-
critical systems development (www.
erts2012.org/Site/0P2RUC89/7A-4.
pdf). Likewise, NASA is exploring the
study and application of agile develop-
ment in its safety-critical systems (http://
ntrs.nasa.gov/archive/nasa/casi.ntrs.

nasa.gov/20120013429_2012013093.
pdf).

But it isn’t just the popular, headline-
grabbing software engineering tech-
niques such as agile development that
are being revisited in the safety-critical
systems community. Understanding the
effects of fundamental software engi-
neering activities, including verifica-
tion, validation, and certification, and
choosing the right combination of them
to yield systems that meet today’s am-
bitious requirements in a cost-effective
manner has become even more impor-
tant. Consider the requirements engi-
neering activity: How is it possible that,
given the crucial importance of clear,
concise, unambiguous requirements
in critical software systems engineer-
ing, most tools in common use today
still represent a requirement as a sim-
ple, unadorned string? The European

Space Agency’s recent study on next-
generation requirements engineering, in
which it used semantic wiki technology
to nudge forward the state of the art, is
just one example of the critical software
community’s growing impatience with
traditional methods.

Several new and unprecedented fac-
tors are converging to change the na-
ture of the challenges facing safety-
critical systems development. One such
factor is the unrelenting trend toward
open, interconnected, networked sys-
tems (such as “the connected car” and
the cloud), which has brought a secu-
rity dimension with it, exacerbating the
problem of ensuring safety in the pres-
ence of security requirements. Simi-
larly, the model-driven architectures
(such as AUTOSAR in the automotive
industry) needed to handle these new
large, networked systems are only now
being equipped with mechanisms to
handle safety-related aspects. The rise
of these complex, critical systems has
spawned several recent initiatives to
promote reuse, both of the technical ar-
tifacts and the artifacts and procedures
that certify their suitability for use in
safety-related contexts. An example of
such an initiative is OPENCOSS, an
all-out, full-frontal assault on man-
aging the problem of certification of
software-intensive critical systems in
multiple domains using model-based
approaches and incremental techniques
(see the sidebar).

In This Issue
This special issue collects three papers
from academia, two from industries,
and two from academia with an indus-
trial perspective. This balance provides
a rather complete view of the current
challenges faced in safety-critical indus-
tries despite the specific transportation
industries represented. Model-based
development and engineering is dis-
cussed in “Model-Based Development
and Format Methods in the Railway

OPEN PLATFORM
FOR EVOLUTIONARY
CERTIFICATION OF SAFETY-
CRITICAL SYSTEMS
Safety-critical software faces a costly aspect: the certification process. OPENCOSS, a
large-scale collaborative project of the EU’s Seventh Framework Program, focuses on
the harmonization of safety assurance and certification management activities for the
development of embedded systems in automotive, railway, and aerospace industries.
The main goal is to reduce both the time and cost overheads inherent to the safety (re)
certification of safety-critical systems, via facilitating the reuse of certification assets.
The strategy is to focus on a compositional and evolutionary certification approach with
the capability to reuse safety arguments, safety evidence, and contextual information
about system components in a way that makes approvals for operation and certification
more cost-effective, precise, and scalable.

OPENCOSS is defining a common certification language (CCL) by unifying the re-
quirements and concepts of different industries and building a common approach to
certification activities. Much of what is being done will have a transformative effect on
the safety-critical software community if the take up really occurs. An industrial adop-
tion program is being overseen by an advisory board with members from key organiza-
tions such as the European Railway Agency, Airbus, Eurocopter, NASA, and Renault.
For more information, see the website: www.opencoss-project.eu.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

__

__

http://www.qmags.com/clickthrough.asp?url=http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120013429_2012013093.pdf&id=18138&adid=P26E2
http://www.qmags.com/clickthrough.asp?url=http://www.erts2012.org/Site/0P2RUC89/7A-4.pdf&id=18138&adid=P26E3
http://www.qmags.com/clickthrough.asp?url=http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120013429_2012013093.pdf&id=18138&adid=P26E2
http://www.qmags.com/clickthrough.asp?url=www.opencoss-project.eu&id=18138&adid=P26E1
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P26E4
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=http://www.erts2012.org/Site/0P2RUC89/7A-4.pdf&id=18138&adid=P26E3

MAY/JUNE 2013 | IEEE SOFTWARE 27

Industry,” “Validating Software Re-
liability through Statistical Model
Checking,” and “Engineering Air Traf-
fi c Control Systems with MDE.”

These articles address the challenges
and failed expectations in applying
these techniques, and highlight the miss-
ing link between academia and industry
regarding this topic and the importance
of tools to support implementation. We
thank the authors of these three articles
for providing real examples on how to
deploy these techniques and believe that
their expertise can be reused. “Testing
of Formal Verifi cation,” based on DO-
178C, is another easy-to-read article
that digs into the attractiveness of for-
mal methods technology for high-in-
tegrity systems. It’s important to look
at the trends in that domain, especially
when two major aircraft manufactur-
ers—Airbus and Dassault-Aviation—
report the benefi ts realized.

This issue includes two other articles
describing real cases as well. The article
from Moog India Technology Center—
another aircraft player—provides a col-
lection of mistakes made and their root
causes; the focus is on the numerous in-
teractions the aircraft or fl ight system
has with embedded systems that make
certifi cation of these systems so com-
plex. “Strategic Traceability for Safety-
Critical Projects” likewise targets the
traceability issue, which is one of the
key facets of certifi cation; the authors
provide a fairly detailed analysis of a
few traceability issues and the way they
were corrected.

Although embedded systems gen-
erally come to mind fi rst when think-
ing of safety-critical software, another
class of applications is equally impor-
tant: the protection of the infrastruc-
tures that are critical to our everyday
lives, such as transport systems. Al-
though threats usually come from na-
ture, such as hurricanes, earthquakes,
and rainstorms, some threats are man-
made, such as terrorism and sabotage.

The software systems that protect these
infrastructures must span international
borders and bring a host of technical,
legal, and cultural compatibility chal-
lenges with them that in many respects
equal or surpass those faced in critical
embedded systems. The last article of
this issue, “SCEPYLT: An Information
System on Explosive Control” provides
insight into the issues faced by this type
of critical system.

O ne unmistakable trend that
emerges out of the articles in
this special issue is a strong

interest in applying model-driven
engineering techniques to safety-
critical systems development over the
entire life cycle. The implementation
community has been interested in
model-based techniques for years,

but the validation and certifi cation
community is slowly coming around
to a perception that such approaches
could provide the key to more effi cient
and effective management of their own
tasks. We believe that this observable
transition of a research technique into
an industrial environment in which
certifi cation bodies are neither system
nor software technology specialists
is a signifi cant step forward in safety-
critical systems engineering and an
interesting achievement to be reported
in this magazine.

XABIER LARRUCEA is a senior project leader at Tecnalia, Zamudio,
Spain. He’s also a part-time lecturer at the University of the Basque
Country. His research interests are focused on safety-critical software
systems, software quality assurance in multimodel environments, em-
pirical software engineering, and technology road mapping. Larrucea
has a PhD in software engineering from the University of the Basque
Country. Contact him at xabier.larrucea@tecnalia.com.

ANNIE COMBELLES is the founder and CEO of inspearit, an advisory
company in software and systems operating in France, Holland, Italy,
and Asia. She’s an associate editor of this magazine, a member of the
Scientifi c Committee for Quality Engineering Laura Bassi Lab (QE LaB)
in Austria, and a member of the executive committee of Les Journées
de l’Entrepreneur. Contact her at annie.combelles@inspearit.com.

JOHN FAVARO is a senior consultant at Intecs SpA in Pisa, Italy,
where he’s also deputy director of research. His technical interests
include effi cient safety analysis of critical systems, safe and secure
software reuse, and requirements engineering. Favaro has an MS in
electrical engineering and computer science from the University of
California, Berkeley. Contact him at john@favaro.net.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=http://ComputingNow.computer.org&id=18138&adid=P27E1
mailto:xabier.larrucea@tecnalia.com
mailto:annie.combelles@inspearit.com
mailto:john@favaro.net
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

28 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

FOCUS: SAFETY-CRITICAL SOFTWARE

GENERAL ELECTRIC TRANSPOR-
TATION SYSTEMS (GETS), Florence,
Italy, is a medium-sized branch of a
global railway signaling manufacturer.

Approximately 10 years ago, to ad-
dress safety-critical industries’ rising
interest in formal methods,1 the com-
pany started experimenting with formal

modeling and verification. To this end, it
contacted experts from the local univer-
sity to support some initial experiments.

The team evaluated several formal
tools, but the developers preferred a
semiformal tool suite—namely, Simu-
link/Stateflow.2 The Simulink lan-
guage uses a block notation to define
continuous-time dynamic systems; the
Stateflow notation is based on Da-
vid Harel’s statecharts3 and supports
the modeling and animation of event-
based, discrete-time applications. The
main drivers for this choice included
the large amount of packages available
in the tool suite—packages that devel-
opers could use throughout the devel-
opment process—and the widespread
knowledge about the tools found
within the company.

Initially, the developers used the
models designed through Simulink/
Stateflow solely for requirements elici-
tation, but in 2007, the company
wanted to explore using such models
for code generation as well. One year
later, this technology became part of
the development process, but chang-
ing the development paradigm from
code-based to model-based required
additional changes in the verification
process. The company adopted model-
based testing and abstract interpreta-
tion, as well as language restrictions to
reduce the tool suite’s semiformal se-
mantics to a formal semantics.4

The new model-based approach
sped up development and allowed the
company to handle more complex sys-
tems. As projects grew in size, they re-
quired new technologies that could rig-
orously handle system requirements.
The company selected SysML, a uni-
fied modeling language for system de-
velopment, to address this issue. After
three years with SysML, the company
established a formal development ap-
proach that integrates SysML and
Simulink/Stateflow.

In this article, we describe the

Model-Based
Development and
Formal Methods
in the Railway
Industry
Alessio Ferrari, CNR-ISTI

Alessandro Fantechi, Università di Firenze

Stefania Gnesi, CNR-ISTI

Gianluca Magnani, General Electric Transportation Systems, Florence

// The transition from a code-based process to a model-

based one isn’t easy, particularly for companies that

operate in the safety-critical sector. A railway signaling

manufacturer adopted general-purpose, model-based

tools aided by formal methods to develop its products,

facing challenges and learning lessons along the way. //

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 29

challenges and lessons learned by the com-
pany throughout this 10-year experience.

Challenges
Over the course of this experience,
GETS faced several challenges that de-
serve some extra attention.

Modeling Language Restriction
The code used in safety-critical sys-
tems must conform to specific safety
standards, so companies typically use
coding guidelines to avoid using im-
proper constructs that might be harm-
ful from a safety viewpoint. When a
safety-critical company adopts model-
ing and autocoding, the generated code
must conform to the same standards as
handcrafted code. The adopted code
generator—Simulink Coder—induces
a tight relation between the generated
code and any modeling language con-
structs. Hence, the identification of a
safe subset of the modeling language
enables the production of code that
complies with the guidelines and that
can be successfully integrated with the
existing code.

GETS did this by first defining an
internal set of modeling guidelines for
Simulink/Stateflow—specifically, these
guidelines were practical recommen-
dations on language construct usage.
The idea was that any model-generated
C code following the guidelines would
comply with the company’s coding
standard.

The company based the initial guide-
lines on a code analysis generated from
a model previously designed for re-
quirement elicitation. Because this pre-
liminary set of guidelines had the limit
of being derived from a specific model,
it could lack generality, so in the proj-
ects that followed, GETS extended it
with other recommendations borrowed
from the automotive domain.5

To ease formal analysis, the com-
pany decided to complete the model-
ing style guidelines by restricting the

Stateflow language to a semantically
unambiguous set. To this end, it used
studies that focused on translating a
subset of Stateflow into the Lustre for-
mal language.6 The company’s current
models are therefore independent from
the simulation engine, a choice that
opened the door to formal verification.4

Generated Code Correctness
Safety-critical norms, such as CENELEC
EN 50128, the European standard for
railway software, ask for a certified or
proven-in-use translator. In the absence
of such a tool, like in the case of avail-
able code generators for Simulink/State-
flow, a strategy must be defined to en-
sure that code behavior fully complies to
model behavior, and that no additional
improper functions are added during the
code synthesis phase. The objective is to
perform verification activities at the ab-
stract model’s level, minimizing or auto-
mating any operations on the code.

GETS adopted a model-based test-
ing approach called translation valida-
tion,7 completed by static analysis via
abstract interpretation.8 In translation
validation, you execute test scenarios
based on functional objectives at the

model level. Then, you repeat the same
tests on the generated code, checking
that the model’s outputs and the corre-
sponding code are consistent. To ensure
runtime error freedom, the company
uses the Polyspace tool to perform ab-
stract interpretation.9 This final step
verifies a program’s correctness on an
overapproximation of the range of pro-
gram variables.

Certification authorities considered

this overall approach suitable for by-
passing the tool qualification required
in current safety regulations. (Rail-
way norms aren’t as specific about tool
qualification as, say, avionic norms
are,10 so companies in the railway sec-
tor must agree on possible strategies
with certification authorities.)

Multiple Formalisms
Safety-critical systems are large, com-
plex platforms with several interact-
ing units and architectural layers. To
manage such complexity, their devel-
opment is based on multiple levels of
abstraction, a setup that requires dif-
ferent models with different granulari-
ties. Indeed, a model used for code gen-
eration is hardly usable for reasoning at
the system design level. Simulink/State-
flow don’t support a flexible hierarchi-
cal development approach, so system
designers must adopt other modeling
languages that can express the higher
abstractions that the process inherently
requires.

GETS addressed this issue by adopt-
ing SysML (www.sysml.org). After an
initial experience with the TOPCASED
tool for SysML (www.topcased.org),

which at that time wasn’t considered
mature enough for industrial usage,
the company adopted the Magic Draw
platform (www.nomagic.com/products/
magicdraw.html). Early GETS projects
that used code generation didn’t use
SysML support—the need came when
the systems the company produced
started to radically increase in terms
of complexity, for example, when the
LOC exceeded 100,000.

When a company adopts autocoding, the
generated code must conform to the same

standards of handcrafted code.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.nomagic.com/products/magicdraw.html&id=18138&adid=P29E3
http://www.qmags.com/clickthrough.asp?url=www.topcased.org&id=18138&adid=P29E2
http://www.qmags.com/clickthrough.asp?url=www.sysml.org&id=18138&adid=P29E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

30 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

SysML’s current role is as follows.
Immediately after requirement elicita-
tion, requirements appear as unstruc-
tured Post-It notes on the requirements
manager’s whiteboard. The manager
identifi es high-level system require-
ments among this initial set and ex-
presses them in the form of SysML re-
quirement diagrams. These diagrams
allow the requirements manager to
specify hierarchical relationships and
dependencies among single require-
ments, replacing the chaotic Post-
It view with a structured graph-like
model.

Next, the design team uses block di-
agrams to specify the interfaces of the
system modules that are supposed to
implement the requirements. The team
adopts an approach based on decom-
position, which allows specializations
of each module into submodules to re-
alize the actual implementation. Each

module has some high-level require-
ments apportioned to it, and if needed,
the design team can refi ne requirements
into lower-level requirements when
modules are specialized.

SysML models are structured as
packages in a single root model, where
each package corresponds to a phase
of the V-based development process
prescribed by the CENELEC norm for
railway safety-critical systems. There-
fore, a well-defi ned mapping between
process phases and the diagrams are
used in each phase.

SysML could also be used to defi ne
the actual implementation’s behavior
and to generate code. However, mod-
eling and simulation at the behavioral
level is much faster and more fl exible
with Simulink/Statefl ow, and the gener-
ated code has higher quality. Therefore,
SysML’s role ends at the software archi-
tecture level.

Process Integration
Companies develop products via pro-
cesses, which defi ne a framework made
of tasks, artifacts, and people. The in-
troduction of new technologies in an
established process requires adjust-
ments to the process structure, which
has to maintain its coherence through
these changes. This is particularly true
in the case of safety-critical companies,
whose products must be validated ac-
cording to normative prescriptions.
Hence, a sound process must be defi ned
to integrate modeling and code genera-
tion within the existing framework.

As Figure 1 shows, GETS defi ned
an enhanced V-based process that em-
beds two verifi cation branches: one for
the activities performed on the models,
and the other for the tasks concerning
source code and the system. In the fi g-
ure, we highlight the parts that strictly
concern software development (based

System
architecture

phase

SW model
architecture

phase

SW
requirements

phase

Model
integration

phase

Model
module test

phase

Model
validation

phase

System
validation

phase

System
integration

phase

SW
integration

phase

SW module
test phase

SW
validation

phase

Model
module

design phase

Code phase

SysML

Simulink/Stateflow

System
requirements

phase

FIGURE 1. Overview of the model-based development process that GETS adopted. The left side of the V shape incudes the design activities,

while the right side includes the verifi cation activities. The small right branch on the left side of the V includes the verifi cation activities performed

at the model level.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P30E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 31

on Simulink/Stateflow modeling) and
the parts related to system develop-
ment (based on SysML modeling). The
two process fragments overlap in the
SW Requirements phase and in the
SW Model Architecture phase. Indeed,
software requirements are expressed in
SysML, as well as in the software ar-
chitecture. An equivalent architecture
is expressed through Simulink in the
form of interacting blocks, which are
the model’s functional modules—the
components. We can manually trace
SysML requirements to the Simulink
model. The Model Module Design
phase refines the Simulink blocks into
Stateflow statecharts.

Note that this process is somehow
adaptable to both manual coding and
to autocoding. After completing the
SysML modeling activities, you can de-
cide to adopt either handcrafted code
or Simulink/Stateflow modeling to de-
velop the application. Indeed, in some
applications—for example, firmware,
systems with limited software, or plat-
forms with strong dependencies from
legacy code—the code generation tech-
nology is considered inconvenient, so
developers use handcrafted code.

Lessons Learned
Facing all the challenges in model-
based development allowed GETS to
learn some important lessons.

Abstraction
Models let you work at a higher level
of abstraction, and they can be ma-
nipulated more easily than code. The
company experienced the actual rel-
evance of this statement in the transi-
tion from code-based to model-based
testing. The model-based testing ap-
proach it adopted allowed develop-
ers to define behavioral test scenarios
at the component level without dis-
rupting the model structure. This ap-
proach would have been impracti-
cable on hand-crafted code. Indeed,

with handcrafted code, it’s common
to perform tests on single functions,
but it’s much more difficult to iden-
tify the functions that contribute to a
software component’s behavior. With
models, you build a system in terms of
its components. Therefore, component
identification and testing happens in a
natural way.

GETS also learned that abstraction
is a delicate concept that must be care-
fully handled, with the proper degree of
abstraction clearly identified for an ar-
tifact to be useful. For example, in their

initial experience with SysML, design-
ers adopted natural language require-
ments throughout the process until
they reached the lowest level of model
detail. At that point, their content was
basically equivalent to the Simulink/
Stateflow models. Such requirements’
level of abstraction had to be raised be-
cause they appeared to be redundant:
any slight modification to the models
would have implied a modification to
the requirements.

Expressiveness
Graphical models are closer to natu-
ral language requirements, yet they’re
also an unambiguous way of exchang-
ing or passing artifacts among develop-
ers. The GETS team experienced this
observation first hand when the proj-
ect passed from its initial developer to
another developer within a month and
without much support.4

Up to that point, if someone in the
company was a piece of software’s fa-
ther, he would have remained the one
and only repository of knowledge

about that software. This is a common
problem in many small- and average-
sized companies that negatively affects
both the company itself, which has to
rely on a single person to modify and
reuse its core software, and the devel-
oper, who normally wants to extend his
competencies beyond his initial frag-
ments of code.

Cohesion and Decoupling
Automatically generated software is
composed of modules with higher in-
ternal cohesion and better decoupling

with respect to manual coding. Inter-
faces among functionalities are based
solely on data, and the control flow
is simplified because there’s no cross-
calling among different modules. De-
coupling and well-defined interfaces
help ease the outsourcing of the model-
ing activity, which is a relevant aspect
in the development of products that
have to tackle time-to-market issues.
The company acknowledged these ad-
vantages in the course of its develop-
ment process.

Structured development gives devel-
opers greater control over components
and ultimately leads to software with
fewer bugs. At GETS, developers expe-
rienced this when the number of bugs
found through verification dropped
from 10 bugs to three per module af-
ter the company introduced a rigorous
model-based process.4

Uniformity
Generated code has a repetitive structure
that facilitates automated verification ac-
tivities. When you have strictly defined

With strictly defined modeling guidelines,
you can look at the generated code as if it

were written by the same programmer.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

32 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

modeling guidelines, you can look at the
generated code as if it were consistently
written by the same programmer. Thus,
any code analysis task can be tailored on
an artificial programmer’s design habits.
The abstract interpretation procedure
adopted to reveal runtime errors worked
only on the generated code because sys-
tematic analysis on handcrafted code
was made harder by its variable struc-
ture and programming style.

SysML also guarantees uniformity
at the process level. The use of a uni-
fied modeling language—and a sin-
gle tool—in most of the development
phases eases the development in all of
the activities that involve interfaces
among phases. Indeed, in a V-based
process, a phase’s output artifact is the
input artifact for the following phase.
The use of SysML makes this handover
more rigorous.

Traceability
Software modules are directly trace-
able to their corresponding blocks in
the specification modeled with Simu-
link/Stateflow. Traceability is a rele-
vant issue in the development of safety-
critical systems because any error must
be traced back to the process task or
artifact defect that produced it. With
the support of Simulink/Stateflow,
GETS introduced a structured devel-
opment approach that lets developers
define navigable links between single
code statements and requirements.

At the SysML level, traceability in-
volves the links between requirements
diagrams and related SysML diagrams.
Simple drag-and-drop operations man -

ually define the traceability links, au-
tomatically generating the traceability
matrixes. In a traditional process, the
developer manually edits traceability ma-
trixes without any tool support, leading
to maintainability issues.

At GETS, customer-issued change
requests normally involve system-
level requirements. The tool support
available in the company’s model-
based approach allows changes to be

traced from such requirements to the
module-level requirements and the
corresponding models. Therefore,
both developers and the requirements
managers have a complete view of a
change request’s impact. Contrast this
with the traditional process, in which
someone would have to inspect the
traceability matrix and check for ar-
tifacts affected by the change request,
an activity that can be rather time-
consuming and error-prone (unless
supported by automated tools).

Automatic traceability support
among SysML and Simulink/Stateflow
models is still an open issue because
no tool currently implements such a
feature.

Documentation
For safety-critical systems, the official
documentation associated with each
process phase and artifact is as im-
portant as the actual system. Process
certification is essentially based on
an external authority’s inspection of
such documentation. It’s therefore im-
portant to have documentation that’s
formal, expressive, and up to date on
product status.

In the process that GETS currently
uses, both SysML and Simulink/State-
flow models provide documentation
for process artifacts. Simulink/State-
flow models with proper comments
automatically generate software doc-
umentation, thus keeping documen-
tation and software totally aligned.
In addition, SysML diagrams are in-
tegrated into the manually edited
documentation. Documents can be
automatically generated from SysML
as HTML pages, but certification au-
thorities typically require paper-like
documents focused on text, rather
than navigable HTML documents.
The main reason is that the certifica-
tion authority normally enters at the
end of the development process to val-
idate compliance with standards and
wants to analyze the process as a se-
quential history—with a paper trail—
not as an interwoven graph of HTML
pages.

The integration of SysML models
into the documents does pose main-
tainability issues. Indeed, if the model
changes, that change isn’t automati-
cally reflected in the documentation.
However, the one-to-one correspon-
dence between SysML packages and
process phases—and the associated
documents—eases the effort of man-
ually updating the documentation.
Furthermore, the traceability links be-
tween models in different packages
help maintain the cross dependencies
among documents. When a model
changes, its package clearly identifies
the document that must be modified
as well. Anyone with access rights can
follow the traceability links and re-
trieve the other models affected by the
change. Such models belong to pack-
ages with associated documents, so the
link among models indirectly creates a
relationship among those documents,
and the overall SysML model becomes
a sort of navigable index for the pro-
cess documentation.

When passing from traditional code unit
testing to model-based testing, verification

costs fell approximately 70 percent.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P32E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 33

Verification Cost
The introduction of a new development
process at GETS reduced some of the
costs associated with verification activi-
ties, while ensuring greater confidence
in product safety. When passing from
traditional code unit testing based on
structural coverage objectives to testing
based on functional objectives aided
by abstract interpretation, verification
costs fell approximately 70 percent.
The new approach was comparable to
the previous one in terms of compliance
with CENELEC EN 50128 require-
ments on verification, but the results
were much more cost-effective.9

Although GETS has achieved con-
sistent cost improvements, manual test
definition still bottlenecks the process,
requiring approximately 60 to 70 per-
cent of the whole unit-level verification
cost. Preliminary experiments with
formal verification applied at the unit
level demonstrate that this technology
might considerably reduce verification
costs for most requirements. Indeed, re-
cent experiments with formal verifica-
tion via Simulink Design Verifier have
shown that verification cost can further
drop by 50 to 66 percent.4

Complexity
The main drawback of introducing
automated code generation is the re-
sulting software’s size and overall
complexity. Although these aspects
don’t complicate verification activi-
ties, they pose challenges from the
performance viewpoint.

Real-time constraints for railway
signaling systems aren’t as demanding
as they are for other kinds of embed-
ded systems, since the typical required
response times are in the range of hun-
dreds of milliseconds. But they’re still
reactive systems that need to activate
failure recovery procedures in a brief
amount of time to reach a safe state,
should a failure occur. Execution time
influences reaction time. In the first

experiments with automated code gen-
eration at GETS, this execution time
took four times longer compared to
the time required to execute the corre-
sponding handcrafted code. So as not
to abandon the advantages of auto-
coding, a hardware upgrade solved this
timing discrepancy.

But to design new, more com-
plex systems, this issue must be taken
into account when defining the hard-
ware architecture. The hardware de-
signer has to consider that the code is
both larger in size and less flexible in
terms of source-level optimization (re-
call that compiler-level optimizations
aren’t recommended for safety-critical
systems): when designing the platform,
you must plan for a larger amount of
memory if you want to use automatic
code generation.

Knowledge Transfer
From the GETS effort’s outset, one re-
search assistant from the university
who operated within the company
was fully focused on the technology
to be introduced and an internal de-
velopment team put that research into
practice on real projects after the ex-

ploratory studies indicated success was
possible.

The results obtained during this ex-
perience wouldn’t have been possible
via intermittent collaborations alone.
On the other hand, to separate the re-
search effort from the time-to-market
issues, the research assistant’s indepen-
dence from the development team had
to be preserved. Large companies can
profit from dedicated internal research

teams or even entire research divisions,
but medium-sized companies often
have to use the same personnel both
to keep the organization on track for
market needs and to take care of daily
software development. We argue that
the research management model ad-
opted for GETS can be adapted to
other medium-sized companies with
comparable results.

T he people behind GETS were
able to understand the ben-
efits of a model-based process

aided by formal methods thanks to
the initial enthusiasm associated with
automated code generation. Such tech-
nology showed its potential in a few
months, and its adoption was relatively
straightforward. After that, a butterfly
effect occurred that brought forward
the easy adoption of other techniques,
such as model-based testing, abstract
interpretation, and system modeling
with SysML.

Formal verification isn’t part of the
GETS development process yet. But
we’ve observed that formal verification
with model checking is often the focus

of a company’s first experiments with
something more formal, especially in
the safety-critical systems domain. In
most cases, those companies don’t go
much further than these initial experi-
ments, notwithstanding the achieved
evidence of lower verification costs.
Indeed, the adoption of formal verifi-
cation without intermediate steps isn’t
common: the difficulties associated
with the steep learning curve required

When designing the platform, you must
plan for a larger amount of memory if you
want to use automatic code generation.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

34 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

by formal methods often tend to dis-
courage industrial practitioners and
managers, who need to see the evidence
of productivity gains within a short
time frame.

The experience we report here
shows that it might be more effective
to start with less formal tasks—auto-
mated code generation—and then later
adopt more formal tasks, such as verifi -
cation, when the company has matured
into full awareness of the actual bene-
fi ts of “being formal.”

References
 1. J. Woodcock et al., “Formal Methods: Practice

and Experience,” ACM Computing Surveys,
vol. 41, no. 4, pp. 19:1–19:36.

 2. S. Bacherini et al., “A Story about Formal
Methods Adoption by a Railway Signaling
Manufacturer,” Proc. 14th Int’l Symp. Formal
Methods, LNCS 4085, Springer, 2006, pp.
179–189.

 3. D. Harel, “Statecharts: A Visual Formalism
for Complex Systems,” Science Computer Pro-
gramming, vol. 8, no. 3, 1987, pp. 231–274.

 4. A. Ferrari et al., “The Metrô Rio Case Study,”
to be published in Science Computer Program-
ming, 2013; doi: 10.1016/j.scico.2012.04.003.

 5. A. Ferrari et al., “Modeling Guidelines for
Code Generation in the Railway Signaling

Context,” Proc. 1st NASA Formal Methods
Symp., NASA, 2009, pp. 166–170.

 6. N. Scaife et al., “Defi ning and Translating
a ‘Safe’ Subset of Simulink/Statefl ow into
Lustre,” Proc. 4th ACM Int’l Conf. Embedded
Software, ACM, 2004, pp. 259–268.

 7. M. Conrad, “Testing-Based Translation
Validation of Generated Code in the Context
of IEC 61508,” Formal Methods in System
Design, vol. 35, no. 3, 2009, pp. 340–389.

 8. P. Cousot and R. Cousot, “Abstract Inter-
pretation: A Unifi ed Lattice Model for Static
Analysis of Programs by Construction or
Approximation of Fixpoints,” Proc. 4th ACM
SIGACT-SIGPLAN Symp. Principles of
Programming Languages, ACM, 1977, pp.
238–252.

 9. A. Ferrari et al., “Adoption of Model-Based
Testing and Abstract Interpretation by a
Railway Signaling Manufacturer,” Int’l J.
Embedded and Real-Time Communication
Systems, vol. 2, no. 2, 2011, pp. 42–61.

 10. A.J. Kornecki and J. Zalewski, “Certifi cation
of Software for Real-Time Safety-Critical
Systems: State of the Art,” Innovations in Sys-
tems and Software Eng., vol. 5, no. 2, 2009,
pp. 149–161.

ALESSIO FERRARI is a researcher at CNR-ISTI (Consiglio Nazionale
delle Ricerche–Istituto di Scienza e Tecnologia dell’Informazione, Pisa).
His research interests are primarily requirements engineering and
formal modeling. Ferrari received a PhD in computer engineering from
the University of Florence. Contact him at alessio.ferrari@isti.cnr.it.

ALESSANDRO FANTECHI is full professor at the University of
Florence, where he’s an active researcher in the areas of formal de-
velopment and verifi cation of safety-critical systems, with a particular
emphasis on railway signaling systems. Contact him at fantechi@dsi.
unifi .it.

STEFANIA GNESI is director of research at CNR-ISTI (Consiglio Nazi-
onale delle Ricerche–Istituto di Scienza e Tecnologia dell’Informazione,
Pisa) and head of its Formal Methods and Tool group. Her research
interests include development of new logics for the formal specifi cation
and verifi cation of concurrent systems and the application of model-
checking techniques. Contact her at stefania.gnesi@isti.cnr.it.

GIANLUCA MAGNANI is a software engineer at General Electric
Transportation Systems, Florence, signaling division. His technical in-
terests concern the application of SysML modeling to the development
of railway systems. Contact him at gianluca.magnani@ge.com.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

FIND US ON

FACEBOOK
& TWITTER!

facebook.com/
ieeesoftware

twitter.com/
ieeesoftware

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=http://twitter.com/ieeesoftware&id=18138&adid=P34E3
http://www.qmags.com/clickthrough.asp?url=http://facebook.com/ieeesoftware&id=18138&adid=P34E2
http://www.qmags.com/clickthrough.asp?url=http://ComputingNow.computer.org&id=18138&adid=P34E1
mailto:alessio.ferrari@isti.cnr.it
mailto:fantechi@dsi.unifi.it
mailto:stefania.gnesi@isti.cnr.it
mailto:gianluca.magnani@ge.com
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P34E4
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E MAY/JUNE 2013 | IEEE SOFTWARE 35

FOCUS: SAFETY-CRITICAL SOFTWARE

DURING THE PAST few decades,
the proportion of software in safety-
critical systems has significantly in-
creased. So, to ensure high-level safety,
it’s essential to improve software reli-
ability. Consequently, it has become
important to implement and acquire
highly reliable software and to satisfy
the safety requirements imposed by

functional-safety standards, such as IEC
61508 and ISO 26262.1–3 These stan-
dards define safety integrity level (SIL)
and automobile SIL (ASIL) as measures
of a system’s quality or dependability.

To develop a highly reliable soft-
ware-intensive system, developers allo-
cate a reliability goal for a target sys-
tem according to a target SIL or ASIL

after hazard analysis and risk assess-
ment.4 Then, they allocate reliability
goals to each software component early
in the life cycle. Each component’s reli-
ability goal is usually validated through
failure detection during software test-
ing, which can result in high costs to
correct defects.

We propose a framework to validate
the reliability goals of safety-critical
systems at an early stage by using sta-
tistical model checking (SMC) to ob-
tain safety certification. SMC validates
a target system’s reliability by comput-
ing the probabilities that an executable
model of a target system satisfies given
functional-safety requirements. (For
more information, see the “Statistical
Model Checking” sidebar.)

The Framework
Our framework (see Figure 1) extends
IEEE Standard 1633, which covers
software reliability practices. (For more
information, see the “Software Reli-
ability Engineering” sidebar.) It em-
ploys the following process.

Specify the Functional-Safety
Requirement
This step uses hazard analysis methods
such as FTA (fault tree analysis), FMEA
(failure mode and effects analysis), and
Fracas (failure reporting, analysis, and
corrective action system) to identify
safety-related functions for each com-
ponent Ci.

4 It then converts functional-
safety requirements for those functions
into bounded linear temporal logic
(BLTL) requirements reqij of Ci.

Allocate the Reliability Requirement
On the basis of the results of the “Spec-
ify the reliability requirement” step of
IEEE Standard 1633, this step allocates
a reliability goal Ri to Ci.

Validate the Reliability Requirement
This is the step we added that ex-
tends IEEE Standard 1633. Here, SMC

Validating
Software
Reliability Early
through Statistical
Model Checking
Youngjoo Kim, S-Core

Okjoo Choi, Moonzoo Kim, and Jongmoon Baik, Korea Advanced Institute
of Science and Technology

Tai-Hyo Kim, FormalWorks

// A proposed framework employs statistical model checking

to validate software reliability at an early stage. This can

prevent the propagation of reliability allocation errors and

design errors at later stages, thereby achieving safer, cheaper,

and faster development of safety-critical systems. //

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

36 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

generates random sample execution traces i repeatedly until
the number of the traces is enough to calculate the probabil-
ity that Ci satisfies reqij (that is, P(reqij)). If not, SMC simu-
lates Ci again to generate more sample traces.

Validate the Reliability Goal
This step validates Ri by comparing it with the calculated re-
liability Ri′, obtained on the basis of P(reqij) and the corre-
sponding weight values for reqij.

Continue Validation or Reallocate
If Ri′ satisfies Ri (that is, Ri′ ≥ Ri), validation continues for the
next component Ci + 1 regarding Ri + 1. If the calculated reli-
abilities of all the components satisfy the allocated reliability
goals, software reliability assessment continues.

If Ri′ doesn’t satisfy Ri, this step reallocates all the com-
ponents’ reliability goals. If the reallocation continues to fail,

this could indicate that the target component was designed
incorrectly. If this is the case, after several trials of the reli-
ability reallocation, the component should be redesigned to
improve its reliability.

Employing the Framework: A Case Study
The top part of Figure 2 diagrams a fault-tolerant fuel con-
trol system (FFCS),5 a safety-critical component of an auto-
mobile’s engine controller. The FFCS receives input from sen-
sors for throttle angle, speed, exhaust gas oxygen (EGO), and
manifold absolute pressure (MAP). It then generates a proper
fuel injection rate and air-to-fuel ratio. It also detects sensor
faults and shuts down the engine for safety if necessary. It
has three components: a sensor failure detector and estima-
tor (SFDE), an airflow calculator, and a fuel calculator.

The SFDE consists of a sensor failure detector and a
sensor data estimator. The detector receives all the sensor

STATISTICAL MODEL CHECKING
Statistical model checking (SMC) uses randomly sampled simula-
tion traces to compute the probabilities that a target model will
satisfy given requirement properties.1 Figure A gives an overview
of SMC, which consists of a simulator, a bounded linear temporal
logic (BLTL) model checker, and a statistical analyzer. It receives

a stochastic target model M, which is an executable simula-
tion model;
a BLTL formula , which formally represents a functional-
safety requirement of the target system; and
precision parameters with which to determine a calculated
probability’s accuracy.

The simulator executes
M and generates a sample
execution trace i. The model
checker determines whether

i satisfies and sends the
result (success or failure) to
the statistical analyzer. The
statistical analyzer calculates
the probability p that M satis-
fies by checking whether

i satisfies . The statistical
analyzer then asks the simu-
lator to generate i repeatedly
until the number of success-
ful results of i over the total

number of i is distributed within a given precision boundary.
Unlike conventional formal verification techniques such as

model checking, SMC doesn’t analyze a target system’s internal
logic. So, it can validate complex safety-critical systems without
the state explosion problems caused by those systems’ com-
plex hybrid (continuous dynamics plus discrete computation)
characteristics.

Reference
1. P. Zuliani, A. Platzer, and E.M. Clarke, “Bayesian Statistical Model Checking

with Application to Stateflow/Simulink Verification,” Proc. 13th ACM Int’l
Conf. Hybrid Systems: Computation and Control (HSCC 10), ACM, 2010,
pp. 243–252.

SimulatorStochastic
target system M BLTL

model
checker

Statistical
analyzer

Precision
parameters

BLTL
property �

Probability p
for M to
satisfy �

To generate more trace �i

Staistical model checker

A sample
execution
trace �i

Success/
fail

FIGURE A. Statistical model checking uses randomly sampled simulation traces to compute the

probabilities that a target model satisfies given requirement properties.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P36E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 37

data and decides whether a sensor has
failed. It delivers all the data to the es-
timator; if a sensor fails, it notifi es the
estimator of the failure. If multiple
sensors fail, the detector shuts down
the engine because the air-fuel ratio is
uncontrollable.

The Simulink/Statefl ow FFCS mod-
el’s size and complexity in terms of the
Halstead metrics6 are as follows. The
model has 65 operator blocks, 111 op-
erands, 35 distinct operators, and 95

…

Validate the reliability requirement

To redesign
a target

component

Component
reliability Ri

To continue
software reliability

assessment

To reallocate
reliability

Precision
parameters

SW Reliability Assessment
Procedure in IEEE Std. 1633

...

3. Allocate the
reliability requirement

2. Specify the
reliability requirement

1. Identify the
application

4. Make a reliability
risk assessment

Simulator BLTL
model

checker

Statistical
analyzer

Statistical model checker

Validate the component reliability Ri

�i

Probabilities P(reqij)

S/F

Architecture
design

Requirement
specification

Software development process

Component
design

BLTL
requirement

reqij

Component
model

Ci ∈System

Generate an
executable computation

model

Specify safety
functional requirements in
bounded linear temporal

logic (BLTL)

FIGURE 1. Our software reliability validation framework extends IEEE Standard 1633 by adding the step “Validate the reliability requirement”

after the “Allocate the reliability requirement” step during software reliability assessment.

Sensor fails

Throttle angle

Engine speed

EGO

MAP

Fault-tolerant fuel control system

Sensor
failure

detector
and

estimator

Throttle
angle
sensor

Speed
sensor

EGO
sensor

MAP
sensor

Airflow
calculator

Airflow
calculator

Fuel
calculator

Estimated
airflow

Feedback
correction

Fuel rate

Air-fuel ratio

Sensor
failure

detector
and

estimator

Throttle
angle
sensor

Speed
sensor

EGO
sensor

MAP
sensor

Sensor failure detector
and estimator

FIGURE 2. A fault-tolerant fuel control

system (FFCS). Using input from sensors for

throttle angle, speed, exhaust gas oxygen

(EGO), and manifold absolute pressure

(MAP), the FFCS generates a proper fuel

injection rate and air-fuel ratio. It also detects

sensor faults and shuts down an engine for

safety if multiple sensor failures occur.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

38 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

distinct operands. So, the calculated program volume V,
representing the model’s size, is 1,234, and the program
difficulty D, representing the model’s complexity, is 20.7.
The automatically generated C code from the model has
222 functions in 8,266 SLOC. More information on the
FFCS model is at www.mathworks.co.kr/products/simu-
link/examples.html?file=/products/demos/shipping/simu-
link/sldemo_fuelsys.html.

FFCS Software Reliability Validation
An FFCS requires the ASIL D safety goal, and ASIL D
in ISO 26262 requires a 1 – 10−3 to 1 – 10−9 reliability
goal. So, we specify an FFCS’s reliability goal as 0.9999.
To determine the reliability goals for each component
(the SFDE, airflow calculator, and fuel calculator) and
the weight values for the functional-safety requirements,
we consulted field experts from FormalWorks. This com-
pany produces software tools to test automobile software
and conducts consulting for ISO 26262 certification. To
obtain the reliability goals and the weight values more
accurately, we can use Wideband Delphi estimation7 with
several iterations of experts’ evaluations. We can also
use Probe (proxy-based estimation),8 another effective
technique.

Specifying the functional-safety requirement. Through dis-
cussion with the FormalWorks experts who performed
hazard analysis, we decided to specify functional-safety

requirements for each of the component’s output values.
(For example, we specify four requirements for the SFDE,
each corresponding to the output values for throttle an-
gle, speed, EGO, and MAP.) So, we specified four safety-
critical requirements for the SFDE, two requirements for
the airflow calculator, and two requirements for the fuel
calculator. During the entire execution period, the SFDE
has these requirements:

reqthrottle. The throttle output shouldn’t be out of the throt-
tle opening range (from 3 to 90 percent) for 1 second.
reqspeed. The engine speed output shouldn’t exceed 628 ra-
dians per second (6,000 rpm) for 1 second.
reqEGO. During the initial warm-up period (25 seconds),
the EGO output should not be out of the range [0, 1] for
1 seccond. After the warm-up, the EGO output should be
between 0.03 and 0.97.
reqMAP. The MAP output shouldn’t exceed one
atmosphere.

Assuming that the execution period is 60 seconds, the re-
quirements become these BLTL formulas:

req F G throttle throttle: 3 || 90throttle
60 1

out out()()¬ < > ,

req F G enginespeed: 628speed
60 1

out()()¬ > ,

SOFTWARE RELIABILITY ENGINEERING
Software reliability engineering (SRE) deals with predicting, es-
timating, and evaluating a target software system’s reliability.1

To apply statistical SRE techniques, developers collect reliability-
related metrics throughout the development life cycle by testing
the system on the basis of its operational profile.2 So, SRE is es-
sentially a quantitative study of software development regarding
the given reliability goal. This activity repeats until it achieves the
reliability goal. IEEE Standard 1633 provides guidelines with which
to evaluate reliability by applying software reliability models.3

Recently, researchers have developed several software reliabili-
ty prediction models to quantitatively manage software reliability at
early development phases (the architecture and design phases), on
the basis of system structure and the system usage profile.4 How-
ever, these models are unrealistic owing to a lack of empirical data,
especially for the early development phases. Also, they assume

that each target component’s reliability is known, which isn’t true
for real-world software components. On the other hand, our pro-
posed software reliability validation framework—based on statisti-
cal model checking (see the main article and the other sidebar)—
validates reliability at an early stage without such limitations.

References
1. M.R. Lyu, “Software Reliability Engineering: A Roadmap,” Proc. Future of

Software Eng. Conf. (FOSE 07), IEEE CS, 2007, pp. 153–170.
2. J.D. Musa, “Operational Profiles in Software-Reliability Engineering,” IEEE

Software, vol. 10, no. 2, 1993, pp. 14–32.
3. IEEE Std. 1633, Recommended Practice on Software Reliability, IEEE CS,

2008.
4. L. Cheung et al., “Early Prediction of Software Component Reliability,”

Proc. ACM/IEEE 30th Int’l Conf. Software Eng. (ICSE 08), IEEE CS, 2008, pp.
111–120.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.mathworks.co.kr/products/simulink/examples.html?file=/products/demos/shipping/simulink/sldemo_fuelsys.html&id=18138&adid=P38E1
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P38E2
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 39

req F
G EGO EGO

G EGO EGO

:

warmup true

0 || 1

warmup false

0.03 || 0.97

EGO
60

1
out out

25
out out

()

()

= →

¬ < >

⎛

⎝
⎜

⎞

⎠
⎟ ∧

= →

¬ < >

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

,

req F G MAP 1MAP
60 0.1

out()()¬ > ,

where Ftf means that f eventually occurs in t seconds, and
Gtf means that f always occurs in t seconds.

Allocating the reliability requirement. Because all the FFCS
components are combined sequentially, we can calculate the
FFCS’s reliability RT by multiplying the reliabilities of the
components of the target Ri′:

R RT i
i

n

1
∏= ′
=

,

where n is a total number of components.
To satisfy the FFCS’s reliability (0.9999), we allocated

the components’ reliability goals via discussion with Formal-
Works experts: 0.99997 for the SFDE, 0.99997 for the air-
fl ow calculator, and 0.99997 for the fuel calculator.

Calculating each component’s probability. To calculate prob-
ability, we use SMC. (We discuss this in more detail later.)

Validating each component’s reliability. We can calculate the
reliability of Ri′ by assigning a weight to each requirement:

R w P reqi req ijreq REQ ijij
∑ ()()′ = ×∈ ,

where wreqij
 is a weight value for reqij.

Again, through discussion with the experts, we deter-
mined the weight values: wthrottle = 0.11, wspeed = 0.45, wEGO

= 0.09, and wMAP = 0.35. This indicates that the speed and
MAP sensors are more safety-critical than the throttle and
EGO sensors. We will explain how to validate the reliability
of the SFDE in the next section.

SMC Experiments
We performed all experiments on a 64-bit Windows
7 Professional machine with a 3.40-GHz Intel i5 and 8
Gbytes of memory. We used a Simulink/Statefl ow FFCS
model in Matlab R2010a. We simulated the model using
the Matlab simulator to generate sample execution traces.
To validate whether the model satisfi es the reliability goal
(0.9999), we applied Bayesian interval estimation testing
(BIET), an SMC technique.9 To obtain a precise probabil-
ity result (a goal of 1 – 10-4), we set the SMC precision pa-
rameters to d = 0.00005 and c = 0.9999 for BIET, where
d is a half-size of an estimation interval that will contain
the probability result and c is the coverage goal of the es-
timation interval.

(a)

(b)

Fuel rate control subsystem
Target executable
simulation module

Runtime SMC result
monitoring windowp : current calculated probability

n : current number of samples
x : current successful samples

validate_sample_time

sensors

In1

Data Type Conversion

double
To Workspace

fuel_rate

1 es_i

es_o
sensors

O2_normal

fuel_mode

O2_normal

est_airflow

fb_correction

est_airflow

fb_correctionfuel_mode
fuel_rate

1
fuel_rate

est_airflow

fb_correction fuel_rate

fuel_mode

control_logic

airflow_calc

fuel_calc

t0: 0 0.899341 t1: 0.899541 p: 0.899441 n: 177 x: 160

t0: 0 0.594344 t1: 0.894541 p: 0.891444 n: 178 x: 160

t0: 0 0.894928 t1: 0.895128 p: 0.895028 n: 179 x: 161

t0: 0 0.895504 t1: 0.895704 p: 0.895804 n: 180 x: 162

FIGURE 3. Screenshots of an SMC experiment on an FFCS. (a) A diagram of the fuel rate control subsystem. (b) Variable values related to

the probability of the sensor failure detector and estimator (SFDE) satisfying reqthrottle. The last line in Figure 3b indicates that 162 of the 180

generated sample traces satisfy reqthrottle so far. That line also indicates that the probability of the SFDE satisfying reqthrottle is 0.895604.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

40 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

Figure 3 shows a snapshot of an FFCS simulation running
with SMC. In Figure 3a, the three component blocks corre-
spond to the FFCS components in Figure 2 (for example, the
control_logic block corresponds to the SFDE). The sensors block
represents all four sensor inputs; the fuel_rate block represents
the fuel rate output.

In Figure 3b, the SMC tool displays variable values related
to the probability that the SFDE satisfies reqthrottle. Specifi-
cally, p is a calculated probability, n is the number of sample
simulation traces so far, and x is the number of successful
traces so far. For example, the last line in Figure 3b indicates
that 162 of the 180 generated traces satisfy reqthrottle. That
line also indicates that the probability of the SFDE satisfying
reqthrottle is 0.895604 so far.

We built a stochastic environment model that generates
random faults at the sensors. We made a random-fault gen-
erator module and connected it to the sensors. The random
faults are modeled by four independent Poisson processes
with different arrival rates. The mean interarrival fault rate
is 8 for the throttle sensor, 10 for the speed sensor, 9 for the
EGO sensor, and 7 for the MAP sensor. For simplicity, we
assume that all FFCS operations have the same occurrence
rate. For a larger, more complex system, we would have to
consider the operational profile so that the most frequently
used operation would have the most testing.

We implemented the BLTL model checker (as a proof-of-
concept prototype) in 500 lines of Matlab script to evaluate
the eight functional-safety properties. In this case, it evalu-
ates req

throttle, reqspeed, reqEGO, and reqMAP over Matlab/Simu-
link simulation traces.

We implemented the BIET statistical analyzer (http://
pswlab.kaist.ac.kr/tools/SMC) in 50 lines of Matlab script.
The BIET analyzer is independent from the model checker
and functional-safety requirements.

We plan to implement and publicly release a general

model checker that can evaluate arbitrary BLTL formulas
over Matlab/Simulink simulation traces. The BLTL model
checker and the BIET analyzer will be reusable for other tar-
get systems without modification.

Experiment Results
Table 1 lists the results of applying SMC to the SFDE. On the
basis of the probabilities and weight values in the table, we
calculate Ri′ as

R 0.11 0.999889 0.45 0.999989

0.09 0.999933 0.35 0.999989

0.999973

i

�

′ = × + ×
+ × + ×

.

Because the calculated reliability is higher than the goal
(0.99997), we conclude that the SFDE satisfies the goal. In
total, the experiments consumed approximately 377 Mbytes
for simulating the FFCS and 5 Mbytes for BLTL trace check-
ing and BIET analysis.

Generating trace samples consumes 99 percent of the to-
tal verification time (for example, 317.17 out of 318.91 hrs.
for reqthrottle). So, we can significantly reduce the verifica-
tion time by generating sample traces in parallel. Because
the generated random samples are independent from each
other (that is, Bernoulli-independent, identically distrib-
uted random samples), we can run multiple simulators on
multiple machines to accelerate trace generation. This lets
us assess a target component’s reliability within a modest
time frame by running hundreds of simulators on a cloud
computing platform such as Amazon EC2 (Elastic Com-
pute Cloud). For example, with 100 machines, we can cal-
culate a probability for reqthrottle in approximately five hours
(317.17/100 + 0.75 + 0.99).

To further reduce verification time, we plan to apply hy-
brid SMC techniques that are faster than BIET.10

TA
B

L
E

 1 Table 1. The statistical-model-checking results for validating the reliability of the sensor
failure detector and estimator. The component’s reliability was 0.999973.

Require-
ment Weight Probability

No. of
samples

No. of
failed

samples

Trace
generation
time (hrs.)

BLTL model-
checking

time (hrs.)*

BIET
analysis

time (hrs.)*

Total
verification
time (hrs.)

reqthrottle 0.11 0.999889 776,747 85 317.17 0.75 0.99 318.91

reqspeed 0.45 0.999989 92,098 0 37.99 0.19 0.26 38.44

reqEGO 0.09 0.999933 533,735 35 220.91 0.75 1.32 222.23

reqMAP 0.35 0.999989 92,098 0 38.01 0.20 0.26 38.47

* BLTL stands for bounded linear temporal logic; BIET stands for Bayesian interval estimation testing.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=http://pswlab.kaist.ac.kr/tools/SMC&id=18138&adid=P40E1
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P40E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 41

M any safety-critical system
domains, such as the auto-
motive or avionics domains,

have adopted model-driven develop-
ment. So, industries in those domains
can incorporate our framework seam-
lessly. Adopting our framework will
increase system reliability and decrease
development costs through early detec-
tion of design faults or incorrect reli-
ability allocation.

Acknowledgments
National Research Foundation of Korea
grants 2012046172 and 2010-0014375,
Ministry of Knowledge Economy/Korea
Evaluation Institute of Industrial Technology
grant 10041752, and Dual-Use Technology
Program grant UM11014RD1 in Korea sup-
ported this research.

References
 1. D.S. Herrmann, Software Safety and Reliabil-

ity, IEEE CS, 1999.
 2. IEC 61508 , Functional Safety of Electrical/

Electronic/Programmable Electronic Safety-
Related Systems, Int’l Electrotechnical Com-
mission, 2003.

 3. ISO 26262, Road Vehicles—Functional
Safety, Int’l Org. for Standardization, 2011.

 4. System Reliability Toolkit, Reliability Infor-
mation Analysis Center, 2005.

 5. J. Lauber, T.M. Guerra, and M. Dambrine,
“Air-Fuel Ratio Control in a Gasoline En-
gine,” Int’l J. Systems Science, vol. 42, no. 2,
2011, pp. 277–286.

 6. M.H. Halstead, Elements of Software Science,
Elsevier, 1977.

 7. A. Stellman and J. Greene, Applied Software
Project Management, O’Reilly Media, 2005.

 8. W.S. Humphrey, PSP: A Self-Improvement
Process for Software Engineers, Addison-
Wesley Professional, 2005.

 9. P. Zuliani, A. Platzer, and E.M. Clarke,
“Bayesian Statistical Model Checking with
Application to Statefl ow/Simulink Verifi ca-
tion,” Proc. 13th ACM Int’l Conf. Hybrid
Systems: Computation and Control (HSCC
10), ACM, 2010, pp. 243–252.

 10. Y. Kim and M. Kim, “Hybrid Statistical
Model Checking Technique for Reliable Safety
Critical Systems,” Proc. IEEE Int’l Symp.
Software Reliability Eng. (ISSRE 12), IEEE
CS, 2012; http://pswlab.kaist.ac.kr/
publications/issre2012_yjkim.pdf.

YOUNGJOO KIM is a full-time researcher at S-Core. Her research
interests include automated software testing and statistical model
checking. Kim received an MS in computer science from the Korea
Advanced Institute of Science and Technology. Contact her at jerry88.
kim@gmail.com.

OKJOO CHOI is a research assistant professor at the Korea Advanced
Institute of Science and Technology’s Department of Computer Science.
Her research interests include software process, software safety, and
reliability. Choi received a PhD in computer science from Sookmyung
Women’s University. Contact her at okjoo.choi@kaist.ac.kr.

MOONZOO KIM is an associate professor at the Korea Advanced
Institute of Science and Technology’s Department of Computer Science.
His research interests include automated software testing and verifi ca-
tion, concurrent program testing, and formal analysis of embedded
software. Kim received a PhD in computer and information science
from the University of Pennsylvania. He’s a member of IEEE and ACM.
Contact him at moonzoo@cs.kaist.ac.kr.

JONGMOON BAIK is an associate professor at the Korea Advanced
Institute of Science and Technology’s Department of Computer Science.
His research interests include software process modeling, software
economics, software reliability engineering, and software Six Sigma.
Baik received a PhD in computer science from the University of South-
ern California. He’s a member of IEEE and ACM. Contact him at jbaik@
kaist.ac.kr.

TAI-HYO KIM is the CEO of FormalWorks. His research interests
include formal methods and worst-case execution time analysis. Kim
received a PhD in computer science from the Korea Advanced Institute
of Science and Technology. Contact him at taihyo.kim@formalworks.
com.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

www.computer.org/software

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

__

http://www.qmags.com/clickthrough.asp?url=http://ComputingNow.computer.org&id=18138&adid=P41E3
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P41E2
http://www.qmags.com/clickthrough.asp?url=http://pswlab.kaist.ac.kr/publications/issre2012_yjkim.pdf&id=18138&adid=P41E1
mailto:jerry88.kim@gmail.com
mailto:okjoo.choi@kaist.ac.kr
mailto:moonzoo@cs.kaist.ac.kr
mailto:jbaik@kaist.ac.kr
mailto:taihyo.kim@formalworks.com
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

42 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

FOCUS: SAFETY-CRITICAL SOFTWARE

ONE OF THE FUNDAMENTAL pil-
lars of air traffic management (ATM)
is air traffic control (ATC). ATC sys-
tems are software-intensive critical sys-
tems that assure that aircraft are safely

separated in the sky when they fly and
at airports when they land and take off
(www.eurocontrol.int/articles/what-air
-traffic-management). An ATC system
manages all ground and en route flight

operations, with the aim of preventing
collisions and organizing traffic flow.

To build software for ATC systems,
the most consolidated development
process model is by far the V-model. Its
key benefit is that it accounts for veri-
fication and validation (V&V) at early
stages—as soon as requirements are
elicited—which allows development
and V&V activities to occur in parallel
flows. The V-model defines criteria for
testing on the basis of what will actu-
ally be produced, not on what was al-
ready produced.

However, market pressures require
increasingly time- and cost-effective
ways to produce and assess software.
When talking about foes of software
production effectiveness, the prime sus-
pect is usually testing, especially for
critical systems. Thinking about testing
as requirements are available is certainly
important, but it no longer seems suffi-
cient. Testing and on-site maintenance
costs are still a relevant concern for
manufacturers and system integrators.

As part of a public-private collabo-
ration between the University of Napoli
and the Finmeccanica companies Selex
Electronic Systems and SESM, we’re
jointly looking for process-level solu-
tions that can improve how engineers
build high-quality software for ATC
systems. We’ve focused in particular on
model-driven approaches.

Looking at the Model-
Driven Approach
The main source of cost happens on the
left side of the V (see Figure 1), where
early verification still isn’t well supported
by methodologies and tools. A better
cost-quality balance requires improve-
ments not only from the testing perspec-
tive: design- and process-level reasoning
are key issues in optimizing testing ef-
forts, and they have costs as well. Re-
sources required in terms of personnel

Engineering Air
Traffic Control
Systems with a
Model-Driven
Approach
Gabriella Carrozza, SESM

Mauro Faella, Critiware

Francesco Fucci, Roberto Pietrantuono, and Stefano Russo,
Federico II University of Naples

// Testing software in air traffic control systems costs

much more than building them. Software engineers

strive to find methodological and process-level solutions

to balance costs and to better distribute verification

efforts among all development phases. Model-

driven approaches could provide a solution. //

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.eurocontrol.int/articles/what-air-traffic-management&id=18138&adid=P42E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 43

and skills, poor communication within
the team, and minor involvement of end
users are V-model defi ciencies that affect
quality and cost management.

Figure 1 shows the current V-model
process (labeled artifacts comply with
the MIL-STD-498 standard1). The ob-
jective of the collaboration team was to
improve cost-quality trade-offs without
impacting the current well-proven prac-
tices in such a process. This translates
into fi nding a solution that can detect
more specifi cation and design errors ear-
lier and fi nd inconsistencies among arti-
facts; it shouldn’t alter the main fl ow of
the V-model (with roles and responsibili-
ties); but it should scale with respect to
systems complexity.

For these requirements, a model-
driven approach seems attractive. We
focused specifi cally on the model-
driven architecture (MDA) develop-
ment paradigm.2 Besides the claimed
advantages in terms of interoperability,
portability, and reusability, we’re inter-
ested in several other key features:

manual activity in repetitive error-
prone tasks is minimized;
redundant descriptions at differ-
ent stages of software behavior are
avoided by automatic transforma-
tions, minimizing inconsistencies;
early V&V of design artifacts is
aided by tools and favored by mod-
eling notation and rules;
design-oriented fl ow helps optimize
testing effort;
code can be generated automati-
cally (which is defi nitely the most
striking feature);
maintenance cost is also reduced
because the effort of introducing
a change at the upper level can be
minimized by automatic transfor-
mations model to model and model
to code; and
compared to pure text, models are

less prone to misinterpretation be-
cause they dramatically reduce the
possibility of misunderstandings on
artifacts between different teams
and stakeholders.

We can distinguish two major ben-
efi ts in a possible integration of MDA
into the V-model:

direct testing and maintenance cost
reduction through early defect de-
tection, because the idea of the V-
model verifying correctness and
consistency at each stage would be
enforced, and
further cost reduction coming from
the possibility of generating code
automatically, favoring reuse, and
easing updates and maintenance ac-
tions during operation.

These benefi ts don’t contradict the

V-model; rather, they improve and re-
fi ne its pillars. So, integrating MDA into
the adopted V-model was the next step
for us. But, again, MDA alone doesn’t
suffi ce, and what it can’t cover requires
integration.

MDA and Model-Driven
Testing in a V-Model
Incorporating a model-driven way of
thinking in a full development cycle
won’t be accomplished by simply plac-
ing MDA steps in the design or cod-
ing phase. If we want real benefi ts, we
must address how to deal with phases
not covered by MDA and how existing,
well-proven activities will interact with
those of MDA.

In ATC systems engineering, it’s
important to optimize testing activity.
MDA primarily focuses on the devel-
opment side. Verifi cation is basically
supported as cross-checking for design

System
architecture

design

System
specification

SSS

Software
specification

SRSi

System
design

SSDD

CSSIs
design

SDDi

Software
development

Code

System
testing

ATP

Software
integration testing

SITP-SITD

Software
development

STPi-STDi

System
architecture

design

Software
architecture

design

Software
development

System
architecture

testing

System

Software
architecture

testing

Detail
testing
design

FIGURE 1. The reference V-model process with phases of the development process and the

associated documents to produce (compliant with the MIL-STD-498 standard). The left side

reports the design and coding phases, and the right side, the corresponding testing phases.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

44 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

artifacts’ consistency but is typically
neglected. Model-driven testing (MDT)
addresses this type of problem by shift-
ing MDA concepts into testing.3 Never-
theless, these two practices aren’t fully
integrated and aren’t seen under the
same umbrella in everyday work. Like
MDA, MDT also proposes platform-
independent and platform-specifi c
models (PIT and PST, respectively,
where T stand for “test”). And just as
MDA does, MDT can reduce testing
cost by deriving test cases automati-
cally from these models.3,4

Today, the few companies invest-
ing in MDT don’t usually manage the
whole process automatically; rather,
they create models manually or by
partially reusing MDA design models
(for example, by adding stereotypes or
profi les to UML models, such as the
UML2 Testing Profi le5). Our solution
lets MDA and MDT fl ow in parallel
along the entire process, with model-
to-model (M2M) transformations

generating PIT and PST software auto-
matically from design models. (The de-
sign models can be platform-indepen-
dent models [PIMs] and PIM software
and platform-specifi c models [PSMs].2)
Figure 2 shows the implemented links
between MDA and MDT in our pro-
posed solution.

The Integrated Process Model
The opening step of the defi ned devel-
opment process involves a requirements
analysis performed by domain experts.
Then, two activities run in parallel:
PIM creation and software requirement
specifi cation.

Both the PIM and PIM software
have two complementary views: the
static view describes entities and their
structural relationships, and the dy-
namic view describes runtime behav-
ior. The system-level PIM is described
in SysML diagrams (for example,
through requirement, block, or state
machine diagrams) and transformed

into PIM software via software re-
quirements. The PIM software is de-
scribed in UML2 and primarily focuses
on component diagrams, modeling the
relationships among components; state
machine diagrams, describing the be-
havior of components in terms of fi nite-
state machines; and data model dia-
grams describing the data managed by
the system. These latter diagrams can
be external data (exchanged with exter-
nal actors) or internal data (exchanged
among subsystems).

The horizontal M2M trans for-
mations use the static view from the
PIM and PIM software to generate the
PIT and PIT software. The PIT and PIT
software are described in the UML Test-
ing Profi le (UTP),5 a standard for defi n-
ing and specifying test suites in a given
domain. The dynamic view helps gener-
ate the actual test cases through model-
based coverage criteria (for example, al-
gorithms for specifi c coverage criteria of
behavioral diagrams, such as state/tran-
sition coverage).

On the left side of the V, we can
generate the PSMs from the PIM soft-
ware by using the correct set of M2M
transformation rules, depending on the
selected platform. On the right side,
the PST is generated in TTCN-36 no-
tation through an additional M2M
transformation. We chose TTCN-3 be-
cause it is a standard and environment-
independent notation; in this way, we
can reuse a PST across different PSMs.

The last part of the process concerns
the M2T transformations of PSMs into
source code and of PST into TTCN-3
scripts, and the manual creation of
SUT (software under test) adapters,
one for each specifi c implementation.

Finally, the tester executes the gen-
erated test suite on the SUT. This is
done in a specifi c TTCN-3 runtime en-
vironment via the SUT adapter. All the
artifacts except software requirements,
software models, and the SUT adapter
are generated automatically.

System
requirements

Software
requirements

PIM
system model

(SysML)

PIM software
model

(USM static +
UML dynamic)

PSM

Trace TraceHuman

Model-driven
testing

Human

M2M

Code
(C++)

PST
(TTCN-3)

Test
cases

PIT software
software test
model (UTP)

PIT
test model

(UTP)

M2T

Runs
on

M2T

M2M

M2M

M2M

Model-driven
development

Test code
(TTCN-3)

SUT
adapter

FIGURE 2. An overview of our proposed process. The left side reports the phases from

requirements to code; the right side reports the testing activities. The fi gure highlights the

human-made (“human”) and automatic (M2M and M2T) development phases.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P44E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 45

Challenges of Integration
To implement the outlined process, we
attempted to find commercial off-the-
shelf support tools (for example, IBM
Rational Rhapsody), but we couldn’t
find a complete tool chain able to sup-
port the whole integration and genera-
tion process. Although several existing
tools can cover many steps of the pro-
cess, they’re hard to integrate either be-
cause they’re produced by different ven-
dors or owing to the different hardware
and software platforms they target. Ac-
cordingly, we’re working on building
our own tool chain.

However, besides these technicali-
ties, the trickiest part is to make MDA/
MDT flow well enough for building
critical software. Indeed, the MDA/
MDT paradigm still has several defi-
ciencies. For coping with them, we need
to link well-proven V-model activities
to MDA/MDT ones.

An inherent problem of MDA/
MDT is again about testing, which is
right where we expect major benefits.
Indeed, testing automation is MDT’s
most substantial contribution because
the testing model contains the static
and dynamic view as well. But test au-
tomation, and MDT more generally,
doesn’t necessarily imply test-suite
cost-effectiveness.

Through the criteria of the model-
based coverage achieved through the
dynamic view, MDT automatically cre-
ates test cases from the test model; the
latter is derived from the design model
through the described M2M transfor-
mation (from PIM software to PIT soft-
ware). Thus, test cases are indirectly
linked to the design model. This is fine
for testing what the system is expected to
do against what’s specified at the design
stage, but it presents some problems:

In large-scale complex systems,
such as the ones we deal with, ex-
ercising all the produced test cases
isn’t feasible.

In critical systems, conformance
to certification standards, and the
consequent best practices taken
for quality assurance, already pro-
vide a certain degree of confidence
in functional behavior. The miss-
ing link is the fulfillment of non-
functional requirements. Stan-
dards require evidence of quality
assurance—the coverage level of
functional behavior, RAMS (reli-
ability, availability, maintainabil-
ity, safety), robustness, and, more
generally, satisfaction of depend-
ability requirements still must be
demonstrated.

To tackle these issues, we use MDA/
MDT for functional test case produc-
tion. We address nonfunctional testing
via consolidated RAMS analysis steps
at each stage.

To prevent the number of functional
test cases from exploding, we need ad-
equacy criteria and test case selection
techniques, so we’re exploring solu-

tions that pursue high coverage at a low
cost. Along with implementing several
coverage criteria for test suites gener-
ated from state machines, we’re also
focusing on similarity-based test case
selection techniques.7

We use RAMS analysis to iden-
tify the most critical software com-
ponents—in terms of time and bud-
get—for nonfunctional test cases. Post
analysis, we can generate test cases to
prove software robustness, and/or to
run stress and performance tests. Al-
though UTP provides some support for
this task, we can exploit a much lower

degree of automation compared to
functional test case generation.

MDA doesn’t cover the uppermost
part of the V—that is, from require-
ments to high-level design. Certifi-
cation standards of interest (such as
DO-178B/DO-178BC/DO-248) deem
requirement management as a cru-
cial life-cycle activity. Even if MDA
provides great support facilities in de-
signing and checking conformance to
requirements, it can still be improved
through an integrated MDA/MDT
approach: executable design models
let you exercise them against require-
ments, and looking at the generated test
models helps identify discrepancies be-
tween the corresponding design model
and requirements.

However, this still isn’t enough to
cover everything needed in practice,
especially from the certification per-
spective. Requirement completeness,
correctness, and traceability among
requirements at different levels of ab-
straction must still be verified via static

manual analysis (for example, inspec-
tion, checklist, walkthroughs/design
reviews) and requirements engineer-
ing techniques.8 For validation, the V-
model includes acceptance tests, which
give us feedback about user needs and
about what’s important to prove in
terms of system performance.

A further concern is integration
with off-the-shelf components and/or
legacy code; this is a common way of
developing large systems for ATC, for
which MDA/MDT has limited sup-
port. The defined flow supports only
test case creation for off-the-shelf

Requirement completeness, correctness,
and traceability among requirements must

still be verified via static manual analysis

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

46 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

components (with some documenta-
tion support) at the unit level and for
their interaction with others in the ar-
chitecture. This simplifi es one task,
but the rest of the integration cycle—
namely, off-the-shelf search, interface
matching, adaptation, and integration
strategy—must be managed separately
in our V-model.

An Example
To demonstrate the applicability of the
approach, let’s look at a model instan-
tiation developed in the context of our
industry-university partnership.

The industrial partner is currently
developing a project aimed at design-
ing a new generation of ATM and ATC
systems. Its goals include optimizing
system deployment and maintenance,
achieving the performance required to
manage increased traffi c, and converg-
ing toward interoperability with other
European ATM systems as required
by the Single European Sky ATM Re-
search project (www.sesarju.eu).

The industrial partner designed the
ATC system subject of our case study
with a component-based approach.

The system has tens of thousands of re-
quirements and consists of many inter-
acting deployable components, known
as CSCIs (computer software confi gu-
ration items). Here, we describe the
application of our approach to a sub-
CSCI of the system controller working
position component, named data man-
ager (DTM). The DTM is our SUT and
is responsible for

managing the transition of fl ight
data objects (FDOs) from external
source to the GUI (FDOs include
fl ights and air traffi c data such as
weather information, altitude, and
fl ight coordinates;
converting data in different stan-
dard formats and storing them into
a database; and
offering publish and subscribe ser-
vices for FDOs.

DTM has approximately 70 require-
ments and is meant to be used by other
components.

For DTM development, we im ple-
mented MDA/MDT in the V-model
as shown in Figure 1. We started from

an available PIM that we transformed
in PIT through M2M translation rules
provided by Test Conductor, a com-
mercial plug-in from IBM Rational
Rhapsody.

We designed a PIM software with
UML2 based on the software require-
ments specifi cation. The high-level ar-
chitecture (that is, the static view) con-
sists of six components:

the FDOStorageManager man-
ages the format conversion and
the persistent storage of FDOs in a
database;
the FDOWriterAdapter manages
the services to modify the FDOs
during a writing session and uses
the FDOStorageManager to do so;
the FDOPublisherAdapter manages
the services to publish new FDOs
during a publishing session and
uses the FDOStorageManager to do
so;
the FDOReaderAdapter provides
services to read FDOs during a
reading session, using the FDO-
StorageManager to retrieve the re-
quested data;
the FDOSessionManager manages
three kinds of sessions for external
components to manipulate FDOs,
namely, writing, publishing, and
reading; and
the FDOChangeNotifi cationCenter
plays the role of message broker, re-
questing the FDOStorageManager
to store FDOs posted by publishers
and notifi es subscribers about FDO
changes.

The dynamic view is described by
UML2 statechart diagrams, manu-
ally verifi ed against software require-
ments. At a high level, the DTM com-
ponent starts in an idle state, waiting
for a service request that activates the
transition to the busy state. When the
requested service is performed without
anomalies, it comes back into the idle

serviceRequest(“declareAsPublisher”)
DeclareAsPublisher(“ENV”)

serviceRequest(“openPublishingSession”)

openPublishSession(“ENV·)

SUT:DTM
ENV SUT.DTM SUT.FDOSession

Manager
SUT.EDOPPublisher

adapter

FIGURE 3. A test case example. The test case is described by a sequence diagram

modeling the interaction among three components of the system under test (SUT).

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.sesarju.eu&id=18138&adid=P46E1
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P46E2
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 47

state; otherwise, it transits into the er-
ror state. When recovery activities are
performed, the DTM restarts, resum-
ing to idle.

Test conductor transformation rules
automatically generate the PIT soft-
ware from the static DTM view. The
dynamic view helps generate the test
cases with the criterion of covering all
the states. Figure 3 shows a very sim-
ple example of generated test cases; as
we go deeper, test cases become more
complex.

On the left side of the V, we used the
Rhapsody translation rules to trans-
form the PIM software into a PSM,
with “platform specifi c” relating to
the specifi c implementation language,
C++, and then to C++ source code. On
the right side, we used the ConformiQ
tool to generate TTCN-3 scripts from
test models; see Figure 4 for an exam-
ple. These kinds of scripts are executed
through Elvior TestCast, which uses a
SUT adapter for specifi c APIs provided
by the TTCN-3 execution environ-
ment. The SUT adapter that we imple-
mented in Java handles communication
between TTCN-3 scripts and the SUT’s
C++ implementation.

M odel-driven fl ow is essential
on both sides of the V: it
allows for parallel evolution

of artifacts and favors cross-checking
between corresponding activities at
any given level of abstraction.

Procedures for integrating MDD
into customized processes can bring
signifi cant benefi ts,9 but it’s important
not to underestimate the effort needed
to set them up or the fact that they
might need to be tailored for different
systems.

There’s still poor interoperabil-
ity among available tools: a one-size-
fi ts-all tool chain doesn’t exist yet.
The Rational Rhapsody tool and re-
lated plugins cover a relevant slice of

our model, but part of the right side
of the V (transformation into TTCN-
3, to TTCN-3 test scripts, and the
TTCN-3 execution environment) must
be implemented with other tools. Open
source integrated alternatives—for ex-
ample, based on languages or tools in
the Eclipse environment—would be
desirable.

One last consideration is the oppor-
tunity for radical changes in this area.
Besides social, cultural, and economic
hurdles,10 we believe that industry and
academia still aren’t ready for exploit-
ing MDE benefi ts systematically. In-
dustry (with reason) is fi rmly anchored
to consolidated processes and prac-
tices, which work well even if dated
and not in line with modern technol-
ogies and paradigms. Academia, on
the other hand, misses real-world ap-
plication scenarios to make research
real and to practically assess method-
ologies and approaches.11 Concrete

experiences in industrial settings are
the missing link. Only through more
industrial examples will we convince
people that certain changes are pos-
sible and are worth consideration for
improving the quality of delivered crit-
ical, large-scale software systems.

Acknowledgments
MIUR (Ministry of Education, Univer-
sity, and Research) under project PON02_
00485_3487758 “SVEVIA” of the public-
private laboratory “COSMIC” (PON02_00669)
and Finmeccanica under the “Iniziativa Soft-
ware” project have supported this work. The
project Embedded Systems in Critical Domains
(CUP B25B09000100007) within the frame-
work of POR Campania FSE 2007-2013 sup-
ported authors Roberto Pietrantuono and Fran-
cesco Fucci.

References
1. MIL-STD-498, Overview and Tailoring

Guidebook, US Dept. of Defense, 1996.

testcase State_DTM_Idle_to_WritingSession() runs on Tester system SUT_adapter
{
var fl oat oldtimer := 0.0;
var default default_behaviour_ref;

 start_test_case();
 default_behaviour_ref := activate(testerDefaultBehaviour());
 send_ServiceRequest_to_input(DeclareAsPublisherTemplate1);
 oldtimer := 0.0;
 timeoutTimer.start(10.0 - oldtimer);
alt

 {
 [] timeoutTimer.timeout {}
 }
 timeoutTimer.stop;
 send_ServiceRequest_to_input(OpenPublishingSessionTemplate1);
setverdict(pass);
deactivate(default_behaviour_ref);

 end_test_case();
}

FIGURE 4. A generated TTCN-3 script example. This script implements the diagram from

Figure 3.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

48 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

 2. J. Miller and J. Mukerji, MDA Guide Ver-
sion 1.0.1, 2003; www.omg.org/cgi-bin/
doc?omg/03-06-01.pdf.

 3. P.Baker et al., Model Driven Testing: Using
the UML Testing Profi le, Springer, 2010.

 4. M. Mussa et al., “A Survey of Model-Driven
Testing Techniques,” Proc. Int’l Conf. Quality
Software, IEEE CS, 2009, pp. 167–172.

 5. UML Testing Profi le (UTP), OMG, 2012.

 6. C. Willcock et al., An Introduction to
TTCN-3, John Wiley & Sons, 2011.

 7. H.Hemmati, A.Arcuri, and L.Briand,
“Achieving Scalable Model-Based Testing
through Test Case Diversity,” ACM Trans.

Software Eng. and Methodology, vol. 22,
no.1, 2013, article 6.

 8. E. Hull, K. Jackson, and J. Dick, Require-
ments Engineering, Springer, 2010.

 9. J. Hutchinson, M. Rouncefi eld, and J. Whittle,
“Model-Driven Engineering Practices in In-
dustry,” Proc. Int’l Conf. Software Eng., IEEE
CS, 2011, pp. 633–642.

 10. B. Selic, “What Will It Take? A View on
Adoption of Model-Based Methods in Prac-
tice,” Software & Systems Modeling, Springer,
vol. 11, no. 4, 2012, pp. 513–526.

 11. L. Briand, “Embracing the Engineering Side of
Software Engineering,” IEEE Software, vol.
29, no. 4, 2012, p. 96.

GABRIELLA CARROZZA leads the verifi cation and validation team
at SESM. Her research interests include dependability evaluation and
assessment of complex software systems, as well as the verifi cation
and validation of large critical systems. Carrozza received a PhD in
computer and automation engineering from the Federico II University of
Naples. Contact her at gcarrozza@sesm.it.

MAURO FAELLA is an R&D software engineer at Critiware. His
research interests include model-driven approaches and practices in
testing activities of critical systems. Faella received an MS in computer
engineering from the Federico II University of Naples, Italy. Contact him
at mauro.faella@critiware.com.

FRANCESCO FUCCI is a PhD student in computer and automation
engineering at the Federico II University of Naples. His research inter-
ests include verifi cation and validation of complex software systems
and fault-tolerance techniques. Fucci received an MSc in computer
engineering from the Federico II University of Naples. Contact him at
francesco.fucci@unina.it.

ROBERTO PIETRANTUONO is a post-doctoral researcher at the
Federico II University of Naples. His research interests include software
engineering, particularly in the software verifi cation of critical systems,
software testing, and software reliability. Pietrantuono received a PhD
in computer and automation engineering from the Federico II University
of Naples, Italy. He’s a member of IEEE. Contact him at roberto.
pietrantuono@unina.it.

STEFANO RUSSO is professor and deputy head in the Department
of Computer and Systems Engineering at the Federico II University of
Naples, where he’s chairman of the curriculum in computer engi-
neering, and director of the “C. Savy” Laboratory of the National
Inter-Universities Consortium for Informatics. His research interests
include distributed software engineering, middleware technologies, and
dependable software systems. Contact him at stefano.russo@unina.it.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Author guidelines:
www.computer.org/software/author.htm

Further details: software@computer.org

www.computer.org/software

IEEE Software seeks practical,

readable articles that will appeal to

experts and nonexperts alike. The

magazine aims to deliver reliable,

useful, leading-edge information

to software developers, engineers,

and managers to help them stay

on top of rapid technology change.

Topics include requirements,

design, construction, tools, project

management, process improvement,

maintenance, testing, education and

training, quality, standards, and more.

Call
Articles

for

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P48A1
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software/author.htm&id=18138&adid=P48A2
http://www.qmags.com/clickthrough.asp?url=www.omg.org/cgi-bin/doc?omg/03-06-01.pdf&id=18138&adid=P48E1
mailto:gcarrozza@sesm.it
mailto:mauro.faella@critiware.com
mailto:francesco.fucci@unina.it
mailto:roberto.pietrantuono@unina.it
mailto:stefano.russo@unina.it
mailto:software@computer.org
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P48E2
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=http://www.computer.org/jobs&id=18138&adid=P49A1
http://www.qmags.com/clickthrough.asp?url=http://www.computer.org/jobs&id=18138&adid=P49A2
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

50 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

FOCUS: SAFETY-CRITICAL SOFTWARE

AVIONICS IS THE canonical example
of safety-critical embedded software,
where an error could kill hundreds of
people. To prevent such catastrophic
events, the avionics industry and regu-
latory authorities have defined a strin-
gent certification standard for avionics

software, DO-178 and its equivalent in
Europe, ED-12, which are known ge-
nerically as DO-178. The standard pro-
vides guidance—objectives as well as
associated activities and data—concern-
ing various software life-cycle processes,
with a strong emphasis on verification.

The current version, called DO-
178B,1 has been quite successful, with
no fatalities attributed to faulty imple-
mentation of software requirements
since the standard’s introduction in
1992. However, the cost of complying
with it is significant: projects can spend
up to seven times more on verification
than on other development activities.2

The complexity of avionics software
has also increased to the point where
many doubt that current verification
techniques based on testing will be suf-
ficient in the future.3 This led the avi-
onics industry to consider alternative
means of verification during the DO-
178B revision process. The new stan-
dard, DO-178C,1 includes a supplement
on formal methods (see the “What Are
Formal Methods?” sidebar), known as
DO-3334, which states the following:

Formal methods might be used in a
very selective manner to partially ad-
dress a small set of objectives, or might
be the primary source of evidence for
the satisfaction of many of the objec-
tives concerned with development and
verification.

Although this permission to replace
part of testing with formal verification
is quite new, we’ve successfully applied
this new guidance into a production-
like environment at Dassault-Aviation
and Airbus. The use of formal verifi-
cation for activities previously done by
testing has been cost-effective for both
companies, by facilitating maintenance
leading to gains in time on repeated
activities.

Formal Verification
at the Source-Code Level
DO-178 requires verification activities
to show that a program in executable
form satisfies its requirements (see Fig-
ure 1). For some requirements, verifica-
tion, which can include formal analysis,
can be conducted directly on the binary

Testing or Formal
Verification:
DO-178C Alternatives
and Industrial Experience

Yannick Moy, AdaCore

Emmanuel Ledinot, Dassault-Aviation

Hervé Delseny, Airbus

Virginie Wiels, ONERA

Benjamin Monate, TrustMySoft

// Software for commercial aircraft is subject to stringent

certification processes described in the DO-178B standard,

Software Considerations in Airborne Systems and Equipment

Certification. Issued in late 2011, DO-178C allows formal

verification to replace certain forms of testing. Dassault-Aviation

and Airbus have successfully applied formal verification

early on as a cost-effective alternative to testing. //

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

V
I

D
E

O

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://youtu.be/tRtK4xOK-8o
http://youtu.be/BVI5J1GAQ30
http://youtu.be/U3G1ZOoqg78
http://youtu.be/WtlqS-JOHrA

MAY/JUNE 2013 | IEEE SOFTWARE 51

representation. For example, Airbus
uses formal analysis tools to compute
the worst case execution time (WCET)
and maximum stack usage of execut-
ables.5 For many other requirements,
such as datafl ow and functional prop-
erties, formal verifi cation is only feasi-
ble via the source-code representation.
DO-178 allows this approach, provided
the user can demonstrate that proper-
ties established at the source level still
hold at the binary level. The natural
way to fulfi ll this objective is to show
that requirements at source-code level
are traceable down to the object-code
level.6,7 Demonstrating traceability be-
tween source and object code is greatly

WHAT ARE FORMAL
METHODS?

According to RTCA DO-333, formal methods are mathematically based techniques for
the specifi cation, development, and verifi cation of software aspects of digital systems.
The fi rst work on formal methods dates back to the 1960s, when engineers needed to
prove the correctness of programs. The technology has evolved steadily since then, ex-
ploiting computing power that has increased exponentially. In DO-333, a formal meth-
od is defi ned as “a formal model combined with a formal analysis.” A model is formal
if it has unambiguous, mathematically defi ned syntax and semantics. This allows auto-
mated and exhaustive verifi cation of properties using formal analysis techniques, which
DO-333 separates into three categories: deductive methods such as theorem proving,
model checking, and abstract interpretation. Today, formal methods are used in a wide
range of application domains including hardware, railway, and aeronautics.

• Compliance
• Traceability

• Compliance
• Traceability

• Compliance
• Traceability

• Traceability

• Compliance

• Compliance

• Accuracy and consistency
• Compatibility with the target computer

• Verifiability
• Conformance to standards

• Algorithm accuracy

System
requirements

High-level
requirements

Source code

Executable
object code

Design

Software
architecture

Low-level
requirements

• Accuracy and consistency
• Compatibility with the target computer
• Verifiability
• Conformance to standards
• Algorithm accuracy

• Consistency
• Compatibility with the target computer

• Verifiability
• Conformance to standards

• Partitioning integrity

• Verifiability
• Conformance to standards
• Accuracy and consistency

• Completeness and correctness

• Compatibility with the target computer

• Compliance
• Robustness

• Compliance
• Robustness

Development activity
Review activity
Test activity

Note: Requirements include
derived requirements

FIGURE 1. Activities mandated by DO-178C to fulfi ll objectives (the labels on the arcs). Verifi cation against requirements is shown in two white

boxes with blue borders. (Note that the legend says “Test activity,” but DO-333 allows formal verifi cation to replace these testing activities;

artwork reproduced with permission of RTCA/EUROCAE.)

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

52 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

facilitated by using qualified tools for
purposes such as enforcing coding re-
strictions against features that would
complicate traceability, by applying ap-
propriate compiler options to preserve
control flow, and by using code trace-
ability analyses prepared by compiler
vendors.

Assuring the correctness of the com-
piler’s translation of source code into
object code is, of course, important.
Trust can be based on examination
of the compiler itself (the tool qualifi-
cation process) or the compiler’s out-
put. The former approach (qualifying
the compiler) is rare because of the ef-
fort involved. The latter approach pro-
vides the relevant degree of assurance
through the multiple and overlapping
activities required by DO-178, includ-
ing the hardware/software integration
testing and the verification of untrace-
able object code.

The form of verification required
by DO-178 is mostly based on require-
ments, both for verifying high-level re-
quirements, such as “HLR1: the pro-
gram is never in error state E1,” and for
verifying low-level requirements, such
as “LLR1: function F computes out-
puts O1, …, On from inputs I1, … Im.”
For both HLRs and LLRs, the DO-
178 guidance requires in-range (com-
pliance) and out-of-range (robustness)

verification, either by testing or by for-
mal verification.

Compliance requirements focus on
a program’s intended nominal behav-
iors. To use formal verification for these
requirements, you first express the re-
quirement in a formal language—for
example, HLR1 can be expressed as a
temporal logic formula on traces of ex-
ecution or as an observer program that
checks the error state is never reached.
Then, you can use symbolic execution
techniques to check that the require-
ment is respected. The Java PathFinder
tool used at NASA and the Aoraï plug-in
of Frama-C implement this technique.8

As another example, you can express
LLR1 as a logic function contract (see
the “What Are Function Contracts?”
sidebar). Then, you use various formal
analyses to check that the code imple-
ments these formal contracts, although
deductive methods typically perform
better here, as demonstrated by the op-
erational deployment of tools such as
Caveat/Frama-C5,8 and SPARK.9

Robustness requirements focus on a
program’s behaviors outside its nomi-
nal use cases. A particularly important
robustness requirement is that pro-
grams are free from runtime errors,
such as reading uninitialized data, ac-
cessing out-of-bounds array elements,
dereferencing null pointers, generating

numeric overflows, and so on, which
might be manifest at runtime by an ex-
ception or by the program silently go-
ing wrong. Formal analyses can help
check for the absence of runtime errors.
Model checking and abstract interpre-
tation are attractive options because
they don’t require the user to write
contracts, but they usually suffer from
state explosion problems (meaning the
tool doesn’t terminate) or they gener-
ate too many false alarms (meaning
the tool warns about possible problems
that aren’t genuine). A successful ex-
ample of such a tool is Astrée,5 which
was specifically crafted to address this
requirement on a restricted domain-
specific software. Deductive verifica-
tion techniques require user-written
function contracts instead of domain-
specific tools and don’t suffer from ter-
mination problems or too many false
alarms. These techniques are available
in Caveat,5 Frama-C,8 and SPARK.9

Replacing Coverage with
Alternative Objectives
To increase confidence in the compre-
hensiveness of testing-based verifica-
tion activities, DO-178 requires cov-
erage analysis. Test coverage analysis
is a two-step process that involves
requirements-based and structural cov-
erage analyses. Requirements-based
coverage establishes that verification
evidence exists for all of the software’s
requirements—that is, that all the re-
quirements have been met. This also
applies to formal verification. Struc-
tural coverage analysis during testing
(for example, statement coverage) aims
to detect shortcomings in test cases, in-
adequacies in requirements, or extrane-
ous code.

Structural coverage analysis doesn’t
apply to formal verification. Instead,
DO-178C’s supplement on formal
methods, DO-333, defines four al-
ternative activities to reach the struc-
tural coverage goals when using formal

WHAT ARE FUNCTION
CONTRACTS?
The concept of program contracts was invented by the researcher C.A.R. Hoare in 1969
in the context of reasoning about programs. In the mid-1980s, another researcher,
Bertrand Meyer, introduced the modern function contract in the Eiffel programming
language. In its simplest formulation, a function contract consists of two Boolean ex-
pressions: a precondition to specify input constraints and a postcondition to specify
output constraints. Function contracts have subsequently been included in many other
languages, either as part of the language (such as CodeContracts for .NET or contracts
for Ada 2012) or as an annotation language (such as JML for Java or ACSL for C). Con-
tracts can be executed as runtime assertions, interpreted as logic formulas by analysis
tools, or both.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P52E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 53

verification:6,7 cover, complete, data-
flow, and extraneous. The four alterna-
tive activities aim to achieve the same
three goals, substituting verification
cases for test cases in the first one.

Cover: Detect Missing
Verification Evidence
Unlike testing, formal verification can
provide complete coverage with re-
spect to a given requirement: it en-
sures that each requirement has been
sufficiently—in other words, mathe-
matically—verified. But unlike testing,
formal verification results depend on
assumptions, typically constraints on
the running environment, such as the
range of values from a sensor. Thus, all
assumptions should be known, under-
stood, and justified.

Complete: Detect Missing
or Incomplete Requirements
Formal verification is complete with re-
spect to any given requirement. How-
ever, additional activities are necessary
to ensure that all requirements have
been expressed—that is, all admissible
behaviors of the software have been
specified. This activity states that the
completeness of the set of requirements
should be demonstrated with respect to
the intended function:

“For all input conditions, the re-
quired output has been specified.”
“For all outputs, the required input
conditions have been specified.”

Checking that the cases don’t over-
lap and that they cover all input con-
ditions is sufficient for demonstrating
the first bullet point. Furthermore, it’s
easy to detect obvious violations of the
second point by checking syntactically
that each case explicitly mentions each
output. A manual review completes this
verification. Note that formal methods
can’t handle the more general problem
of detecting all missing requirements.

Dataflow: Detect Unintended Dataflow
To show that the coding phase didn’t
introduce undesired functionality, the
absence of unintended dependencies
between the source code’s inputs and
outputs must be demonstrated. You
can use formal analysis to achieve this

objective. Formal notations exist to
specify dataflows, such as the SPARK
dataflow contracts9 or the Fan-C nota-
tion in Frama-C,8 and associated tools
automate the analysis.

Extraneous: Detect Code That Doesn’t
Correspond to a Requirement
DO-178C requires demonstrating the
absence of “extraneous code”: any code
that can’t be traced to a requirement.
This includes “dead code” as defined
in DO-178C: code that’s present by er-
ror and unreachable. The relevant sec-
tion of DO-333 explicitly states that
detection of extraneous code should be
achieved by “review or analysis (other
than formal).” Although formal analy-
sis might detect some such code, com-
putability theory tells us that any prac-
tical formal analysis tool (which doesn’t
generate so many false alarms that it’s
useless in practice) will be unsound,
meaning it will fail to detect some in-
stances of extraneous code. DO-178C
doesn’t allow unsound tools.

The effort required by this review or
analysis depends chiefly on the degree
of confidence obtained after complet-
ing the previous activities (cover, com-
plete, and dataflow). Testing detects
extraneous code as code that isn’t ex-
ecuted at runtime. This step detects
both unreachable code that can never

be executed and unintended function-
alities—those that could be executed
but aren’t triggered by the tests derived
from requirements. When you use for-
mal analysis, the previous activities give
some degree of confidence that unin-
tended functionalities can be detected.

It only remains to detect by review or
analysis the unreachable code. Because
this is a manual activity, its details vary
from project to project.

Formal Verification
of Functional
Properties: Airbus
Since 2001, a group at Airbus has trans-
ferred formal verification technology—
tools and associated methods—from
research projects to operational teams
who develop avionics software.5 The
technology for verifying nonfunctional
properties such as stack consumption
analysis, WCET assessment, absence
of runtime errors, and floating-point
accuracy isn’t seen as an alternative to
testing and won’t be discussed here. In-
stead, we focus on unit proof,4,10 which
we developed for verifying functional
properties. It has replaced some of the
testing activities at Airbus for parts
of critical embedded software on the
A400M military aircraft and the A380
and A350 commercial aircraft.

Within the classical V-cycle devel-
opment process of most safety-critical
avionics programs, we use unit proof
for achieving DO-178 objectives re-
lated to verifying that the executable
code meets the functional LLRs. The
term “unit proof” echoes the name of
the classical technique it replaces: unit

Unit proof has replaced some
of the testing activities at Airbus on
the A400M military aircraft and the

A380 and A350 commercial aircraft.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

54 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

testing. The use of unity proof diverged
from the DO-178B standard (more ac-
curately, it was treated as an alternative
method of compliance), so we worked
with the certification authorities to ad-
dress and authorize this alternative.
The new DO-178C standard—together
with the formal methods supplement

DO-333—fully supports the use of unit
proof.

Unit proof is a process comprising
three steps:

An engineer expresses LLRs for-
mally as dataflow constraints be-
tween a computation’s inputs and
outputs, and as preconditions and
postconditions in first-order logic,
during the development process’s
detailed design activity.
An engineer writes a module to im-
plement the desired functionality
(this is the classical coding activ-
ity). The C language is used for this
purpose.
An engineer gives the C module’s
formal requirements and the mod-
ule itself to a proof tool. This activ-
ity is performed for each C function
of each C module.

Different steps are needed when us-
ing the theorem-proving tool. An en-
gineer first defines the proof environ-
ment, and then the tool automatically
generates the data and control flows
from the C code. The engineer then
verifies these flows against the data and
control flows defined during the design
phase. Next, the tool attempts to prove
that the C code correctly implements

the functional properties defined dur-
ing the design phase. Finally, the en-
gineer analyzes the proof results. The
theorem-proving tool is integrated
into the standard process management
tool, so that this proof process is en-
tirely automated and supported during
maintenance.

As discussed earlier, because we
perform a verification activity at the
source level instead of the binary level,
we also analyze the compiler-generated
object code, including the effects of the
compiler options on the object code,
to ensure that the compiler preserves
in the object code the property proved
on the source code. Within this devel-
opment cycle, HLRs are expressed in-
formally, so integration verification is
done via testing, which includes verifi-
cation of timing aspects and hardware-
related properties. Even when taking
into account these additional activities,
the technique of unit proof reduces the
overall effort compared to unit test-
ing, in particular because it facilitates
maintenance.

This approach satisfies the four
alternative objectives to coverage:

Cover. Each requirement is ex-
pressed as a property, each property
is formally proved exhaustively, and
every assumption made for formal
verification is verified.
Complete. Completeness of the set
of requirements is verified by verify-
ing that the dataflow gives evidence
that the data used by the source
code is conformant with decisions
made during design. Based on this

guarantee, the theorem-proving
tool verifies that the formal con-
tract defined in the design phase
specifies a behavior for all possible
inputs. Then, we manually verify
the formal contracts, to determine
that an accurate property exists and
specifies the value of each output
for each execution condition.
Dataflow. The dataflow verification
gives evidence that the operands
used by the source code are those
defined at the design level.
Extraneous. Except for unreach-
able code (which can’t be executed),
all the executable code is formally
verified against LLRs. Thus, the
completeness of the properties and
the exhaustiveness of formal proof
guarantee that any code section
that can be executed will have no
other impact on function results
than what’s specified in the LLRs.
Identification of unreachable code,
including dead code, is achieved
through an independent, focused
manual review of the source code.

There are two manually intensive,
low-level testing activities in DO-178:
normal range testing and robustness
testing. While Airbus has been us-
ing formal verification to replace both
types of testing (excluding runtime er-
rors), Dassault-Aviation has experi-
mented with formal verification to re-
place the robustness testing (including
runtime errors).

Formal Verification
of Robustness:
Dassault-Aviation
Since 2004, a group at Dassault-
Aviation has used formal verification
techniques experimentally to replace
integration robustness testing,6 where
robustness is defined as “the extent to
which software can continue to oper-
ate correctly despite abnormal inputs
and conditions.”1 We’ve applied these

The technique of unit proof reduces the
overall effort compared to unit testing,

in particular because it facilitates
maintenance.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P54E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 55

techniques to flight control software
developed following a model-based
approach, specifically on the Falcon
family of business jets equipped with
digital flight control systems. C source
code is automatically generated from a
graphical model that includes a mix of
dataflow and statechart diagrams. The
average size of the software units veri-
fied by static analyzers is roughly 50
KLOC.

Normal conditions for this software
are defined as intervals bounding the
model’s input variables and the per-
manent validity of a set of assertions
stated at the model level. These asser-
tions are assumptions expected to be
met in both normal and abnormal in-
put conditions for the model to operate
properly—typically, they’re range con-
straints on arguments to library func-
tions at the model’s leaf nodes. Apart
from runtime errors, the robustness as-
sertions amount to a few hundred prop-
erties stated at the model level and then
propagated to the generated C code.

On such software, integration testing
is functional, based on pilot-in-the-loop
and hardware-in-the-loop activation of
the flight control laws. Designing test
cases to observe what might happen if
some internal assertions break was de-
termined to be costly and inconclusive,
so we handle robustness by manually
justifying that normal and abnormal
external inputs can’t lead to assertion
failures. A set of design rules facilitate
the checking of range properties; we
apply them at the software-modeling
level and use a custom checker to verify
them. These rules made a manual justi-
fication possible.

We anticipated that strengthen-
ing the manual analysis of range con-
straints through mechanized interval
propagation and abstract interpretation
would be beneficial. But we couldn’t
compare the benefits of this process
evolution on the baseline process by
simply comparing past testing cost and

present formal verification cost: for-
mal verification supplements an activity
that was never performed through test-
ing, just through human analysis.

To mechanize the analysis through
formal proof of the assertions, we use
two static analyzers that collaborate
and share results on the Frama-C plat-
form. Approximately 85 percent of
these assertions are proved by abstract
interpretation using Frama-C’s value-
analysis plug-in, and the remaining as-
sertions are proved by deductive verifi-
cation using Frama-C’s WP plug-in and
a set of automated theorem provers.
The value-analysis plug-in takes into
account IEEE 754-compliant numerical
precision; while propagating intervals,
it also verifies the absence of runtime
errors, in particular, the absence of
overflows and underflows.

As far as the verification process is
concerned, once the integrated flight
control software is sufficiently stable,
a static analysis expert, in cooperation
with a model expert, initially performs
the formal robustness verification. The
critical issue is to add a few extra asser-
tions to be conclusive about the return
values for the numerically intensive li-
brary functions. Finding them requires

both deep knowledge of the model and
abstract interpretation expertise. It
takes roughly a person-month effort
to set up the Frama-C analysis script
and to tune any manually added as-
sertions. Then the model verifiers—an
independent group from the model de-
velopment team—can autonomously
replay and update the analysis until
some substantial algorithmic change in

the model requires revisiting the extra
assertions, possibly with some support
from the formal verification expert.

Design-rule verification and manual
assertion analysis is estimated to take a
person-month of effort by the indepen-
dent control engineers (not software en-
gineers) in charge of model verification.
This effort must be repeated for every
software model release, so there’s no
economic gain for a single release. How-
ever, because robustness verification is
a recurrent task that’s automated once
the setup phase is complete, this rather
long preparation provides a significant
competitive advantage for repetitive
analyses. The gain is roughly a person-
month per flight software release.

This approach satisfies the following
alternative objectives to coverage:

Cover. An engineer handles abnor-
mal input conditions through larger
intervals and no other assump-
tions. The tool performs abstract
interpretation with no assumptions
other than those required to en-
sure hardware-dependent numerical
consistency.
Complete. A manual peer review of
the set of assertions in the libraries

and in the model ensures that ro-
bustness requirements are complete.
This is facilitated by the simplicity
of typical assertions, 90 percent of
which are interval constraints.
Dataflow. An engineer formally
specifies dataflows at the model
level, using a dataflow formalism.
Qualification of the code genera-
tor ensures no unintended dataflow

Because robustness verification
is a recurrent task, the gain is roughly

a person-month per flight software release.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

56 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

relationship at the source-code level
compared to the design model.

Airbus and Dassault-Aviation were
early adopters of formal verifi cation as
a means to replace manually-intensive

testing, at a time where the applicable
standard DO-178B didn’t fully recog-
nize it. New projects can expect to get
the same benefi ts in contexts where the
new standard DO-178C explicitly sup-
ports it.

F ormal methods technology has
matured considerably in recent
years, and it’s attracting in-

creasing interest in the domain of high-
integrity systems. Airborne software
is an obvious candidate, but DO-178B
treated the use of formal methods for
verifi cation as an activity that could
supplement but not necessarily replace
the prescribed testing-based approach.
The revision of DO-178B has changed
this, and the new DO-178C standard
together with its DO-333 supplement
offer specifi c guidance on how formal
techniques can replace, and not simply
augment, testing.

Experience at Airbus and Dassault-
Aviation shows that the use of formal
methods in a DO-178 context isn’t
simply possible but also practical and
cost-effective, especially when backed
by automated tools. During the require-
ments formulation process, engineers
can use formal notation to express
requirements, thus avoiding the ambi-
guities of natural language, and formal
analysis techniques can then be used to
check for consistency. This is especially
useful because, in practice, the errors
that show up in fi elded systems tend to
be with requirements rather than with
code. However, the correct capture of
system-functional safety at the soft-
ware level can’t be addressed by for-
mal methods. During the coding phase,
formal verifi cation techniques can de-
termine that the source code complies
with its requirements.

An interesting possibility that we
didn’t discuss here is to combine test-
ing with formal verifi cation. This has
seen some promising research in recent
years,11 and further industrial experience
in this area will no doubt prove useful.

Acknowledgments
We thank the anonymous reviewers and Ben-
jamin Brosgol for their helpful comments on
this article, as well as Cyrille Comar for in-
spiring us to write it.

YANNICK MOY is a senior engineer at AdaCore, working on static
analysis and formal verifi cation tools for Ada and SPARK programs. He
previously worked on similar tools for C/C++ programs at PolySpace,
INRIA research labs, and Microsoft Research. Moy received a PhD in
formal program verifi cation from Université Paris-Sud. Contact him at
moy@adacore.com.

EMMANUEL LEDINOT is a senior expert in formal methods applied
to software and system engineering at Dassault-Aviation and was
Dassault’s representative in the ED-12/DO-178 formal methods group.
Ledinot graduated as an engineer from Centrale Paris and has an MS in
theoretical computer science from the University of Paris VII. Contact
him at emmanuel.ledinot@dassault-aviation.com.

HERVÉ DELSENY is an expert in avionic software aspects of certi-
fi cation at Airbus and was a member of the working group in charge
of writing issue C of ED-12/DO-178. His professional interests include
formal methods and promoting their use in avionics software verifi ca-
tion. Delseny has an MS in industrial software from Tours University,
France. Contact him at herve.delseny@airbus.com.

VIRGINIE WIELS is a research scientist at Onera. She previously
worked for NASA on formal verifi cation of the Space Shuttle’s embed-
ded software. Wiels received a PhD in formal system development
and verifi cation from Ecole Nationale Supérieure d’Aéronautique et
d’Espace. Contact her at virginie.wiels@onera.fr.

BENJAMIN MONATE is a founder and director at TrustMySoft. He’s
the former leader of the Software Reliability Laboratory at CEA LIST
and a senior expert in formal verifi cation and validation. His research
interests include application of formal methods to static and dynamic
analysis of programs as well as their certifi cation and methodologies
of deployment. Monate has a PhD from Université Paris-Sud Orsay.
Contact him at benjamin.monate@cea.fr.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

mailto:moy@adacore.com
mailto:emmanuel.ledinot@dassault-aviation.com
mailto:herve.delseny@airbus.com
mailto:virginie.wiels@onera.fr
mailto:benjamin.monate@cea.fr
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P56E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 57

References
 1. RTCA DO-178, “Software Considerations in

Airborne Systems and Equipment Certifi ca-
tion,” RTCA and EUROCAE, 2011.

 2. NASA ARMD Research Opportunities
in Aeronautics 2011 (ROA-2011), research
program System-Wide Safety and Assurance
Technologies Project (SSAT2), subtopic
AFCS-1.3 Software Intensive Systems, p. 77;
http://nspires.nasaprs.com/external/
viewrepositorydocument/cmdocumentid=
320108/solicitationId=%7B2344F7C4
-8CF5-D17B-DB86-018B0B184C63%7D/
viewSolicitationDocument=1/ROA-2011%20
Amendment%208%2002May12.pdf.

 3. J. Rushby, “New Challenges in Certifi cation
for Aircraft Software,” Proc. 9th ACM Int’l
Conf. Embedded Software, ACM, 2011;
www.csl.sri.com/users/rushby/papers/
emsoft11.pdf.

 4. RTCA DO-333, Formal Methods Supplement
to DO-178C and DO-278A, RTCA
and EUROCAE, 2011.

 5. J. Souyris et al., “Formal Verifi cation of

Avionics Software Products,” Proc. Formal
Methods, Springer, 2009; http://link.springer.
com/chapter/10.1007%2F978-3-642
-05089-3_34?LI=true.

 6. E. Ledinot and D. Pariente, “Formal Methods
and Compliance to the DO-178C/ED-12C
Standard in Aeronautics,” Static Analysis of
Software, J.-L. Boulanger, ed., John Wiley &
Sons, 2012, pp. 207–272.

 7. D. Brown et al., “Guidance for Using Formal
Methods in a Certifi cation Context,” Proc.
Embedded Real-Time Systems and Software,
2010; www.open-do.org/wp-content/
uploads/2013/03/ERTS2010_0038_fi nal.pdf.

 8. P. Cuoq et al., “Frama-C, A Software Analysis
Perspective,” Proc. Int’l Conf. Software Eng.
and Formal Methods, Springer, 2012; www.
springer.com/computer/swe/book/978-3-642
-33825-0.

 9. J. Barnes, SPARK, the Proven Approach to
High Integrity Software, Altran Praxis, 2012.

 10. J. Souyris and D. Favre-Félix, “Proof of
Properties in Avionics,” Building the Informa-
tion Society, IFIP Int’l Federation for Informa-

tion Processing, René Jacquart, ed., vol. 156,
2004, pp. 527–535.

 11. C. Comar, J. Kanig, and Y. Moy, “In-
tegrating Formal Program Verifi cation with
Testing,” Proc. Embedded Real-Time Systems
and Software, 2012; www.adacore.com/
uploads_gems/Hi-Lite_ERTS-2012.pdf.

IEEE Computer Society is offering $40,000
in student scholarships, from $1,000 and up, to
recognize and reward active student volunteer

leaders who show promise in their academic and
professional efforts.

Graduate students and undergraduate students
in their final two years, enrolled in a program in

electrical or computer engineering, computer
science, information technology, or a well-defined
computer-related field, are eligible. IEEE Computer

Society student membership is required.

Apply now! Application deadline is 30 April 2013.
For more information, go to www.computer.org/
scholarships, or email chuffman@computer.org.

To join IEEE Computer Society,
visit www.computer.org/membership.

Richard E. Merwin
Student Leadership

Scholarship

See www.computer.org/software
-multimedia for multimedia
content related to this article.

See ww
ltim
en

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/membership&id=18138&adid=P57A2
http://www.qmags.com/clickthrough.asp?url=www.computer.org/scholarships&id=18138&adid=P57A1
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software-multimedia&id=18138&adid=P57E6
http://www.qmags.com/clickthrough.asp?url=www.csl.sri.com/users/rushby/papers/emsoft11.pdf&id=18138&adid=P57E7
http://www.qmags.com/clickthrough.asp?url=www.springer.com/computer/swe/book/978-3-642-33825-0&id=18138&adid=P57E5
http://www.qmags.com/clickthrough.asp?url=www.open-do.org/wp-content/uploads/2013/03/ERTS2010_0038_final.pdf&id=18138&adid=P57E4
http://www.qmags.com/clickthrough.asp?url=http://nspires.nasaprs.com/external/viewrepositorydocument/cmdocumentid=320108/solicitationId=%7B2344F7C4-8CF5-D17B-DB86-018B0B184C63%7D/viewSolicitationDocument=1/ROA-2011%20Amendment%208%2002May12.pdf&id=18138&adid=P57E3
http://www.qmags.com/clickthrough.asp?url=www.adacore.com/uploads_gems/Hi-Lite_ERTS-2012.pdf&id=18138&adid=P57E2
http://www.qmags.com/clickthrough.asp?url=http://link.springer.com/chapter/10.1007%2F978-3-642-05089-3_34?LI=true&id=18138&adid=P57E1
mailto:chuffman@computer.org
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/scholarships&id=18138&adid=P57A1

58 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

FOCUS: SAFETY-CRITICAL SOFTWARE

FAILURE OF SAFETY-CRITICAL soft-
ware systems to operate correctly can
cause serious harm to the public—con-
sider devices such as pacemakers, nu-
clear power systems, and train signals,
all of which run on safety-critical soft-
ware. Therefore, teams building safety-
critical software products must per-
form rigorous risk analyses to identify
potentially unsafe conditions and their
contributing factors. Many projects
conduct this process using techniques

such as failure modes and effects analy-
sis, fault tree analysis, and hazard and
operability studies. The risk analysis
produces a set of system-level require-
ments specifically designed to mitigate
or eliminate faults and reduce the likeli-
hood of accidents.1 These requirements
relate to a broad range of factors in-
cluding training, testing, process im-
provements, hardware, human factors,
and software design constraints.

In this article, we focus on

traceability’s role in establishing evi-
dence that device specifications and
implementations address identified haz-
ards and their risk control measures (see
the “Traceability Standards in Safety-
Critical Projects” sidebar).2 Creating
and maintaining trace links can be an
arduous, error-prone, and costly process
that can have a significant effect on the
overall costs and time-to-market for a
product.3–5 Traceability practices, there-
fore, need to be strategically planned
and carefully implemented to provide
cost-effective support for evaluating
and demonstrating a specific system’s
safety and security.6 When traceability
isn’t implemented strategically, indi-
vidual stakeholders might create traces
that they personally consider to be im-
portant or attempt to provide complete
trace coverage without considering how
the resulting trace links will be used. A
brute-force approach to traceability has
been shown in practice to be difficult to
implement, almost impossible to main-
tain, and not particularly helpful for
providing evidence that a system or de-
vice is safe for its intended use.

We present six practices for strate-
gic traceability, derived from our own
observations of effective traceability in
industrial projects and supported by
current literature.3–6 We also identify
nine recurring problems, each of which
reduces the effectiveness of traceability
verification efforts and increases the
difficulty experienced by regulators in
evaluating product safety. All the ob-
servations in this article are based on
actual observations, but the illustrative
examples are either fictitious or built on
obfuscated data.

Effective Practices
for Tracing in Safety-
Critical Projects
Although all the cases reported in this
article are safety-critical in nature,
many of the problems that we discuss
are also applicable to software and

Strategic
Traceability for
Safety-Critical
Projects
Patrick Mäder, Ilmenau Technical University

Paul L. Jones and Yi Zhang, US Food and Drug Administration

Jane Cleland-Huang, DePaul University

// An evaluation of traceability information for 10

submissions prepared by manufacturers for review at

the US Food and Drug Administration identifies nine

widespread traceability problems that affected regulators’

ability to evaluate products safety in a timely manner. //

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 59

systems traceability in general prod-
uct development efforts. The following
practices can be used to establish trace-
ability that’s cost-effective and that pro-
vides effective support for constructing
a safety-critical system and assessing its
safety. We present the practices in the
order in which we might expect them
to be adopted. In some cases, higher-
level practices are dependent on lower-
level ones.

Practice 1: Plan Your Traceability
Project managers should strategically
plan traceability in a project’s early
phases and document it using a trace-
ability information model (TIM).7 A
TIM models the traceable artifact types
(requirements, design, code, and so
on) and their permitted trace links as
a Unifi ed Modeling Language (UML)
class diagram. Figure 1 depicts a TIM
for a safety-critical project. Artifact

TRACEABILITY STANDARDS
IN SAFETY-CRITICAL PROJECTS

Traceability is an established tenet in the software engineering
community and is essential for assuring that software is safe for
use. Many regulatory agencies of various industry sectors have
recognized its importance and have subsequently incorporated it
into various standards and guidelines. For example, the Federal
Aviation Administration DO-178C standard specifi es that at each
stage of development, “software developers must be able to dem-
onstrate traceability of designs against requirements.”1 The auto-
motive safety standard ISO 26262:2011 dedicates an entire sec-
tion to requirements management and states, for example, stating
that “safety requirements shall be traceable … to: each source of
a safety requirement at the upper hierarchical level, each derived
safety requirement at a lower hierarchical level, or to its realization
in the design, and the specifi cation of verifi cation.”2

The ANSI/AAMI/IEC 62304:2006 standard addresses the medi-
cal device software development life-cycle processes, requiring
“traceability between system requirements, software requirements,
software system test, and risk control measures implemented in
the software” and that “the manufacturer shall verify and docu-

ment that the software requirements are traceable to the system
requirements or other source.”3 Similarly, the US Food and Drug Ad-
ministration (FDA) states that traceability analysis must be used to
verify that the software design of a medical device implements the
specifi ed software requirements, that all aspects of the design are
traceable to software requirements, and that all code is linked to
established specifi cations and test procedures.4 Fergal Mc Caffery
and his colleagues provide a comprehensive discussion of traceabil-
ity requirements for medical device software development.5

References
 1. DO-178C/ED-12C, Software Considerations in Airborne Systems and Equip-

ment Certifi cation, RTCA, 2011.
 2. ISO DIS 26262:2011, Road Vehicles—Functional Safety, International Orga-

nization for Standardization, 2011.
 3. ANSI/AAMI/IEC 62304:2006, Medical Device Software—Software Life Cycle

Processes, Assoc. Advancement Medical Instrumentation, 2006.
 4. Guidance for the Content of Premarket Submissions for Software Contained

in Medical Devices, US Food and Drug Administration, 2005.
 5. F. Mc Caffery et al., “Medical Device Software Traceability,” Software and

Systems Traceability, J. Cleland-Huang, O. Gotel, and Andrea Zisman, eds.,
Springer, 2011, pp. 321–339.

Hazard

ID

Fault

ID

topLevelHazard

Requirement

ID
description

description

description

type

Test case

ID
description
type

UML class

ID
name

Code class

ID
name

Test log

ID
status

records

implements

tests

contributes to

mitigates

realizes

Traceable artifact type

Permitted trace type

Key property

FIGURE 1. A typical traceability information model (TIM) for a safety-critical system. The

TIM depicts the planned trace paths among development life-cycle artifacts such as hazards,

requirements, and design.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

60 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

types include hazards, faults, require-
ments, UML classes, code classes,
test cases, and a test log. Trace links
are only permitted along the specifi ed
paths. For example, requirements can
be traced to faults and UML classes
to requirements. Furthermore, each
traceable artifact type is characterized
by one or more properties, such as ID,
description, or type, used to generate
trace queries and that might also be in-
cluded in trace query results.

Practice 2: Offer Traceability Tool Support
Creating, maintaining, and using trace
links can be time-consuming and ardu-
ous. Tracing should therefore be sup-
ported using any tool, such as Rational
DOORS or Rational RequisitePro, that
provides features for establishing, main-
taining, and navigating trace links and
has the ability to display trace informa-
tion in formats such as matrices or trace
slices. The project environment can also
be instrumented to include semiauto-
mated approaches that use information
retrieval methods to dynamically gener-
ate candidate trace links5,6 or to infer
relationships by analyzing change man-
agement systems’ commit logs.

Practice 3: Create Traces Incrementally
In practice, the task of creating, evalu-
ating, and approving traceability links
is frequently deferred until very late
in the project, at which point it’s of-
ten conducted by people other than
the original developers, testers, and
requirements engineers. Consequently,
trace links are often incomplete and

inaccurate3,6 and aren’t available
throughout the project to support de-
velopment. Instrumenting the envi-
ronment with tracing tools empowers
knowledgeable project stakeholders to
create trace links incrementally within
the context of their daily work. This
reduces the likelihood that trace links
will be created solely for approval pur-
poses and allows project stakeholders
to benefi t from traceability knowledge
throughout the project.

Practice 4: Model Traceability Queries
Traceability queries cover basic life-
cycle activities such as fi nding all re-
quirements associated with currently
failed test cases or listing all mitigating
requirements associated with a given
hazard. Trace queries can be defi ned
in several ways, for example, by using
the Visual Trace Modeling Language
(VTML), which represents queries as a
set of fi lters applied to the TIM.7 These
fi lters eliminate unwanted artifacts and
defi ne data to be returned by the trace
query. Figure 2 shows a VTML query.

Practice 5: Visualize Trace Slices
In safety-critical systems, trace links
established among hazards, faults,
mitigating requirements, design, im-
plementations, and test cases are of
particular importance.8 Therefore, in-
stead of presenting traceability mate-
rial in the form of trace matrices, gen-
erate trace slice visualizations in which
the hazard is the root node and all di-
rect and indirectly traced artifacts that
contribute to mitigating the hazard are

shown as a tree. Figure 3 illustrates this
with a trace slice for one specifi c haz-
ard. These slices support safety-related
tasks such as helping a regulator to
understand how a specifi c hazard has
been addressed in the fi nal system.

Practice 6: Evaluate Traces Continually
One challenge of implementing a trace-
ability process is that the people per-
forming the tracing tasks often don’t
directly realize tracing benefi ts. Fur-
thermore, the current status of the
traceability effort is often not visible
to individual stakeholders or the proj-
ect manager. A dashboard that displays
the tracing progress for a project can be
effective for tracking and managing the
project’s tracing goals and also for mo-
tivating team members to create appro-
priate trace links. The dashboard can
display useful information such as burn
down charts showing the percentage of
hazards that don’t have mitigating re-
quirements, or the percentage of miti-
gating requirements without passed test
cases. This information is generated via
trace queries. Personalized views can be
created for individual project members.

Observed Traceability
Problems
Unfortunately, current traceability prac-
tices often fall far short of accepted
principles in software engineering for
developing safety-critical systems. Our
two US Food and Drug Administration
(FDA) research team members system-
atically evaluated the traceability docu-
mentation presented in 10 submissions

Hazard

ID IDID

description

Fault Requirement Test case Test log

status = ‘failed’ID

descriptiondescription

FIGURE 2. A Visual Trace Modeling Language (VTML) query modeled over the TIM in Figure 1. The query retrieves, for a given hazard, the ID

and description of related faults and requirements that have assigned failed test cases.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P60E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 61

for FDA medical device approval. Their
analysis of submissions revealed several
issues from which we identifi ed nine dis-
tinct problems, specifi ed in terms of def-
inition, trace instance, and presentation
problems.

Defi nition Problems
We identifi ed three types of problems
in the area of defi ning trace strategies.
Defi nition problems appeared to have
far-reaching impacts on the tracing pro-
cess and resulted in ad hoc approaches
to traceability and uneven, inconsistent
coverage among design artifacts.

Problem 1: Failure to explicitly model a TIM.

Without an explicit and documented
trace strategy, developers often expend
valuable effort in the wrong places while
important traces required for demon-
strating or arguing product safety are
missing.

The lack of traceability planning in-
troduces numerous issues, such as the

problem depicted in Figure 4 in which
traces are established directly from de-
sign requirements to hazards without
any intermediate artifacts. This results
in high fan-in—for example, in one
case we found 15 requirements miti-
gating a single hazard—and makes it
diffi cult to understand why a particu-
lar requirement is linked to a hazard. A
better solution would be to decompose
the hazards into contributing factors
derived from the initial risk analysis,
then to create trace links from risk con-
trol measures to contributing factors
and contributing factors to hazards.

Remedy 1.1. Create a TIM early in the
project and assign responsibility to the
project manager to ensure that it’s fol-
lowed consistently throughout the de-
velopment process.

Remedy 1.2. Use the TIM to specify
how links will be created. To reduce
effort, create manual links only for

critical requirements, and address other
traceability needs through automated
techniques,10 which use information re-
trieval methods to generate traces on a
just-in-time basis.

Test case T1

Test case T2

Test case T3

Test case T4

Test case T5

Test case T6

Req 2: All sensors must be duplicated

Req 9: Current velocity constraint is displayed
on the monitor

Req 11: Current velocity constraint must fall
under maximum allowed velocity

Req 3: Automatic stoppage of the robotic arm
if arm velocity sensors disagree on current
velocity by more than x mps

Req 10: Current velocity constraint must match
patient’s personal record

Fault F1:
Velocity sensors fail to sense

excessive velocity

Fault F2:
Configuration component fails

to update correct velocity
constraints

Hazard 101:
Moving the patient’s arm
at an excessive velocity

Req 1: A system test must be run prior to each
use to check that sensors are operating correctly

Hazard
Subsystem

design
requirement

Control

Validation
test

Validation
test

FIGURE 3. A simplistic trace slice showing test cases, requirements, and faults associated with a hazard. The information can be retrieved via

the VTML query from Figure 2. (Example taken from a therapeutic robotic arm case study.9)

FIGURE 4. A TIM that shows a trace

path directly from requirements to hazards,

missing the important intermediate step of

tracing through contributing faults. In this

example, hazards were traced directly up

to 15 subsystem design requirements in the

worst case.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

62 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

Problem 2: Trace granularity not clearly

defi ned. Ill-defi ned trace granularity
leads to unacceptably high, unaccept-
ably low, or mismatched links, making
it diffi cult to determine whether haz-
ards and faults are fully addressed. Our
study identifi ed three different kinds of
granularity issues:

Trace links that are too coarse-
grained. The links don’t reference
artifacts of interest, but instead ref-
erence higher-level artifacts—for
example, links established between
large abstract sections of the re-
quirements specifi cation and test
cases. Traces are too coarse-grained
when they don’t link the test case
to the specifi c requirement being
addressed.
Trace links that are too fi ne-
grained. The links reference low-
level parts of an artifact, distract-
ing the stakeholder from the fact
that the relation to the higher-level,
more coarse-grained artifact is im-
portant—for example, we observed
multiple individual trace links be-
tween a requirement and every
single step of a test procedure, in-
troducing unnecessary effort to cre-
ate and maintain so many links. In

this case, the entire set of individual
links should be replaced by a single
link to the test case.
Inconsistent granularity. A set of
trace links are inconsistent in the
level of artifacts being traced—for
example, we observed a single trace
matrix, which includes whole sec-
tions of the software requirements
specifi cation, traced to a single test
case, and then, in the same matrix,
trace links from individual require-
ments to multiple test suites. The
mismatch of granularity in the
trace matrix makes any degree of
automated reasoning concerning
test coverage very diffi cult and also
complicates the human reviewer’s
task. (Defi ning inconsistent granu-
larity at the link level contributes
to the inconsistent link problem de-
scribed in Problem 5.)

Remedy 2. Defi ne trace granularity
clearly in the TIM and evaluate trace
matrices periodically to ensure that
traces are created at the correct granu-
larity. When necessary, you can apply
different trace granularities to differ-
ent subsets of a particular artifact type;
however, in this case, the trace matrices
should be separated.

Problem 3: Redundant traceability paths.

Redundant traceability paths defi ned
in the TIM lead to extraneous and
possibly diverging traceability matri-
ces. A TIM includes a redundant path
if there’s more than one way to trace
from one artifact type to another. In
some cases, redundant paths might be
necessary—for example, it’s possible
that some requirements are explicitly
realized in a UML system design while
the remaining ones are directly imple-
mented in the source code. In these
cases, use redundant paths judiciously.
We observed several cases of redun-
dant traceability paths—for example,
the project depicted in Figure 5. If

redundant links are stored in different
traceability matrices and maintained
by different stakeholders, there’s a high
risk of inconsistency.

In one submission, we observed
that test cases traced directly to both
hazards and to mitigating require-
ments. The mitigating requirements
then traced to hazards, creating a sec-
ond indirect trace path from test cases,
via mitigating requirements, to haz-
ards. After comparing the trace links
along both paths, we found many
inconsistencies.

Remedy 3. Minimize and preferably re-
move redundant traceability paths in
the TIM. If required, inform traceabil-
ity stakeholders about the purpose of
each trace route and ensure that each
artifact is traced along one path only.
Use trace queries to fi nd redundant
traces and eliminate them.

Trace Instance Problems
We identifi ed three types of problem at
the level of individual trace links. These
problems often stemmed from defi ni-
tion problems or from ill-defi ned day-
to-day tracing processes. They affect
the reviewer’s ability to understand re-
lationships between specifi c artifacts or
to perform a complete coverage analy-
sis of a specifi c hazard.

Problem 4: Failure to provide unique

IDs across the project. Artifacts can
lack unique IDs or names. Moreover,
IDs might not be used consistently, in
which case traceability information ex-
ists but is not useful.

A fundamental principle of trace-
ability is that each traceable artifact
must have a unique identifi er. Further-
more, prefi xes used to distinguish arti-
fact types should be unique across the
project as well as intuitive to stakehold-
ers. We didn’t see this fundamental
principle in many of the submissions we
observed. For example, requirements

Hazard

Use case

Software
requirement

System-level
test

Unit-level
test

Class

Method

FIGURE 5. A TIM that shows redundant

trace paths between sets of artifacts.

This TIM suffers from multiple granularity

problems.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P62E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 63

identifi ed as SYRS25.01 – SYRS25.xx
that trace to tests identifi ed as SYRS01
– SYRSxx are hard to distinguish be-
cause the requirements and test all share
the single SYRS prefi x. This introduces
unnecessary communication problems.

In a second example (see Figure 6),
one requirement specifi cation consisted
of paragraphs containing multiple re-
quirements. IDs were directly embedded
in the text and weren’t unique across the
project. A precise, tool-supported evalu-
ation of the existing traces was almost
impossible. Changing existing require-
ments or adding new ones could lead to
inconsistent or illogically ordered labels
and section numbers and would require
signifi cant effort that would likely in-
troduce labeling mistakes.

A further example illustrates why
section headings should not be used
in lieu of IDs for tracing purposes. A
requirements specifi cation contained
a table with alarm and alert defi ni-
tions. These alarms were validated by
separate test cases, giving rise to the
need to trace an alarm defi nition to a
test case.

Developers created traces by refer-
ring to row numbers provided in the
fi rst column of the table. The trace
R25.6.2-19 ––> RF-0282 defi ned in
Table 1 refers to row 19 in the table and
related it to test RF-0282. Although
this scheme is logical, it’s also highly
vulnerable to changes in the require-
ments specifi cation. Any changes made
to sections, tables, or table rows could
break existing traces.

Remedy 4. Artifact IDs are essential
for traceability. Carefully defi ne them
up front and then consistently use
them across all trace links. ID prefi xes
should allow for an intuitive associa-
tion with artifact types in a project and
should be clearly distinguishable.

Problem 5: Redundant trace informa-

tion. Duplicated trace information
occurs in two different forms. In the
first case, identical links are included
multiple times in the trace matrix,
which will lead to future mainte-
nance problems. In one case we ob-
served, 247 of 2,789 traces were re-
dundant. These 247 traces duplicated
167 unique traces, in some cases, up
to six times.

In the second case, a complex form
of redundancy occurs when simi-
lar traces are established at different
levels of granularity. For example, a
section in an SRS is traced to a part
of the systems’ design, but also all
requirements in that section are in-
dividually traced to the same part.

This kind of redundancy is diffi cult to
fi nd, and such links are almost impos-
sible to maintain. We observed mul-
tilevel redundant traces in almost all
of the documents that we reviewed.
The TIM depicted in Figure 5 shows
code represented at both the class and
method levels, which introduces the
possibility of multilevel redundancy
problems.

Remedy 5.1. Prevent duplicated links
by storing them in a database-like
repository. Either defi ne constraints
that prevent redundant links from be-
ing created or regularly execute trace
queries to fi nd duplicated links and re-
move them.

Remedy 5.2. Whenever possible, avoid
modeling multiple levels of a single ar-
tifact type in the TIM—for instance,
model code at either the class or the
method level, but not both. When this
is unavoidable because different arti-
fact types must be traced to different
levels, avoid tracing a single artifact to

...
During the […], the timeout SHALL (5.5a) be set to 60 seconds. Upon completion of the […],
the default SHALL (5.5b) be set to 30 seconds.
After the specifi ed interval […], the […] SHALL (5.5c) turn off and […].
…

FIGURE 6. Power-off timeout from our observed examples. The sequential and embedded

nature of the IDs makes it diffi cult to add new requirements without reassigning IDs, resulting

in possible synchronization issues among other design artifacts. For trace purposes, IDs must

be assigned permanently.

TA
B

L
E

 1 Example from a requirements specifi cation.*

Condition Type Requirements

...

19 [...] Canceled Always on Pump MP-6 MP-0

...

* The table appears in Section 25.6.2 of the specifi cation and provides alarm and alert defi nitions. Traces refer to the section number followed by the row number in the table. Defi nitions in rows should carry a unique identifi er.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

64 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

multiple levels of the same target arti-
fact; that is, trace an individual require-
ment to either the class level or to the
method level, but not to both.

Problem 6: Important links missing. Most
certifying or approving organizations
expect all hazards to be fully covered
through trace links from requirements
to code and test cases. Missing links in-
dicate insuffi cient evidence to evaluate
whether a hazard has been fully miti-
gated. By comparing a project’s traces
and artifacts, it’s possible to identify
critical artifacts with no associated
links. We found examples of untraced
mitigating requirements (widows) and
untraced test cases (orphans) in all of
the cases we observed. We also ob-
served a case in which an important
test was listed as passed, even though it
neither appeared with the other tests in
the test specifi cation nor in any of the
traceability matrices.

Remedy 6. Use trace queries to perform
completeness and coverage analysis of
project artifacts to ensure that all criti-
cal artifacts are traced.

Presentation Problems
We identifi ed three problems in the
way traceability data was packaged
and presented to FDA reviewers. These

problems were pervasive
across nearly all of the doc-
uments we studied and se-
verely reduced the potential
benefi ts that the traceability
information could bring to
the assessment process.

Problem 7: TIMs not included

in documentation. It isn’t
suffi cient to have a trace-
ability strategy for a proj-
ect; it’s also important to
communicate that strat-
egy to all stakeholders, in-
cluding external assessors.

Without the TIM, an assessor or re-
viewer must invest considerable time to
understand the way artifacts are struc-
tured and labeled in the project before
he or she can start the core assessment
task. A TIM provided as part of a proj-
ect’s documentation enables external
reviewers to quickly gain an under-
standing of the development process.
(Only one of the documents we ob-
served contained a TIM.)

Remedy 7. Include a TIM in the submit-
ted project documentation so that re-
viewers can understand artifact naming
conventions as well as the traceability
paths used throughout the submission.

Problem 8: Traceability links might be

presented in megatables. It’s relatively
easy to generate a megatable of trace
links from a database or a requirements
management tool, but such tables of-
ten fail to include suffi cient informa-
tion about the artifacts, and therefore
fail to provide adequate support for
claims of product safety. Furthermore,
this makes reading and comprehending
traces in printed reports almost impos-
sible for the reviewers.

We found several examples of trace
matrices spanning multiple columns
and tens of pages that included only
source and target IDs. Although these

traces might be technically correct,
their usefulness to someone reading the
document is limited. If, for example, a
reviewer wants to trace a requirement
to related test cases, he or she must fi nd
the requirement ID within the (poten-
tially unsorted) megatables, retrieve
and remember the related test IDs, and
then manually browse the table to fi nd
the relevant test cases.

One case presented a barely read-
able screenshot from IBM’s Rational
DOORS extending over more than 10
pages, and it didn’t provide suffi cient
information to enable interpretation of
the traces (see Figure 7).

Remedy 8. Maintain traces in a table
format, but generate useful views, such
as trace slices, that support safety in-
spections. Utilize tracing tools, such as
Rational DOORS, that have the ability
to generate and print such views.

Problem 9: Traceability as an after-

thought. Constructing trace links to
merely give the appearance of meet-
ing a regulatory expectation is coun-
terproductive and, if apparent to the
reviewer, will diminish confi dence in
the quality of the development process
and the subsequent safety of the deliv-
ered system. Furthermore, performing
traceability in an ad hoc, after-the-fact
fashion means that organizations in-
cur all the costs of creating trace links
without experiencing any of its ben-
efi ts. In several of the submissions we
observed, the incompleteness of the
trace links and the haphazard effort to
document them gave the appearance
that traceability had been conducted
at the end of the project solely for ap-
proval purposes.

Remedy 9. Establish tracing processes
and instrument the project environ-
ment so that traces are created incre-
mentally and accurately maintained
throughout a project’s lifetime.

APSYRS DOORS
|– 4.1.1.0-1 (APSYRS2825) [Name of the requirement]
…
|– 4.15.2.0-4 (APSYRS3968) [Name of the requirement]

|– AP-SYTPS0023-12000
|– AP-SYTPS0023-12035
|– AP-SYTPS0023-12400

|– 4.15.3.0-1 (APSYRS4153) [Name of the requirement]
…

FIGURE 7. A small excerpt of unprocessed trace

information produced by a requirements management

tool. This kind of megatable data doesn’t provide suffi cient

information to allow reviewers to directly evaluate product

safety.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P64E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 65

T hese practices and remedies
highlight the importance of
using traceability strategically

in safety-critical projects to system-
atically build a case for product safety
and support the assessment process.
We’re aware that our advice is contrary
to some previous papers that advocate
a more brute-force approach in which
all requirements are thoroughly traced
across the life cycle.3,4 Although we cer-
tainly don’t discourage complete trace-
ability coverage, we take a pragmatic
approach that focuses efforts on creat-
ing the trace links needed to support
safety analysis. Emerging technologies
that use automated methods to dynam-
ically generate just-in-time trace links
can be relied on for other less critical
tracing needs.

Figure 8 provides a checklist that
summarizes some of the main fi ndings
of our study and can be used to help
a manufacturer to implement good
tracing that serves to support product
safety claims.

Additional information, tools, and
support for performing tracing in
safety-critical projects can be found
at the Center of Excellence for Soft-
ware and Systems Traceability at www.
coest.org.

Acknowledgments
The work in this article was partially funded
by the US National Science Foundation grant

All traceable artifacts and permitted links are clearly defi ned in a TIM (Problem 1; Remedies 1.1 and 1.2).
The granularity of each link is clearly defi ned. Redundant paths are prevented where possible (Remedies 2, 3, and 5.2).
All traceable artifacts have been assigned meaningful, unique IDs (Remedy 4).
Traceability is supported by tools (Problem 2; Remedy 5.1).
Traces are created throughout the project, rather than after the fact (Problem 3; Remedy 9).
Traces comply with the TIM (Problem 4; Remedy 5.1).
Traces are used to perform completeness and mitigation analysis on critical artifacts before submission (Remedies 6 and 9).
Project documentation and submission contains the TIM, all traced artifacts and all traces (Remedies 7 and 9).
Traces are reported and submitted as useable views and slices (Problem 5; Remedy 8).
A project dashboard shows the project state by aggregating trace metrics (Problem 6).

FIGURE 8. A quick traceability checklist.

PATRICK MÄDER is a researcher at the Ilmenau Technical University.
His research interests include software engineering with a focus on re-
quirements traceability, requirements engineering, and object-oriented
analysis and design. Mäder received a PhD in computer science from
the Ilmenau Technical University. Contact him at patrick.maeder@
tu-ilmenau.de.

PAUL L. JONES is a senior systems/software engineer in the Offi ce
of Science and Engineering Laboratories at the US Food and Drug
Administration. His research interests include systems and software
engineering, safety, and risk management. Jones received an MS in
computer engineering from Loyola University. Contact him at paul.
jones@fda.hhs.gov.

YI ZHANG is a visiting scientist in the Offi ce of Science and Engineer-
ing Laboratories at the US Food and Drug Administration. His research
interests include formal methods (especially model-based engineering
and software static analysis), software testing, software engineering,
and cybersecurity, with an emphasis on introducing research advances
in these areas to promote the safety and effectiveness of medical
devices. Zhang received a PhD in computer science from North Carolina
State University. Contact him at yi.zhang2@fda.hhs.gov.

JANE CLELAND-HUANG is an associate professor in the School
of Computing at DePaul University. She also serves as the North
American Director of the International Center of Excellence for Software
Traceability. Her research interests include the application of machine
learning and information retrieval methods to tackle large-scale and
safety-critical software engineering problems, especially in the area
of software traceability. Cleland-Huang received a PhD in computer
science from the University of Illinois at Chicago. She serves on the

editorial board for the Requirements Engineering Journal and IEEE Software and as associate
editor for IEEE Transactions on Software Engineering. Contact her at jhuang@cs.depaul.edu.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

__

http://www.qmags.com/clickthrough.asp?url=www.coest.org&id=18138&adid=P65E1
mailto:patrick.maeder@tu-ilmenau.de
mailto:paul.jones@fda.hhs.gov
mailto:yi.zhang2@fda.hhs.gov
mailto:jhuang@cs.depaul.edu
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

NEW TITLE FROM WILEY &

15% Off
for CS Members Global Software and IT

by Christof Ebert

Drawing on the author’s vast
experience, this book shares best
practices and survival strategies
from projects of various types
and sizes that involve different
continents and diverse cultures.

Provides a more balanced
framework for planning global
development, covering topics such
as mitigating the risk of offshoring,
practical outsourcing guidelines,
collaboration, and communication.

North America
1-877-762-2971

Rest of the World
+ 44 (0) 1243 843291

Online
computer.org/store

wiley.com/ieeecs

TO
 O

R
D

ER

66 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

#CCF-0810924, the Austrian Science Fund
(FWF): M1268-N23, and the German Re-
search Foundation (DFG): Ph49/8-1.

The FDA does not endorse any tools or
techniques mentioned in this article.

References
1. P. Bishop and R. Bloomfield, “A Methodol-

ogy for Safety Case Development,” Proc. 6th
Safety-Critical Systems Symp., F. Redmill
and T. Anderson, eds., Springer, 1998, pp.
194–203.

2. J. Cleland-Huang et al., “Trace Queries
for Safety Requirements in High Assurance
Systems,” Proc. 18th Int’l Conf. Require-
ments Eng.: Foundation for Software Quality
(REFSQ 12), Springer, 2012, pp. 179–193.

3. O. Gotel and C. Finkelstein, “An Analysis of
the Requirements Traceability Problem,” Proc.
1st Int’l Conf. Requirements Eng., IEEE CS,
1994, pp. 94–101.

4. B. Ramesh and M. Jarke, “Toward Reference
Models of Requirements Traceability,” IEEE
Trans. Software Engineering, vol. 27, no. 1,
2001, pp. 58–93.

5. J. Cleland-Huang, O. Gotel, and A. Zisman,
“Software and Systems Traceability,” Spring-
er, 2011; doi:10.1007/978-1-4471-2239-5.

6. P. Mäder, O. Gotel, and I. Philippow, “Moti-
vation Matters in the Traceability Trenches,”
Proc. 17th Int’l Conf. Requirements Eng. (RE
09), IEEE CS, 2009, pp. 143–148.

7. P. Mäder and J. Cleland-Huang, “A Visual
Language for Modeling and Executing Trace-
ability Queries,” J. Software and Systems
Modeling, Apr. 2012; doi:10.1007/s10270-
012-0237-0.

8. ANSI/AAMI/IEC 62304:2006, Medical De-
vice Software—Software Life Cycle Processes,
Assoc. Advancement Medical Instrumenta-
tion, 2006.

9. A. Frisoli et al., “Arm Rehabilitation with a
Robotic Exoskeleleton in Virtual Reality,”

Proc. IEEE 10th Int’l Conf. Rehabilita-
tion Robotics (ICORR 07), IEEE, 2007, pp.
631–642.

10. J. Cleland-Huang et al., “Best Practices for
Automated Traceability,” Computer, vol. 40,
no. 6, 2007, pp. 27–35.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.wiley.com/ieeecs&id=18138&adid=P66A1
http://www.qmags.com/clickthrough.asp?url=www.computer.org/store&id=18138&adid=P66A2
http://www.qmags.com/clickthrough.asp?url=http://ComputingNow.computer.org&id=18138&adid=P66E1
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P66E2
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E MAY/JUNE 2013 | IEEE SOFTWARE 67

FOCUS: SECTION TITLE

FLIGHT SOFTWARE CAN be de-
veloped with strict guidance on de-
velopment and testing relevant to its
safety-critical nature and still fail. The
software isn’t completely blameless
for these mishaps. A root cause might
lie in a wrongly entered constant for a
filter coefficient, as in the case of the
Milstar satellite in 1999.1 In that case,
−1.992476 was entered as −0.1992476,
resulting in the loss of approximately
US$1 billion. The implementation of
imperial units instead of metric units
caused the 1998 loss of the Mars

Climate Orbiter. The 1996 Ariane 5
failure is an oft-quoted example of an
overflow fault causing a mission failure.
Thomas Huckle reports additional er-
rors at http://wwwzenger.informatik.
tu-muenchen.de/persons/huckle/bugse.
html. Many of these mistakes have sim-
ilar roots and appear to be universal.

My association with safety-critical
flight control software faults started in
1988. In those days, the Honeywell Bull
mainframe computer was popular, Mat-
lab was just in, and the coding language
was Fortran. We discovered that legacy

simulation packages with differential
equations, control laws, and guidance
models had errors. We were experiment-
ing with Matlab, giving all sorts of in-
put waveforms, and finding out that the
Fortran code didn’t match the Matlab
code. This was the beginning of model-
based testing for us. The fact that se-
nior, experienced scientists had been
using the software and making mis-
takes for ages without realizing it was
to lead some of us into verification-and-
validation careers.

You might say I was fortunate that I
didn’t witness any major failures in my
career in flight controls, but the near
misses were memorable. (Looking at
the telemetry screen with a red light set
in all four channels of the quadruplex
system and hearing a pilot’s voice on
the headphones say “I am experiencing
a slat failure warning” is very memo-
rable.) Here, I share what I learned
from such mistakes. These lessons
come from my experiences with safety-
critical software in various organiza-
tions that I’ve worked with: Defense
R&D Lab (1988–1995), Aeronautical
Development Agency (1995–2007),
and, currently, Moog India. I include
the year of these instances because the
same mistakes tend to recur.

Incorrect Filter
Implementation (1989)
Digital filters are the most common
control system element blocks in flight
software. When implemented as notch
filters, they remove specific frequency
components from signals. This removes
structural vibrations and prevents such
vibrations from entering the control
system. When implemented as phase
advance filters, they help stabilize the
closed-loop system.

One scenario involved a violent os-
cillation, called limit cycling, in the
aerospace vehicle, which broke apart.
The Fortran six-degree-of-freedom
mathematical model of the vehicle

Flight Control
Software: Mistakes
Made and Lessons
Learned
Yogananda Jeppu, Moog India Technology Centre

// Aerospace or flight control systems software

development follows a rigorous process, yet software

errors still occur. A review of mistakes found during

flight control test activities spanning 23 years reveals

that the same mistakes recur repeatedly. //

FOCUS: SAFETY-CRITICAL SOFTWARE

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=http://wwwzenger.informatik.tu-muenchen.de/persons/huckle/bugse.html&id=18138&adid=P67E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

68 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

showed no oscillation. However, a sim-
ulation on the Iron Bird hardware-in-
the-loop simulator, using the actual
onboard computer, showed these oscil-
lations. We recorded all the signals to
and from the controller and compared
the Fortran and onboard C code out-
put. We found that a fi lter implementa-
tion error caused the limit cycling.

We attributed the error to reuse of
the same variable for two block out-
puts. The fi lter was followed by a lim-
iter that restricted the output (see Fig-
ure 1). The fi lter output, represented as
the variable O in the code, served as a
previous value or state in the next com-
putation cycle. O also represented the
limiter’s output. In the next iteration,
the fi lter used the limited value of the
state O. This caused the limit cycling
and system failure.

The Iron Bird simulation didn’t trap
this error because the testing employed
static inputs to verify scaling and con-
nectivity. The closed-loop simula-
tion didn’t simulate the actual violent
fl ight conditions, so the limits weren’t
exercised.

The most interesting part of the
whole exercise was that a second, very
similar failure occurred after we cor-
rected the fi lter. We pondered over the

wrong diagnosis for some time, until
we discovered that a fi lter in the other
control loop was implemented incor-
rectly. “You didn’t tell us there was a
problem with this fi lter, too,” said the
coders.

I learned four lessons from this ex-
perience. First, static tests just check for
scaling and connectivity. To test fi lters,
we also needed dynamic tests with spe-
cifi c signals, such as sinusoidal sweeps,
steps, and doublets with negative and
positive excursions. We should have se-
lected a frequency and amplitude that
would make any error observable at
the output. Too high a frequency signal
or too low an amplitude can’t excite a
low-pass fi lter. The fi lter will remove
these components, and the output will
be near zero.

Second, any error in the fi lter should
be propagated to the output, which will
ensure that the fi lter computation’s ef-
fect is observable at the output. What
we learned from this incident resulted
in the delta model concept used for gen-
erating control-law tests for the Indian
Light Combat Aircraft (LCA) program
nine years later. Designers coded the
LCA control law in Fortran for devel-
opment and test activities. The delta
model was Fortran code with the fi lter

algorithm or coeffi cient perturbed.
We changed the third decimal place
value by adding 0.001 to the fi lter
coeffi cient. We considered a test
case suitable if the actual model
output, when compared with the
delta model, brought out the seeded
error. We seeded only one error
into the delta model at a time.2

Third, we extended the delta
model to perturb the IEEE 754
fl oating-point representation of
the fi lter coeffi cient at the 18-bit
position in the mantissa. Figure 2
shows the error at the controller
output for various bit perturba-
tions in the fi lter coeffi cient in the
delta model. This, we felt, was a

better representation of error instead
of the ad hoc 0.001 value we used ear-
lier. (We learned to be more consistent
mathematically.)

Finally, the testing errors, which
failed to uncover the limit error, were
similar to the case Thomas Huckle
mentions on his website in which the
break statement wasn’t tested. The
RTCA DO-178C standard (Software
Considerations in Airborne Systems
and Equipment Certifi cation) insists
on complete code coverage, along with
other coverage metrics based on the
criticality level.3 But the indicated code
coverage doesn’t always mean that the
object code executable on the target
board behaves in the same manner.
We’ll see this in the next example.

The Case of the Missing
Variable (1998)
In the LCA program, the fl ight con-
trol laws and air-data algorithm are
coded in Ada and compiled for an
i960 processor using a qualifi ed com-
piler in optimization mode. In 1998,
one build had passed the fi nal tests on
Iron Bird. The fl ight control laws were
undergoing non-real-time (NRT) test-
ing2 on a single-board computer. The
air-data system code was new and was

FIGURE 1. A fi lter implementation error. (a) Here, the fi lter code segment computes the fi lter output

O using the variables numc1, numc2, and denc1, which are the digital coeffi cients. The variable O is also

used as a state. (b) However, the limit should have used a different variable, Olimit, shown here.

Filter Limit

What was required

Filter

What was implemented

O = input * numc1 + Prev_inp * numc2 – O * denc1;
Prev_inp = input;

If O > upperlimit
O = upperlimit;
Elseif O < lowerlimit
O = lowerlimit;
End
(a)

If O > upperlimit
Olimit = upperlimit;
Elseif O < lowerlimit
Olimit = lowerlimit;
Else
Olimit = O;
End
(b)

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P68E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 69

still being worked on to be tested on a
single-board computer. Another group
was looking at object code verifi cation.
They found a problem in the object
code but couldn’t fi gure out the trace
to the code. This pressured us to speed
up NRT testing for the air-data system.
We could isolate the function in which
the model and code differed. The error,
however, wasn’t obvious.

We found that a function was sup-
posed to have two variables—the Mach
number and angle of attack—passed in
as parameters. In this case, the func-
tion was called using the Mach number
passed in twice for both the variables:
O = compute_table(Mach_Number, Mach_Number).

The optimizing compiler thought
the other variable wasn’t necessary and
removed the code segments associated
with the angle of attack. The object
code analysis team noticed this, but
the code still passed the Iron Bird tests.
A successful Iron Bird test means that

the digital fl ight control computer is
cleared for fl ight tests.

Here, I learned three things. First,
the compiled code, especially under
optimization, differed from the writ-
ten code. DO-178B requires showing
correctness-testing results on the actual
hardware with the compiled execut-
able, but showing this at the system
level is diffi cult. Remember, the soft-
ware had already passed the Iron Bird
tests.

Second, a board-level test in NRT
mode can reveal many errors in the
safety-critical control-law algorithm.
Such testing won’t reveal timing is-
sues. However, a comparison with a
model at every frame with a very low
pass/fail threshold value, perhaps
around 0.0002, is a powerful tool for
control-law tests. This threshold is
very low compared to the 1–2 percent
of the full-scale range at the system-
level tests. Such tests (NRT methods)

are mandatory for the LCA program.
In 2011, using this NRT test method-
ology, we cleared four US commercial
aircraft fl ight control laws, which were
DO-178B level-A projects (the highest
design assurance level).

Finally, you can’t reduce the rigor of
testing and reviews. There’s a tendency
to say, “We’ve tested enough; do we
need object code reviews?” In this case,
the object code reviews captured the
error. The code reviews and unit tests
had passed the code. We learned that
we should use all available resources to
certify safety-critical code.

A Fader Logic Anomaly
(1999)
Often, fl ight control laws require bring-
ing in one signal and fading out an-
other. Fader logic circuits bring in one
signal gradually while freezing and
fading out the other signal that could
have failed. The fading happens in a

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.10

0.12

Bit

Er
ro

r

S E M

1 2 3 4 5 6 7 8 9 10 11 18 19 20 21 22 23 31

FIGURE 2. IEEE 754 implementation of a fi lter coeffi cient and the error produced at the output by toggling one bit at the different locations in

the mantissa. The lower part of the fi gure represents the IEEE 754 format, showing the sign bit, exponent, and mantissa.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

70 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

fi nite time indicated by the number of
frames. For example, signal A should
fade to signal B in 100 frames if the
switching event is true; vice versa for
false. To do this, we compute the differ-
ence between the current output and
the signal to be faded. We then divide
this difference into equal parts over the
fade time. Every frame, the output is
added to or subtracted from this small
delta until it reaches signal B after 100
frames. This logic works well when A
and B are constant.

The story is entirely different when
A and B change with time. During
LCA control-law verifi cation and vali-
dation, we injected random sinusoi-
dal waveforms to one such fader block
and randomly toggled the event true or
false. This resulted in unexpected be-
havior: input signals A and B were of
unit amplitude, but the fader output’s
value was higher (see Figure 3). The de-
sign team saw this behavior but said it

wasn’t a safety issue. (“Do you think it
will happen in fl ight?” the team asked.)
Their conclusion was that testing was
too rigorous for the whole exercise.

We eventually found that the fader
switch caused problems in the gain
scheduling. The LCA program uses
scheduled fi lters, with the fi lter coeffi -
cient changing on the basis of altitude
and speed. The fader logic changed the
fi lter coeffi cient’s sign, making the fi l-
ter unstable during the preliminary
designer tests. A quick workaround
was to limit the fi lter coeffi cient value
so that the sign didn’t change. This
worked well for the time being for this
specifi c problem but didn’t resolve the
issue, as we learned later.

From this experience, I learned three
things. First, safety-critical fl ight con-
trol systems require rigorous testing. A
single-board computer provides a good
platform for random tests. Random
testing brings out many hidden issues

that system designers might not other-
wise consider.

Second, you should be more per-
sistent when demanding a change. In
this case, owing to project pressures,
changes so late in the program were
ruled out. However, I still often see
these situations in aerospace projects.

Finally, quick fi xes aren’t a solution.

Revisiting the Filter Issue
(2001)
The LCA fl ight control law needed a
limiter. LCA fl ight control-law code
is automatically generated in Ada us-
ing a qualifi ed Beacon tool. But in this
case, management decided to manually
code this limiter because updating the
Beacon diagrams would mean regen-
erating the code. Management thought
this would have resulted in too much
effort for testing and verifi cation. The
quick fi x here was to just change that
Ada code function by simply including
IF ... THEN ... ELSE to limit the fi lter output.
The code fi x took place, but the code re-
used the same variable to optimize vari-
able use. NRT testing found the error
immediately.

Here, I learned two things. First, peo-
ple keep repeating mistakes. In this case,
the coding team was unaware of the
similar mistake made earlier in a differ-
ent laboratory. Both situations involved
the same thought process: “I want to
save variable use”—a habit drilled into
good programmers. But in this case,
the control system wasn’t just a piece of
code; it was a dynamic behavior.

Second, don’t look at control system
element blocks as just code variables,
states, data types, and fl owcharts.
These blocks are dynamic and change
system behavior over time. We must
see them as dynamic entities, simulate
them, and understand them.

Fader Logic, Part 2 (2003)
I was monitoring the telemetry station
when the pilot announced slat failure.

Time (sec.)

M
ag

ni
tu

de

20 40 60 80 100 120 140 160 180
–0.5

0

0.5

1.0

Event
Output
A
B

0

FIGURE 3. The transient-free switch behavior that caused slat failure. The two input signals,

A and B, are of unit amplitude varying between 0 and 1, but the resulting output is negative.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P70E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 71

While attempting to land, he had simul-
taneously deployed the landing gear, se-
lected the standby gains, and operated
the slats. The combination resulted in a
negative slat command. The slat com-
mand should fall between 0.0 and 1.0;
the negative value tripped the monitor,
declaring an error. Postflight data anal-
ysis showed that the fader logic in the
slat command had caused the negative
value. The pilot’s simultaneous switch-
ing actions caused the input to the fader
to be dynamic instead of constant. This
resulted in another quick fix: don’t op-
erate all these switches at the same
time. (This reminds me of the quick fix
suggested for Therac-25 race condition:
do things slowly.)

After a few months, the aircraft,
during another test sortie, bounced at
touchdown. The nose pitched up, and
the pilot had to force the stick down to
make the nose wheel touch the ground.
He said this had never happened to
him before. Postflight data analysis
showed that the erratic behavior was
due to the fader logic in the command
path. At this point, the phenomenon
had my name attached to it; the erratic
behavior was called the “Yoga syn-
drome.” “You found it, you fix it,” said
the manager.

I was wearing my designer hat this
time instead of my usual verification-
and-validation hat. The solution was
to use only the constants 1.0 and 0.0
for the fader. The idea was to multiply
the faded output by the parameter to
be faded. This solution behaved the
same way for the constants’ inputs but
proved safer, without any overshoots,
for dynamic inputs. This decision was
deliberate—we couldn’t change the
Beacon tool, and we were wary of
any manual changes. It meant a lot
of work. We had to use a new set of
blocks for all the locations where this
fader was used, rerun the simulations,
and release a new set of control-law
diagrams.

Even after we did all this, the tests
failed in NRT mode. The coding team
hadn’t changed anything! “It works the
same way, doesn’t it?” they said. “Why
did we go through all this trouble,
then?,” we wondered.

Here, I learned three things. First,
what happens on the ground happens
in the air. An error can remain dormant
for a long time, like a volcano. The re-
sulting eruptions can be catastrophic.
We could have easily lost an aircraft.

Second, when looking at require-
ments, the coding team shouldn’t as-
sume anything. When in doubt, ask.
The released documents normally won’t
explain design decisions, but there will
be a reason for a change.

Finally, be bold when you encounter
an error on the ground. Errors found
in ground tests have frequently mani-
fested themselves in system failures.
Cite this article, if it helps.

Fader Revisited (2009)
I was one week into a new job with
a new team, and I found the familiar
fader logic problem to help me settle
into my new job. Finding a familiar
logic after 10 years, this time in a US
commercial-aircraft program, was,
in an odd way, heartening. This logic

caused similar problems here but was
rectified only when it caused problems
in flight tests. We designed a new fader
logic, but the coding team failed to im-
plement it. (Does this sound familiar?)

Here, I learned that history repeats
itself. The new function was coded but
not called in the main code. The cod-
ing team overlooked this, and the code

passed the code review. NRT tests
found this error.

Delay On/Off (2010)
I’ve come a long way in my career in
testing flight controls, and I’m still
surprised at implementation errors.
One commercial-aircraft program has
delay on, delay off, and delay on/off blocks.
A delay on block looks for persistence in
a failed signal. It generates a true out-
put if the input holds true for a specified
duration—say, two seconds. Its out-
put immediately becomes false if its in-
put becomes false. A delay off block looks
at the false condition similarly. A delay
on/off block looks at both true and false
conditions. If the input is true for the de-
lay on duration, the output becomes true.
If the input becomes and remains false
for the delay off duration, the output be-
comes false.

In this case, the coding team had im-
plemented the delay on/off block as a combi-
nation of a delay on block feeding its output
to a delay off block. They tested this and
found it worked well. Such a function
reuse was considered a good example of
optimization and productivity improve-
ment. However, stress testing at the NRT
level revealed the difference in the model
and code implementations. A delay on/off

block isn’t a combination of delay on and
delay off blocks (www.mathworks.com/
matlabcentral/fileexchange/33129-testing
-of-safety-critical-control-systems). This
was surprising to the systems team.

Here, I learned three things. First,
test the small library functions or ele-
ments, as the new Model-Based Devel-
opment and Verification Supplement

What happens on the ground happens
in the air. An error can remain dormant

for a long time, like a volcano.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.mathworks.com/matlabcentral/fileexchange/33129-testing-of-safety-critical-control-systems&id=18138&adid=P71E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

72 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

(DO-331) to DO-178C says.3 You must
test element block functionality with
random waveforms in various scenarios
to really understand the functionality
and behavior.

Second, in safety-critical applica-
tions, take terms such as “code opti-
mization” and “reuse” with a grain of
salt. Weigh the reuse with the required
functionality. Assumptions are danger-
ous. Testing rigor can’t bring out all the
defects; take care of this during devel-
opment. “Does it do what I want?” is a
question system engineers must answer
very early in the program.

Finally, when coding, also ask, “Am
I coding for testability? Are the block
outputs available to me at a higher-level
test to compare and debug?”

Where We Are Now
In 2011, we certifi ed fi ve major safety-
critical programs per DO-178B Level
A, fl awlessly passing through audits
during the fourth stage of involvement

(fi nal review). Did we learn anything
new? I believe that testing safety-
critical control systems has something
new to offer on a regular basis. Some-
times you think you’ve seen it all,
when along come failures that make
you reassess what you’ve been doing.

We’re generating an autoreview tool
that converts the knowledge gained
from all these mistakes into functional
metrics for the control system elements.
Each control system element block has
a set of functional metrics that the in-
put waveform must satisfy during test-
ing. An example is the well-designed
test case that brought out the error in
the delay on/off block. The test case must
satisfy four criteria:

The input waveform holds true for
longer than the delay on time, a good
rule of thumb being at least 20 per-
cent longer.
The input waveform holds false for
longer than the delay off time.

The input waveform holds true for
less than the delay on time, an approx-
imate rule being 50 percent less.
The input waveform holds false for
less than the delay off time.

We verifi ed the metrics using mutation-
based tests.4 Test cases must reveal ran-
dom errors injected into the model and
code. This has worked well so far, and
we’re qualifying the metrics according to
DO-178B tool qualifi cation criteria.

W e have Simulink with its
chain of tools that help
us in model-based testing

and certifi cation. We have Scade (Safety
Critical Application Development En-
vironment) block sets that use formal
methods to prove an implementation’s
correctness. We have numerous test
tools that use formal methods, random
tests, assertions, and coverage metrics
to generate test cases. But all these tools
come with a price tag. They can’t en-
tirely handle real-world variability and
the numerous interactions aircraft have
in the real world. We’re still far from
one-click “certifi cation done.”

References
 1. N.G. Leveson, Engineering a Safer World:

Systems Thinking Applied to Safety, MIT
Press, 2012.

 2. Y.V. Jeppu, K. Karunakar, and P.S. Subra-
manyam, Flight Clearance of Safety Critical
Software Using Non Real Time Testing, tech.
report AIAA-2002-5821, Am. Inst. Aeronau-
tics and Astronautics, 2002.

 3. Std. DO-178B/C, Software Considerations in
Airborne Systems and Equipment Certifi ca-
tion, RTCA, 2011.

 4. C. CU et al., “A New Input-Output
Based Model Coverage Paradigm for
Control Blocks,” Proc. 2011 IEEE Aero-
space Conf., IEEE, 2011; doi:10.1109/
AERO.2011.5747530.

ABOUT THE AUTHOR

YOGANANDA JEPPU is a senior systems specialist at the Moog India Tech-
nology Center and a postgraduate student in missile guidance and control at
Pune University. His research interests include safety-critical software, control
systems, model-based development, and verifi cation and validation. Jeppu
received an ME in mechanical engineering from the University of Poona, India.
Contact him at yvjeppu@gmail.com.

www.computer.org/itpro

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=http://ComputingNow.computer.org&id=18138&adid=P72E2
http://www.qmags.com/clickthrough.asp?url=www.computer.org/itpro&id=18138&adid=P72A1
mailto:yvjeppu@gmail.com
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P72E2
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E MAY/JUNE 2013 | IEEE SOFTWARE 73

FOCUS: SAFETY-CRITICAL SOFTWARE

THE TERRORIST ATTACKS on 11
September 2001 in the US, 11 March
2004 in Madrid, and 7 July 2005 in
London shocked people around the
world, waking everyone up to the re-
alization of our vulnerability in the face
of such events. Judicial proceedings to
investigate and prosecute the perpetra-
tors of the attacks in Europe revealed
the alarming fact that a large amount
of the explosives used in the bombings
had been diverted from commercial use
or stolen.1,2

The civilian sector uses explosives
for mining, extraction, demolition,
drilling, and farming. Explosives travel
daily via road, rail, sea, and air net-
works. Their forms include dynamite,
detonator capsules, ammunition, sport-
ing powder, and fireworks. European
rules on using these materials include
security measures required for their
design, manufacture, and handling
as well as basic guidelines on the har-
monization and control of explosives
intended for civilian usage. However,

terrorist attacks demonstrate that these
rules are clearly insufficient in practice.

To attempt to control explosives and
introduce precautionary measures, the
Interior Ministers of the G6 countries
(Spain, France, UK, Italy, Germany,
and later, Poland) convened in Shef-
field, England, on 5 and 6 July 2004, to
discuss, among other issues, the secu-
rity of European explosives.3

In a related effort, the countries pro-
vided experts to form a multidiscipli-
nary working group under Spanish co-
ordination that included representatives
from the European Commission and
industry advisors. We participated as
computer experts for the group starting
in 2005.

The first challenge was discerning
the role new technologies could play in
tracking explosives. Our engineering
studies in 2006 resulted in the proposal
of an economically viable computer-
based solution to improve explosive
control: SCEPYLT (explosives control
to prevent and fight against terror-
ism) is a distributed computer system
that enhances the control of explosives
through flexible, standard, and secure
information exchange among the G6
countries.

SCEPYLT directly connects the con-
cepts of dependability and security over
the Web and distributed services envi-
ronments under the prism of the CIA
triangle: confidentiality, integrity, and
availability. Here, we describe SCEP-
YLT as an engineering framework of
cooperative distributed systems of mul-
tiple databases synchronized via a ser-
vice-oriented architecture.4–6

Objective and Process
The goal of designing the project frame-
work focused on analyzing the security
of explosives intended for civilian usage
and providing the technology needed
to exercise effective control over their
transport and commercialization. The
requirements included the electronic

SCEPYLT:
An Information
System for
Fighting Terrorism
Jesús Cano and Roberto Hernández, Universidad Nacional de Educación a
Distancia

// A safety-critical software system called SCEPYLT

provides an information solution for a field traditionally

not computerized: explosives and their associated risks

in handling, storage, transport, and use. SCEPYLT is a

model for cooperative distributed systems engineering

projects, synchronized over multiple databases. //

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

74 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

exchange of all information about a ship-
ment of explosives by road, sea, or air:

authorizations required,
data on the vehicles involved,
itineraries,
entry and exit points into and out
of a specific country,
haulage contractors and drivers,
and
inventories of the batches of
explosives.

As added value to the security objec-
tive, the working group specified a
warning messaging module so the sys-
tem could produce a rapid alert should
an explosives-related incident occur.
Examples of such potential incidents
include the following:

a vehicle breakdown that could
delay delivery,
an act of sabotage,
a robbery,
the loss of documentation,
an accidental explosion, and
known threats.

This requires the explosives industry to
code each component or unit of explo-
sive material to allow for traceability,
with the system itself providing a help
portal as an optional module so that

sector companies can directly report
information to the appropriate authori-
ties in each country.

State public organizations typi-
cally have large computer systems
linked to large networks. The civil ser-
vants charged with interconnecting

these systems and the internal net-
works themselves can sometimes hin-
der the deployment of applications,
system error detection, and changes in
configuration.7

Lessons Learned
Some lessons we learned from the SCE-
PYLT project include basic principles
for developing international distributed
system applications.

Lesson 1. Sovereign technology. The
challenges of networking a system
among various countries also apply
to large corporations and companies.
Technology is universal, but each entity
makes its own choices. Consequently, a
transnational development project must
bear in mind that each member will ei-
ther welcome the developed solutions
or show reticence based on various in-
ternal economic, socio-cultural, orga-
nizational, and political factors that
correspond to a diversity of interests.
Accepting a transnational approach
means respecting each member’s tech-
nological choices and thus accepting
the flexibility and extra effort that this
requires.

Lesson 2. The need to share. Countries,
organizations, and institutions jeal-
ously guard the data that affects them.

Thus, sharing sensitive data in an inter-
national context must be done in such a
way that prevents any one member from
having total control over all the infor-
mation. Members must have access to
data that applies to them, but complete
system data should only be obtained via

the entire group’s collaboration. There-
fore, by sharing issues that affect oth-
ers, no single party can access all the in-
formation unless all parties agree.

Lesson 3. Benevolent cooperation. Part-
nerships work best when participants
cooperate to reach a common solu-
tion in a loyal and constructive man-
ner throughout each phase and activity.
This means strengthening ties and mak-
ing the effort to empathize, even outside
strictly professional relationships. This
benevolence seems to be carried in the
backpack of any successful project, but
requires a high dose of motivation and
subjectivity that’s essential when the
technical group is large, heterogeneous,
and has few face to face meetings.

Lesson 4. Security. Regarding security
and dependability, we learned that se-
curity is the process and not the goal.
The explosives working group com-
missioned a computer expert, the head
of the development area of the Civil
Guard, to serve as technical director
and define a solution that provided a
compromise among the political, so-
cial, and technological realities. Three
fundamental decisions composed the
choice of the architecture: the decision
to use a completely decentralized mesh
network design, using member nodes of
the global database, and choosing an
information protocol for Web transac-
tions and queries.

Completely Decentralized
Mesh Network Design
Distributed databases consist of a com-
bination of various computer network
nodes, distributed physically but form-
ing a unified logical data system: in
other words, a global database. A dis-
tributed database design includes the
very crucial decision of choosing the
type of control used to process transac-
tions to the other nodes in the system. If
control is shared among all nodes, the

The challenges of networking a system
among various countries also apply to large

corporations and companies.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P74E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 75

architecture is decentralized or feder-
ated. This decision isn’t just technical:
each shareholder’s perception must be
considered, such as a sense of proprie-
tary data loss or security concerns.8

A completely decentralized distrib-
uted system means no coordinator node
exists and control of the distribution is
shared fairly among all nodes. A cen-
tralized control design is easier to de-
velop and administer, but it also means
that all information passes through a
single node, which thus becomes a criti-
cal infrastructure resource and requires
additional performance and security
measures.9

A completely decentralized distrib-
uted design assumes that each node
manages communication with other
nodes and that it possesses suffi cient
knowledge of the information’s location
when making a query. Nodes, espe-
cially sovereign and benevolent nodes,
must participate in accordance with the
lessons learned that we outlined for an
international distributed system or ex-
ercise a degree of compromise among
them. In practice, a completely distrib-
uted system has the following benefi ts
for each member:

the system only shares information
of interest with the entire group
(the “need to share” concept);
the complete database doesn’t exist
at one single site because it’s a set
of distributed databases (nobody
can get all the information just for
themselves); and
all nodes are equally important.

Implementing this decentralized vi-
sion in a physical network is accom-
plished through a mesh network topol-
ogy to form a distributed base. However,
a mesh network is more diffi cult to con-
fi gure because each node must have an
inventory of the other local nodes in the
form of a confi guration fi le.

Literature about full mesh networks

shows that network administration gets
progressively more convoluted when the
number of nodes rapidly increases. On
the other hand, a node failure doesn’t
affect the entire network, allowing us
to design a system in which all nodes
are equally important and none pre-
vails over the others.9

In a geographically distant envi-
ronment, where government networks
intervene alongside the Internet, it’s
logical to use a mesh network represen-
tation. This is achieved through control
software, whose monitoring is based
on the node connection’s confi guration
fi le and thus involves no additional net-
work infrastructure or wiring expenses.

In addition to the additional security
a mesh network offers in the event one
of its nodes fails, mesh networks typi-
cally avoid bottlenecks because all the
nodes have the same comparative roles.

One important consequence of the
previous lessons learned is to achieve
a suitable decoupling of the nodes. The
system can’t depend on any one node
or group of nodes, so asynchronous

communications and service ori-
entation are important technology
options.10

Member Node of the Global Database
To design a database from an entirely
decentralized approach, a level of ab-
straction for control must be set over
the local nodes forming the global dis-
tributed database. This control is orga-
nized in a multilayer structure:

a messaging Web services layer,
a common interface for everyone in
the system,
a business logic layer that processes
the global transactions,
a data persistence engine layer, and
a local database repository.

This architectural design is suffi ciently
independent of the technology, which
means numerous options exist to imple-
ment it (“sovereign technology”).

Figure 1 shows how one part of the
control, the Web services layer, consists
of an initial interface layer connected to

Web services layer
Database (DB) services (node, messages, type)

DB persistence engineDitributed
dababase

node

Common local database

DB node logic application

FIGURE 1. Software architecture of a distributed node. Each country has a node consisting

of a technological infrastructure composed of multiple layers, similar to an onion. The top layer

is the interface with other nodes and has a higher agreed engagement with them. The inner

layers are much more fl exible in case a country needs to switch to other implementations so

the repository can adapt to a technologically sovereign choice.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

76 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

the other nodes by SOAP-based XML
messaging, displaying Web services
that implement the specific functionally
necessary for global database transac-
tions. The essential parameters are the
transaction type (type), the node with
which communication is established
(node), and the content of the transac-
tion (message). This level of control ab-

straction is completed by the node logic
layer, where functional operations are
carried out over the base, and the per-
sistence engine layer, which implements
the database management system form-
ing the local repository independent of
the local nodes’ technology.

The Web services-oriented approach
provides a series of benefits, such as a
better organization of the functionalities
a collaborator node offers, lower
development costs, and greater flexibility.
This is because the service layer is the
same for all nodes, which means that
users can utilize their own systems by
making the adaptations required to
meet the services offered. It also makes
it easier to put the services to further use
and reuse the code. Moreover, top-level
security layers can be added, such as
XML application-based firewalls.

Both the more external Web services
layer and the internal persistence
layer allow for an architecture that’s
sufficiently decoupled from other nodes
while respecting different technology
options.11

Information about
Implemented Web Services
When a node sends information to
other nodes, it invokes a Web service.

This type of communication is fully
synchronous. If any of the receptor
nodes are unavailable, it throws a re-
try cycle and a subsequent recovery
mechanism.

Other widely used sublayers of data-
base node logic are also part of the de-
sign: DO (domain object), BO (business
object), DTO (data transfer object), and

SVC (service object). Each type of mes-
sage requires the implementation of at
least four service objects: insert (new or
generate), update, delete, and query.

The types correspond function-
ally to design objects such as explosive
transfer, shipment, warning, alert, or
document message. Attributes comprise
data value, a valid flag, and a descrip-
tive attribute error, if necessary. This
principal message is a transfer and thus
collaborative by definition: a transfer
consists of an itinerary that must be ap-
proved or rejected by all participants in
the carriage. Thus, two additional sta-
tus services include accept and reject.

Finally, the message is encapsu-
lated in XML and safely enveloped for
sending.

Transactions and Queries
Key design points in processing the
physical distribution of data in a dis-
tributed network include efficient par-
titioning and an optimally designed
network structure (combining the
“need to share” lesson and a suitable
consequence of decoupling). For ex-
ample, suppose that a factory in Ger-
many wishes to transport a batch of
explosives to Italy on a truck (road
transport), via France. Because the

transport involves three countries, the
complete information must be stored in
the global distributed database. A first
correct approach is that each country
should store its own data. This is the
case with the legal data authorizing the
right to drive through a country, the se-
curity measures to be implemented by
the haulage contractor, the data on the
drivers of the vehicles carrying the ex-
plosives, and the public servants deal-
ing with the application. All this infor-
mation makes up a functional criterion
for setting the database distribution.

Partitioning has a considerable in-
fluence on the performance and ad-
ministration of the database. Vertical
partitioning divides a relational entity
into various subsets of columns or at-
tributes, while horizontal partitioning
consists of obtaining a set of relational
fragments, each of which has a subset
of rows or tuples.12 In our example, if
the security measures are taken into
account, Germany would have a tuple
to represent its own security measures,
France another tuple for its measures,
and Italy another.13

The purpose of the global database’s
horizontal partitioning is to enhance
transaction and query performance.
Partitioning optimization results from
studying the queries in an adequate test
set. In the proposed example, any que-
ries regarding the transfer of explosives
must have access to other nodes via
the Web. That is, to know the details
of an authorization for an explosives
truck, three different local database ac-
cesses must be made and the data ex-
changed via the international network.
The proposed optimization consists of
making redundant the information re-
lated to transports that are susceptible
to sharing (the “need to share”). So,
for the specific transport in the exam-
ple of the German node, France and
Italy might keep records of that trans-
fer concerning authorizations, limi-
tations, and truck drivers. But there

The purpose of the global database’s
horizontal partitioning is to enhance
transaction and query performance.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P76E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 77

will be no unnecessary duplication of
information. For example, the public
servants in charge of the processing
don’t leave the local node. Thus, query
performance is optimized. To access
the transport data, each node involved
will have to make a transaction to its
own local database. The data distribu-
tion and the redundancy are therefore
irregular.

Geographic location comprised the
principal criterion of our system so that
information semantically related to a
node is hosted in its own repository.
Thus, users can find tuples that directly
affect them. When semantics include
information from two different member
nodes, queries regarding this relation-
ship require a request via a data net-
work. The same is true for relationships
among databases whose tuples include
identification semantics from more
than one member node. This shuffling
around of information on the network
can seriously hinder performance.

We therefore adopted the criterion
of inserting the same row in all member
nodes identified in a relationship to add
a horizontal redundancy to improve
queries in exchange for a slight increase
in the transactions of insertion, updat-
ing, and deleting. One example is the
“itinerary” relationship, in which the
semantics indicate geographical sec-
tions between two departure and ar-
rival points. However, to optimize the
itinerary queries, each local relation-
ship will contain not just the tuples of
sections in which it’s included but also
any others that are semantically related.

Consolidation Phase
In 2007, the technical director pre-
sented the SCEPYLT solution to the
explosives working group, and the
group widely accepted and supported
it. Previously, a subset of this group
formed for each country’s technolo-
gists to provide feedback. The pro-
posal essentially consisted of creating

a global database among the six coun-
tries, where each would have all the
data available on explosives trans-
ferred from one country to another.
This would be achieved by distant
geographic nodes comprising prop-
erly synchronized multiple local da-
tabases. In addition, each country
would either host the information
directly affecting it or participate as
part of the itinerary of some form of
transport—that is, the country would
become a fragment of that global da-
tabase. There would thus be a redun-
dancy of information with deliber-
ately set functional criteria to allow a
country a degree of autonomy in man-
aging basic consultations without the
need for the other nodes to be active.

The presented proposal addressed
all the concerns of European directive
93/15/EEC, which urged countries to
set up data networks to exchange in-
formation on explosives. However, it
wasn’t just a question of exchanging
information on transport authoriza-
tions. The system also allows traceabil-
ity of shipments, which led to a detailed

and exhaustive control of explosives
in real time. This traceability required
harmonizing the rules of the European
countries with a Directive in 2008 and,
recently, in 2012 (that is, 2008/43/CE
and 2012/4/UE, respectively).

SCEPYLT defined software under a
Web services-oriented Java Enterprise
architecture with an XML information
exchange via semantic protocols, an in-
tensive use of design patterns, and good
development practices. It also included
a definition of the demanding levels of

computer security, scalability for add-
ing nodes/countries, an XML semantic
communication protocol, and an e-gov-
ernment approach. The system had to
enable sector companies to participate
to help speed up bureaucratic proce-
dures and cooperate with traceability
security, public-key cryptographic tech-
nology support, and the use of tech-
nology specifically designed for this
project.

The costs of SCEPYLT were de-
frayed by a European subsidy from the
Programme for Police and Judicial Co-
operation in Criminal Matters (AGIS).

Best Practices
Bearing in mind the conclusions of the
group’s meetings, and the experiences
during the development period, which
took about six months, we defined four
best practices.

Invite individuals and companies to par-

ticipate. With a focus on e-government,
citizens and businesses can provide a
significant source of collaboration due
to Internet globalization. They can

share experiences working with public
administrations to provide more effi-
cient services. All of this contributes to
a synergy of good governance.

Give communications top security. An
extension of the CIA triangle handles
security protection in three stages:

attaching a physical tier based
on privacy tunnelling between
networks,
obtaining channels based on the

This shuffling around of information
on the network can seriously

hinder performance.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

78 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITICAL SOFTWARE

use of end-to-end host encryption,
and
ensuring message delivery based
on the use of an XML digital
signature.

The most notable is that confidential-
ity is a double encryption between net-
works, and there is always a point to
point encryption overlying.

Ensure transparency in IT. Technical in-
formation must be accessible to stake-
holders—including each country’s
technical authorities, operators, and de-
velopers—along with an easy-to-under-
stand methodology with well-defined
deliverables and well-organized source
code. We learned that you have to bring
the pillars of open government to IT
management, which include transpar-
ency, collaboration, and participation.

Internationalize ontology, encoding, and

user interface. The language-dependent
issues or implementation decisions
about encoding require applying a set
of best practices that have a bearing on
project management and product qual-
ity. Because we’re dealing with message
exchange among nodes in SCEPYLT,

a message exchange protocol needed
to exist that uses a common ontology
and a common vocabulary to ensure
system development and subsequent
maintenance.

Moving Forward
Taking into account the aforemen-
tioned objectives during the devel-
opment period, the project used an

iterative, incremental, process-oriented
methodology that combined flexible
and agile technical methods with fea-
tures of other more formalized method-
ologies. We planned and designed three
software iterations or pilots and closely
watched them to ensure that rigid time
constraints were met, which was key
because few European working group
meetings were held (usually only two a
year).

To guarantee secure communica-
tions, the system must use encoding
and authentication to ensure countries’
trust—examples include widely recog-
nized protocols such as SSL/TLS and
digital certificates. Isolated Internet net-
works were preferable, such as sTESTA,
which is the common European intranet
for all EU member states, or lacking
that, virtual private networks to tunnel
national networks.

The EU chose to use SCEPYLT
and subsidized the expansion proj-
ect through a specific program of the
European Commission’s Directorate
General of Justice, Freedom and Secu-
rity, known as “Prevention, Prepared-
ness and Consequence Management of
Terrorism and other Security Related
Risks.”14

SCEPYLT was the first informa-
tion system specifically oriented to the
control of explosives against terrorism
within the framework of measures to
improve public safety in Europe. Other
initiatives have since followed SCE-
PYLT, such as the “European Bomb
Data System” and the early warning
system for policing purposes under the
auspices of Europol.15

T he project continues to develop
and serve as the driving force
for a wider study:

Through an initiative of the Euro-
pean Commission’s observers in the
working group (from the Director-
ate-General of Enterprise and In-
dustry and the Directorate-General
of Justice, Freedom and Security),
the project now extends to the 27
countries of the EU.
The SCEPYLT platform is the ref-
erence system for the control and
exchange of information on explo-
sives in Europe.
The project has aroused the interest
of companies in enhancing pub-
lic security and encouraged them
to participate by providing more
details of commercial batches of
explosives.
The project has also given rise to
regulatory changes, including Com-
mission Directives 2008/43/EC and
2012/4/EC, regarding setting up
a system for the identification and
traceability of explosives for civil
uses. Use of the system became
mandatory on 5 April 2013.

Some lines of future research and
development include

availability control and the opti-
mization of decentralized control
management,
fault-tolerance system backups,
fragmented backups from nodes,
and full nodal recovery based on
the information in the distributed
system,
application of social networks as
actors for the system, and
devices for geolocation of explosive
materials and traceability.

At the international policy level,
the UN should promote the harmo-
nization of laws in areas that affect

A message exchange protocol must exist
that uses a common ontology

and a common vocabulary.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P78E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 79

global security and traceability such
as information-sharing strategies that
are technology friendly, benevolent,
safe, and economically viable. Coop-
eration among the private and public
sectors should be reviewed to improve
information fl ows, and agencies at the
national, regional, and local levels
should promote best practices and re-
move barriers.

References
 1. G. Tremlett and I. Black, “Explosives Theft

Linked to Madrid Bomb,” The Guardian,
22 March 2004; www.guardian.co.uk/
world/2004/mar/23/spain.gilestremlett.

 2. Agence France-Presse, “Terrorism Police Are
Investigating Theft of Explosives in France,”
New York Times, 19 July 2008; www.
nytimes.com/2008/07/19/world/europe/
19lyon.html.

 3. House of Lords, European Union Committee,
“After Madrid: The EU’s Response to Terror-
ism,” Mar. 2005; www.publications.
parliament.uk/pa/ld200405/ldselect/
ldeucom/53/53.pdf.

 4. J.J. Wylie et al., “Survivable Information Stor-
age Systems,” Computer, vol. 33, no. 8, 2000,
pp. 61–68.

 5. J.C. Knight, “Safety Critical Systems: Chal-
lenges and Directions,” Proc. 24th Int’l Conf.

Software Engineering (ICSE02), IEEE CS,
2002, pp. 547–550.

 6. A. Avizienis et al., “Basic Concepts and
Taxonomy of Dependable and Secure Comput-
ing,” IEEE Trans. Dependable and Secure
Computing, vol. 1, no. 1, 2004, pp. 11–33.

 7. W.R. Dunn, “Designing Safety-critical Com-
puter Systems,” Computer, vol. 36, no. 11,
2003, pp. 40–46.

 8. B. Friedman, P.H. Kahn, and D.C. Howe,
“Trust Online,” Comm. ACM, vol. 43, no. 12,
2000, pp. 34–40.

 9. R.J. Dunn et al., “Presence-based Availability
and P2P Systems,” IEEE 5th Ann. Int’l Conf.
Peer-to-Peer Computing, IEEE CS, 2005,
pp. 209–216.

 10. M.P. Papazoglou et al., “Service-Oriented
Computing: State of the Art and Research
Challenges,” Computer, vol. 40, no. 11, 2007,
pp. 38–45.

 11. N. Milanovic and M. Malek, “Current Solu-
tions for Web Service Composition,” IEEE
Internet Computing, vol. 8, no. 6, 2004,
pp. 51–59.

 12. S. Agrawal, V. Narasayya, and B. Yang, “In-
tegrating Vertical and Horizontal Partitioning
into Automated Physical Database Design,”
Proc. Int’l Conf. on Management of Data
(Sigmod 04), ACM, 2004, pp. 359–370;
doi:10.1145/1007568.1007609.

 13. M. Kantarcioglu and C. Clifton, “Privacy-
preserving Distributed Mining of Association
Rules on Horizontally Partitioned Data,”
IEEE Trans. Knowledge and Data Eng., vol.
16, no.9, 2004, pp. 1026–1037.

 14. European Federation of Explosives Engineers

(EFEE), “The EU Directives Committee:
Enhancing the Security of Explosives,” EFEE
Newsletter, Mar. 2009; http://efee.eu/wp
-content/uploads/2012/03/2009-03-EFEE
-Newsletter.pdf.

 15. Council of the European Union, “Council
Conclusions on Systems and Mechanisms for
the Enhancement of Security of Explosives,”
2010; www.consilium.europa.eu/uedocs/
cms_data/docs/pressdata/en/jha/114017.pdf.

JESÚS CANO is a part-time professor in the School of Computer Sci-
ence at the Universidad Nacional de Educación a Distancia (UNED) and
an IT practitioner of the Spanish Civil Guard. His research interests in-
clude technology for citizens, e-government, e-democracy, smart cities,
IoT, safety-critical infrastructures, distributed systems, and software
architectures, especially concerning security and cryptography. Cano
has an MS in communications, networks, and content management
from UNED. He is an IEEE member and also belongs to the Education,
Communication, and Computer societies. Contact him at jcano@scc.
uned.es.

ROBERTO HERNÁNDEZ is a professor in the Control and Commu-
nication Systems Department and the dean-director of the School of
Computer Science at the Universidad Nacional de Educación a Distancia
(UNED). He has coauthored more than 60 publications in international
journals and conferences on his research interests, including quality-of-
service support in distributed systems and development of infrastruc-
tures for e-learning. Hernandez has a PhD in science from UNED.
Contact him at roberto@scc.uned.es.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

NEXT ISSUE:

July/August 2013

Software
Analytics/
Data Mining

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.publications.parliament.uk/pa/ld200405/ldselect/ldeucom/53/53.pdf&id=18138&adid=P79E5
http://www.qmags.com/clickthrough.asp?url=www.nytimes.com/2008/07/19/world/europe/19lyon.html&id=18138&adid=P79E6
http://www.qmags.com/clickthrough.asp?url=www.guardian.co.uk/world/2004/mar/23/spain.gilestremlett&id=18138&adid=P79E4
http://www.qmags.com/clickthrough.asp?url=http://ComputingNow.computer.org&id=18138&adid=P79E3
http://www.qmags.com/clickthrough.asp?url=www.consilium.europa.eu/uedocs/cms_data/docs/pressdata/en/jha/114017.pdf&id=18138&adid=P79E2
http://www.qmags.com/clickthrough.asp?url=http://efee.eu/wp-content/uploads/2012/03/2009-03-EFEE-Newsletter.pdf&id=18138&adid=P79E1
mailto:jcano@scc.uned.es
mailto:roberto@scc.uned.es
mailto:jcano@scc.uned.es
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

80 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

HENRY FORD’S ASSEMBLY-LINE
production of the Model T inspired
changes in the automotive industry,
and the software industry has made nu-
merous attempts to apply similar ideas

(for example, see the chapter, “Will the
Real Henry Ford of Software Please
Stand Up” in Robert L. Glass’s book).1

While the assembly-line philosophy is
well known, Ford’s approach to inno-

vation and the process that preceded
the Model T’s production is less so. Be-
tween 1892 and the formation of the
Ford Motor Company in 1903, while
working mostly for the Edison Illumi-
nating Company, Ford built about 25
cars. In the fi ve years after the compa-
ny’s formation, he built and sold eight
models—Models A, B, C, F, K, N, R,
and S— before settling on the Model T.
He tested prototypes labeled with the
11 missing letters. Ford summed up this
experience this way:2

I do not believe in starting to make
until I have discovered the best pos-
sible thing. This, of course, does not
mean that a product should never be
changed, but I think that it will be
found more economical in the end
not even to try to produce an article
until you have fully satisfi ed yourself
that utility, design, and material are
the best. If your researches do not
give you that confi dence, then keep
right on searching until you fi nd con-
fi dence.... I spent twelve years before
I had a Model T that suited me. We
did not attempt to go into real pro-
duction until we had a real product.

Today’s automotive industry has
changed signifi cantly since Ford’s ini-
tial success, but some of his philoso-
phy behind innovation still remains.
For example, Toyota’s “nemawashi”
principle states that decisions should be
implemented rapidly but made slowly,
by consensus, and after considering all
options.3 Bill Buxton, who studied in-
novation in the automotive industry,
noted that a new car’s design phase
starts with a broad exploration that
culminates in the construction of a full-
size clay model and costs over a quarter
of a million dollars.4 Only after bring-
ing the new concept to a high level of
fi delity in terms of its form, business
plan, and engineering plan does a proj-

Software
Sketchifying:
Bringing
Innovation
into Software
Development
Željko Obrenović , Software Improvement Group

// Software sketchifying is a software development

activity that stimulates spending more time generating

and considering alternative ideas before making a

decision to proceed with engineering. It’s supported

by Sketchlet, a fl exible tool that empowers both

engineers and nonengineers to work with emerging

technologies and explore their possibilities. //

FEATURE: SOFTWARE TOOLS

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 81

ect get a “green light.” After that, it
typically takes a year of engineering be-
fore the project can go into production.

Inspired by general ideas about how
the automotive industry brings innova-
tion into manufacturing, I developed
software sketchifying as an activity to
stimulate and support software stake-
holders to spend more time generating
and considering alternative ideas before
making a decision to proceed with en-
gineering. My view on software sketch-
ifying combines general ideas of sketch-
ing4 and creativity support tools5 with
several existing software engineering
approaches. To support and explore
this view, I developed Sketchlet (http://
sketchlet.sourceforge.net), a fl exible,
Java-based tool that empowers engi-
neers and nonengineers to work with
emerging software and hardware tech-
nologies, explore their possibilities,
and create working examples—called
sketchlets—that incorporate these
emerging technologies.

Product Innovation and
Software Engineering
Contrary to the automotive industry,
the software industry has a rich his-
tory of engineering wrong products. Ill-
defi ned system requirements and poor
communication with users remain top
factors that infl uence software project
failures.6 Frederick Brooks also noted
that the hardest single part of building
a software system is deciding precisely
what to build.7 He proposed rapid sys-
tem prototyping and iterative require-
ments specifi cation as a way to solve
this problem. Many existing software
engineering methodologies, including
the Rational Unifi ed Process, Extreme
Programming, and other agile software
development frameworks follow itera-
tive and incremental approaches.

However, these approaches have
limitations when it comes to true in-

novation. Although prototyping can let
us cheaply represent and test our ideas,
and iterative and incremental develop-
ment can help further refi ne our ideas
based on frequent user feedback, nei-
ther approach directly supports the
generation of new product ideas, nor
do they encourage the consideration of
alternatives.

Buxton went further in his critique
of the innovation capacity of iterative,
incremental software development, see-
ing no comparison between software
product design and the development of
new automobiles.4 He argued that in-
novative software projects need at least
a distinct design phase followed by a
clear green-light process before pro-
ceeding to product engineering. He saw
design and engineering as different ac-
tivities that employ different processes
and for which people suited to one are
typically not suited for the other.

Software Sketchifying
I built on Buxton’s suggestion by intro-
ducing software sketchifying into soft-
ware product development as a comple-
ment to prototyping and engineering.
The sidebar presents a sketchifying ex-
ample scenario of how it might work

in developing software systems for an
automobile.

Software Sketchifying Approach
One key characteristic of this approach
is postponing the main development ac-
tivity for the benefi t of free exploration,
following a main principle of creativity:

to generate a good idea, you must gen-
erate multiple ideas and then dispose
of the bad ones.1,4 Another key char-
acteristic is stimulating early involve-
ment of nonengineers. Such users often
have expertise that’s important for un-
derstanding customers and their needs.
More specifi cally, the example scenario
in the sidebar illustrates several points
about software sketchifying:

The designer’s main activity is ex-
ploration, learning about a problem
and potential solutions and answer-
ing a question about what to build.
Such explorative activity is heuris-
tic, creative, and based on trial and
error, rather than incremental and
iterative. The designer generates
several ideas, most of which will
be rejected. However, this process
yields important lessons and stim-
ulates generation of novel ideas.
These lessons and ideas are the ac-
tivity’s main outcome.
The exploration activity is not
accidental, but disciplined and
systematic.
The exploration is holistic, enabling
designers to refl ect on relations
among user issues, software and

hardware possibilities, and the over-
all dynamics of human-computer
interaction. The ideas in the exam-
ple scenario are infl uenced not only
by software but also by human fac-
tors and problems related to car me-
chanics and equipment.
The exploration enables early user

Neither prototyping nor incremental
development directly support the
generation of new product ideas.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=http://sketchlet.sourceforge.net&id=18138&adid=P81E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

82 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FEATURE: SOFTWARE TOOLS

A SKETCHIFYING SCENARIO
Consider an example scenario with Mirko, an interaction de-
signer at a company that builds software for new generations of
cars with advanced sensing and display technologies. Mirko has
recently joined the company to explore ideas for software appli-
cations that exploit novel opportunities, such as using data from
a car radar, GPS sensors, and links to Web services.

Mirko’s first task is to explore two applications: a system for
warning about the proximity of other cars and a system for pre-
senting news in idle situations, such as waiting for a traffic light.
Mirko isn’t a programmer, nor is he familiar with all the technical
possibilities of modern cars, but he uses a design environment
through which he can access and explore software services and
components related to his task without serious programming.

To understand what’s possible, Mirko first talks with several
of his company’s engineers. They advise him to start by using
a car simulator, which provides a realistic but safe environment
to learn about new automotive technologies. One engineer also
writes a small adapter that connects the car simulator logger to
Mirko’s design tool. This adaptation gives Mirko immediate ac-
cess through a simple spreadsheet-like interface to the simula-
tor data—such as the car’s speed and its distance from the car
in front of it.

Mirko starts a design environment on his laptop and con-
nects it to the simulator. After becoming familiar with the simu-
lator’s possibilities, he turns to his laptop to create a few sketch-
lets, which are simple interactive pieces of software.

PROXIMITY WARNING SYSTEM
To explore the options for implementing a proximity warning sys-
tem, Mirko first considers three presentation modes: graphical,
audio, and haptic (vibration). For graphical presentation, he uses
an editor in his design environment and creates several simple
drawings. Then he opens the properties panel and connects the
variables from the car simulator to the graphical properties of
drawn regions. For example, he creates a sketchlet in which an
image’s transparency dynamically changes as a function of the
distance from the car in front of the driver. He then experiments
with other graphical properties, such as image size, position, or
orientation. He returns to the simulator and tries each alterna-
tive. He also invites a few colleagues to try out and comment on
his ideas.

After exploring graphical options, he proceeds to create audio
sketchlets. He first tries a MIDI-generator service and connects
data coming from the sensor to MIDI note parameters, such as

pitch or tone duration. He also experiments with a text-to-speech
service, generating speech based on the conditions derived from
car data. Finally, he explores using an MP3 player with pre-
recorded sounds. He then goes back to the simulator and tries
these alternatives.

Mirko also wants to try a vibration modality to present naviga-
tion information, which the simulator doesn’t support. He decides
to use a simple trick, starting an application on his mobile phone
that lets his design environment control the phone’s resources,
including its vibrator. Using gaffer tape, he fixes the mobile phone
to the steering wheel and creates several sketchlets that map the
distance from the car in front of him to vibration patterns. Marko
knows it’s not a very elegant solution, but it lets him explore
basic opportunities of this modality with available resources and
little work.

NEWS PRESENTATION
Mirko also plays with some other options related to the applica-
tion for presenting news. He starts a Google news service in his
design environment and creates a simple page that presents an
HTML output of the news service. He then creates a condition for
the page’s visibility so that the news appears as an overlay on
part of the windshield, but only when the car’s speed is zero and
the automobile is not in gear. He also experiments with speech
services that let a user set a news search query by speech.

After finishing his work in the lab, Mirko decides to collect
some real-world experiences and try some of his more promis-
ing sketchlets in a real car. With help from engineers who are
working on testing cars, Mirko gets an extension of his design
environment that uses a Bluetooth connection to a test car’s on-
board diagnostic (OBD) system. With this addition, Mirko creates
a simple setting using his smartphone as a presentation device,
positioned under a windshield. He connects the smartphone to
his laptop, which uses a simple remote desktop client to capture
a part of a screen from his laptop. On the laptop, Mirko is run-
ning the sketchlets that he created in the lab and that are now
connected to the car’s OBD system. He asks a colleague to drive
the car while he observes a situation and videorecords a whole
session for later analysis.

During the process, Mirko constantly interacts with other
stakeholders, regularly presents his findings, and lets clients and
colleagues try out some of his sketchlets. In this way, Mirko is
helping develop new products by providing realistic and tested
ideas before and outside the main development activity.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P82E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 83

involvement through simple but
functional pieces of software in the
form of sketchlets.
Working with real systems, such
as the car simulator, car diagnostic
system, and Web services, lets a de-
signer learn about the possibilities
and limitations of software technol-
ogies and create conceptual propos-
als that are more realistic.

Designers generally aren’t engineers
who can program and extend their design
environments. However, they’re part of a
broader community of people who can
help them learn and extend the explora-
tion space on an ad hoc basis. Sketchify-
ing supports this interaction without tak-
ing too much time, thereby empowering
nonengineers to explore emerging tech-
nologies and to test their ideas without
additional help from developers.

Software Sketchifying Tools
To support and explore this approach,
Sketchlet combines elements from tra-
ditional sketching, software hacking,
opportunistic software development,
and end-user development. Sketchlet
builds on the results of the Sketchify
project (http://sketchify.sourceforge.
net), which explored possibilities to im-
prove early design stages and education
of interaction designers.8

Sketchlet has two main roles:

to enable designers to create a num-
ber of simple pieces of software—
sketchlets—as a way to quickly and
cheaply explore software and hard-
ware technologies and their poten-
tial applications, and
to support involvement of software
engineers in short, ad hoc sessions
that give designers realistic pieces
of technologies that might be useful
for design exploration.

Sketchlet lets designers interact di-
rectly with software and hardware

technologies through a simple, intuitive
user interface. To simplify the integra-
tion with these technologies, Sketch-
let combines ideas from opportunistic
software development with techniques
used by hacking and mashup commu-
nities.9,10 A full description of Sketchlet
is out of scope for this article. Two ap-
pendices containing more detail about
how Sketchlet implements the sidebar’s

example scenario are available on-
line at http://doi.ieeecomputersociety.
org/10.1109/MS.2012.71. I also en-
courage readers to download and try
the tool for themselves.

Initial Sketchlet
Applications and Results
I’ve developed and applied the ideas
about software sketchifying in three
projects that featured collaboration
among software engineers, interaction
designers, and researchers. In these
projects, interaction designers and re-
searchers were primarily responsible
for creating and evaluating novel con-
ceptual proposals and ideas:

 (www.
tue.nl/en/university/departments/
i n d u s t r i a l - d e s i g n / r e s e a r c h /
research-programs/user-centered
-engineering/projects/explorations
-in-interactions/connect-drive).
Several researchers used Sketchlet
to explore options for developing
software systems for cooperative
adaptive cruise control systems in
cars, based on Wi-Fi communi-
cation between vehicles and road
infrastructure.

-
ect (http://hti.ieis.tue.nl/node/3344).
Sketchlet played a similar role as it
did in the Connect & Drive project,
helping researchers investigate soft-
ware products for developing per-
suasive technologies that encourage
people to hand over control to intel-
ligent automation of cars.

 (Resolving the -
adox; www.repar-project.com).
Sketchlet was one of the flexible
prototyping tools in user-centered
design processes, allowing de-
signers to create and evaluate (ill-
defined) product concepts early in
the development.

Although Sketchlet is still in early
development, the approach and tool
showed several positive effects in these
projects. First, it broadened the op-
portunities to constructively involve
nonengineers, including interaction
designers, psychologists, and students.
Our tools empowered nonengineers
to easily explore relevant technologies
and to independently create and test
their ideas. The companies involved
benefited from their nonengineering
expertise and knowledge early in the
design process.

Sketchlet also promoted different
collaboration between engineers and
nonengineer designers. Prior to us-
ing Sketchlet, most of the companies
followed the approach of making de-
signers responsible for creating a con-
ceptual proposal, which they gave to
developers for implementation with

Sketchlet combines elements from
traditional sketching, software hacking, and

opportunistic software development.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

__

http://www.qmags.com/clickthrough.asp?url=www.repar-project.com&id=18138&adid=P83E3
http://www.qmags.com/clickthrough.asp?url=http://hti.ieis.tue.nl/node/3344&id=18138&adid=P83E5
http://www.qmags.com/clickthrough.asp?url=www.tue.nl/en/university/departments/i ndustrial-design/research/research-programs/user-centered-engineering/projects/explorations-in-interactions/connect-drive&id=18138&adid=P83E4
http://www.qmags.com/clickthrough.asp?url=http://doi.ieeecomputersociety.org/10.1109/MS.2012.71&id=18138&adid=P83E2
http://www.qmags.com/clickthrough.asp?url=http://sketchify.sourceforge.net&id=18138&adid=P83E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

84 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FEATURE: SOFTWARE TOOLS

little interaction, except to clarify their
designs. With Sketchlet, the interaction
between designers and engineers could
work in two ways, with engineers giv-
ing designers simplifi ed versions of
software components and services—
early in the design process—that the
engineers might use later in the imple-
mentation (see Figure 1).

The connected services, although
simplifi ed, resemble real components,
and sketchlets expressed in terms of
these services come closer to the imple-
mentation platform that the engineers
will use. This change addressed one
problem that many companies expe-
rience when designers and engineers
need to work together—namely, the
engineers perceive designers’ ideas as
unrealistic, too distant from available
technology, and not precise enough to
be useful. Through the exploration of
these services, designers can develop
more realistic expectations about the
possibilities and limitations of technol-
ogies, and incorporate this understand-
ing into design proposals.

Lastly, Sketchlet infl uenced the

mindset of companies toward more
and broader explorations early in the
software design. Sketchlet helped illus-
trate the potential of such exploration
and inspire the companies to think how
other tools could be used in a similar
explorative way.

Sketchifying Benefi ts
and Relation to Other
Approaches
Software sketchifying can help better
defi ne product requirements so that
the subsequent engineering process has
a clear focus and goal. It promotes di-
rect exploration of emerging technolo-
gies and creation of working examples
of simple pieces of software with these
technologies as a way to identify po-
tential problems and provoke reactions
from users as early as possible. The tool
shows the effects of design decisions on
user experience and supports user test-
ing before actual development starts.

Exploring the possibilities and limi-
tations of technologies early in the de-
sign helps identify a number of prob-
lems or user issues before investing in a

signifi cant development effort. Discov-
ering such problems later in the process
could require changes and additional
effort. Early discovery is particularly
important in projects using emerging
technologies, which have many un-
knowns—including how well users will
accept them.

Promoting the constructive involve-
ment of nonengineers in the design
process opens the door to help from
experts in fi elds such as human psy-
chology, which in turn reduces the bur-
den on developers. Moreover, as Glass
noted,1 users who understand the ap-
plication problem to be solved are of-
ten more likely to produce innovation
than computer technologists, who un-
derstand only the computing problem
to be solved. The sketchifying approach
requires occasional involvement of de-
velopers, but it aims to incorporate
them in short ad hoc sessions, and the
intent is to empower nonengineers to
explore further without developers’
help. Once the developer adapts some
technology for Sketchlet, nonengineers
can work with this technology through
a simple end-user interface that does
not require technical expertise or pro-
gramming knowledge.

Relation to Prototyping and Engineering
Software sketchifying complements
existing prototyping and engineering
approaches by its focus on free explo-
ration and a trial-and-error approach
versus a more iterative, incremental ap-
proach of prototyping and engineering
(see Figure 2).

Sketchifying supports users in con-
structing a novel idea and enables non-
engineers to actively contribute. This
brings software design closer to the
practice of other engineering disci-
plines, in which the design phase pre-
cedes the main engineering activity,
and designers (usually nonengineers)
are encouraged to freely explore ideas
before consolidating a few of them for

“Classical” model

With Sketchlet
…

Designer Engineer

EngineerDesigner

Conceptual design Implementation

Implementation

Conceptual design

Simplified components
and services, hacks

FIGURE 1. Comparing the classical design-engineering interaction with sketchifying.

With sketchifying, supported by tools like Sketchlet, the interaction between designers

and engineers can work in two ways, allowing engineers to give designers early access to

simplifi ed versions of software components and services that the engineers might use later in

the implementation.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P84E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 85

further development. For instance, it’s
not unusual for an industrial designer
to generate 30 or more sketches a day
in the early stages of design, each possi-
bly exploring a different concept.4

Software sketchifying precedes proto-
typing, which tests, compares, and fur-
ther develops aspects of selected ideas.
With a prototype in place, the develop-
ment can take an evolutionary approach.
Prototyping should assess whether se-
lected ideas are feasible and should help
decide whether to proceed with engineer-
ing. Prototyping aims at making an idea
more detailed and concrete, rather than
coming up with radically new ideas. En-
gineering turns the winning idea into a
robust and usable product.

Relation to Other Software Tools
In principle, tools other than Sketchlet
could implement the sketchifying idea.
However, many current tools can’t fully
support it because they’re not opti-
mized for free exploration and involve-
ment of nonengineers. For example,
we could use standard programming
languages, such as Java, C#, C++, or
programming tools oriented toward in-
teraction design such as Flash and Pro-
cessing to implement our example sce-
nario. However, programming requires
signifi cant expertise, time, and effort—
an investment that’s simply too high for
the intended purpose of generating new
ideas and exploring possibilities.

Existing low-fi delity prototyping
environments provide ways to quickly
create prototypes with inputs taken
from external services or sensors.11,12

These environments might be excel-
lent choices for exploring interactions
in various domains. The problems I’m
addressing cross these domains and re-
quire a variety of sensory inputs and
links to diverse software services as
well as additional components specifi c
to the companies I’m working with. In
addition, such tools often require too
much precise specifi cation, partly be-

cause they’re primarily developed for
advanced prototyping rather than for
free and broad exploration.

Electronic sketching systems are an-
other promising direction for design
tools, enabling designers to create in-
teractive systems with ease using intui-
tive and natural pen gestures.13 From
the viewpoint of my example scenario,
these systems have the drawback of be-
ing specialized for specifi c domains and
used successfully only in inherently
graphical domains that have a stable
and well-known set of primitives, such
as 2D and 3D graphics or websites.

Another alternative is to use sim-
ple freehand drawings and techniques
such as screen prototyping. Such tech-
niques can help in exploring a solu-
tion’s graphical elements. However,
they can describe overall system inter-
actions, such as sensing device inputs
and user response dynamics, only in
very abstract terms. Moreover, paper

sketching doesn’t let users explore the
possibilities and limitations of emerg-
ing technologies. Direct exploration of
such technologies yields more concrete
ideas about how to best employ them.

Sketchlet borrows ideas from exist-
ing solutions, while trying to overcome
some of their limitations. I also see it as
a complement to existing tools, rather
than a replacement. On several occa-
sions, designers have used Sketchlet in
conjunction with other tools. For exam-
ple, some of our users employed Max
MSP for signal processing and audio
effects and Sketchlet for connections to
sensor devices and visualization.

M y initial experiences with
applying software sketch-
ifying are encouraging.

However, an important limitation of this
approach is that it requires signifi cant
changes of current development culture

Engineering

Prototyping

Sketchifying

Stop further
development

Continue with
engineering

 engineering

FIGURE 2. An idealized representation of relationships among sketchifying, prototyping, and

engineering. Sketchifying supports users in constructing a novel idea. It precedes prototyping,

which tests, compares, and further develops aspects of selected ideas. Engineering turns the

winning idea into a robust and usable product.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

86 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FEATURE: SOFTWARE TOOLS

in its emphasis on postponing the start
of development to benefi t free explora-
tion, more active involvement of non-
engineers and end users, and new forms
of interaction between engineers and
nonengineers prior to the main devel-
opment activity. Such changes, in my
experience, aren’t easy to achieve, but
without them, the sketchifying tools
are less effective and tend to be used in
a limited way.

In future work, I plan to develop a
more general approach toward build-
ing software services and components
so that each service could have two
sets of APIs: one engineering API with
full functionality, and one sketchifying

API that would represent a simplifi ed,
limited sample of the full functional-
ity. I also plan to address collaboration
because the current implementation
primarily supports individual use and
is of limited value in collaborative de-
sign sessions.

References
 1. R.L. Glass, , devel-

oper.* Books, 2006.
 2. J. Grudin, “Travel Back in Time: Design

Methods of Two Billionaire Industrialists,”
, vol. 15, no. 3, 2008, pp.

30–33.
 3. J. Liker,

, McGraw-Hill, 2004.
 4. B. Buxton,

,
Morgan Kaufmann, 2007.

 5. B. Shneiderman, “Creativity Support Tools:
Accelerating Discovery and Innovation,”

, vol. 50, no. 12, 2007, pp.
20–32.

 6 R.N. Charette, “Why Software Fails,”
, vol. 42, no. 9, 2005, pp. 42–49.

 7. F. Brooks, “No Silver Bullet—Essence and Ac-
cidents of Software Engineering,” ,
vol. 20, no. 4, 1987, pp. 10 19.

 8. Ž. Obrenović and J.B. Martens, “Sketching
Interactive Systems with Sketchify,”

, vol. 18,
no. 1, 2011, article 4.

 9. B. Hartmann, S. Doorley, and S.R. Klemmer,
“Hacking, Mashing, Gluing: Understand-
ing Opportunistic Design,”

, vol. 7, no. 3, 2009, pp. 46–54.
 10. Ž. Obrenović , D. Gaševic, and A. Eliëns,

“Stimulating Creativity through Opportunis-
tic Software Development,” ,
vol. 25, no. 6, 2008, pp. 64–70.

 11. M. Rettig, “Prototyping for Tiny Fingers,”
, vol. 37, no. 4, 1994, pp. 21–27.

 12. Y.K. Lim, E. Stolterman, and J. Tenenberg,
“The Anatomy of Prototypes: Prototypes as
Filters, Prototypes as Manifestations of De-
sign Ideas,”

, vol. 15, no. 2, 2008, article 7.
 13. J.A. Landay and B.A. Myers, “Sketching

Interfaces: Toward More Human Interface
Design,” , vol. 34, no. 3, 2001, pp.
56–64.

ABOUT THE AUTHOR

ŽELJKO OBRENOVIĆ is a technical consultant at Software Improvement
Group, Amsterdam. He did the work reported here while working as an assis-
tant professor in Eindhoven University of Technology’s Department of Industrial
Design. His professional interests include, software engineering, design of
interactive systems, end-user development, rapid prototyping, creativity sup-
port tools, and universal accessibility. Obrenović received a PhD in computer
sciences from the University of Belgrade. Contact him at obren@acm.org.

Advertising Personnel

Marian Anderson: Sr. Advertising Coordinator;
Email: manderson@computer.org
Phone: +1 714 816 2139 | Fax: +1 714 821 4010
Sandy Brown: Sr. Business Development Mgr.
Email sbrown@computer.org
Phone: +1 714 816 2144 | Fax: +1 714 821 4010

Advertising Sales Representatives (display)

Central, Northwest, Far East: Eric Kincaid
Email: e.kincaid@computer.org
Phone: +1 214 673 3742; Fax: +1 888 886 8599

Northeast, Midwest, Europe, Middle East: Ann & David Schissler
Email: a.schissler@computer.org, d.schissler@computer.org
Phone: +1 508 394 4026; Fax: +1 508 394 1707

Southwest, California: Mike Hughes
Email: mikehughes@computer.org
Phone: +1 805 529 6790

Southeast: Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070; Fax: +1 973 585 7071

Advertising Sales Representatives (Classified Line and Jobs Board)

Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070; Fax: +1 973 585 7071

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=http://ComputingNow.computer.org&id=18138&adid=P86E1
mailto:manderson@computer.org
mailto:sbrown@computer.org
mailto:e.kincaid@computer.org
mailto:a.schissler@computer.org
mailto:d.schissler@computer.org
mailto:mikehughes@computer.org
mailto:h.buonadies@computer.org
mailto:obren@acm.org
mailto:h.buonadies@computer.org
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P86E2
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E MAY/JUNE 2013 | IEEE SOFTWARE 87

Editor: Michiel van Genuchten
mtonyx
genuchten@ieee.org

Editor: Les Hatton
Kingston University
les.hatton@kingston.ac.uk

The Generational Impact
of Software
Anne-Francoise Rutkowski, Carol Saunders, and Les Hatton

Eighteen Impact columns to date have talked only about growing software.
Anne-Francoise Rutkowski, Carol Saunders, and Les Hatton indicate that
there are also generational factors that can have signifi cant business
impact and can limit growth in our fi eld. —Michiel van Genuchten

IMPACT

INSTALLMENTS OF THIS column have
discussed software’s extraordinary impact
on society. The original intent was to pro-
duce an approximate idea of the answers to
several important business questions: How
much software do we depend on, where is it,
how is it produced, and what’s the business
impact of deploying and maintaining it?

However, software can have a signifi cant
negative generational impact on society—in
particular, on its oldest and youngest users.
This rapidly growing and often relatively af-
fl uent sector of society is becoming increas-
ingly disenfranchised by consumer systems
with interfaces that appear to have been de-
signed by Klingons. This isn’t meant in a de-
rogatory sense for those Star Trek fans out
there; it simply represents a generationally
disjointed viewpoint. In short, the relentless
pursuit of technology to gain a marketing
edge has led to consumer system interfaces
being loaded with software features that
might be transparently obvious to their de-
signers but are anything but obvious to the
end user. These features cost money, so they
have an obvious business cost, but their busi-
ness value is dubious, to say the least.

Cars, Washing Machines, and TVs
The interfaces in modern automobiles are be-
coming so complex that they now challenge

a long-standing, fundamental assumption:
wherever you are in the world, you can rent
a car, fl ip your mind into left- or right-side
driving, and just drive away knowing that
all the basics are in the same place regard-
less. Let’s face it, in an emergency, you need
them to be. But this is more and more dif-
fi cult as digital interfaces and their erratic
and frequently fashion-driven design replace
all the familiar components—the handbrake,
the radio (which can be surprisingly diffi cult
to turn off in some cars), and even the lights.

Just recently, one of us (Les) tried to buy
a washing machine for his elderly mother.
He failed. Nothing on the market appears
to have an interface that, well, washes and
dries. Instead, a long list of features is pre-
sented involving exotic kinds of wash—
maybe somebody wants to wash their sub-
aqua gear along with the net curtains, but
generally speaking, most don’t.

A walk to a nearby elderly care home
revealed the majority of the occupants
struggling with two or even three handsets
with tiny handwriting and incomprehen-
sible menus designed by other Klingons.
As digital television transmission sweeps
Europe, televisions need to be reset or re-
tuned, which requires wading through a
Kafkaesque menu system full of idioms that
don’t have the slightest meaning to most of

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

mailto:genuchten@ieee.org
mailto:les.hatton@kingston.ac.uk
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

88 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

IMPACT

the population—“Download software:
yes/no?” Why? What does it do? Will
it crash? Do I need it? A chat with the
technician who has to go around sort-
ing the digital conversions out con-
fi rmed that it is indeed a nightmare.

More Software, More Problems
It doesn’t stop here; society plunges
ever deeper into a digital mire of its
own making. A recent trip through
Heathrow Airport with a boarding
pass printed from Les’s home printer
couldn’t be read by the departures sys-
tem. On being sent back to the ticket
counter, he found that a second pass
wouldn’t be issued because one already
had. After a fair amount of arguing, a
second pass eventually was issued, but
the departures system still wouldn’t
accept it because now there were two
(even though it couldn’t read one).

Dropping into the local hospital re-
veals multiple systems that can’t talk
to each other and can’t even locate
patients based on their surname—or
maybe it’s just that the operator can’t

fi gure out how to do it. Again, Klingon
speak dominates the menus and help
systems, making it virtually impossible
to fi gure out what on Earth the pro-
grammer is trying to get the user to do.

In some ways, we seem to be at a cross-
roads: the amount of software and the
opportunities it brings are growing expo-
nentially, but an increasingly large part of
the population, and a reasonably affl uent
one at that, is becoming disenfranchised
and fed up with the whole thing.

Where do we go from here? You
could argue that the problem will even-
tually sort itself out as the older genera-
tion dies off, but remember this: today’s
younger generation is tomorrow’s older
generation, and the technological over-
turn under market stresses won’t just
go away.

Let’s consider some insights from or-
ganizational psychology.

Software is constantly generated
for a growing number of applications.
Previous Impact columns persuade us
that this code continues to grow at a
steady pace across a broad range of in-
dustries. The compound annual growth
rates (CAGRs) of approximately 1.16
for lines of code (LOC) demonstrate
the human mind’s underlying power—
but also its limitations. Teams of smart
software engineers add to the software
inventory at this steady pace.1 The
business viewpoint is that the technol-
ogy industry provides a great service by
increasing the number of options and
multiplying functionality. Countless
software jewels are being generated—

but can we fi gure out what we want,
let alone what we need? Businesses of
course want to grow their revenue, and
the only way they see to do this is to
grow their software. Much like soda
companies wanting to sell more sugar,
many businesses add features to their
applications to sweeten their appeal.
Glenn Ellison and Drew Fudenberg
explained monopolists’ incentives for
providing upgraded versions of soft-
ware even when society would be much

better off without them.2 Let’s now ad-
dress the negative impacts that increas-
ing numbers of software features and
upgraded versions are having on users’
minds, in particular, IT-related over-
load and the potential loss of skills in
younger generations.

IT-Related Overload
Are there any limits to the growth of
software from the user’s perspective?
Research suggests that users are gener-
ally no longer interested in struggling
through yet another upgrade or learn-
ing one more software tool or techno-
logical gadget designed solely to in-
crease its developer’s revenues.3 Indeed,
technology users have reported experi-
encing technology overload as well as
the much-heralded information over-
load. Both negatively impact workers’
productivity and performance.

Overload—more precisely, IT-re-
lated overload—has emotional and
cognitive symptoms.4 It’s typically as-
sociated with emotional symptoms such
as frustration, distractibility, and inner
frenzy. It’s also associated with cogni-
tive symptoms such as making mistakes
or simply dropping tasks. Regardless of
the type of overload symptom, organi-
zational performance suffers.5

We can use a blender to explain us-
ers’ limits in dealing with IT-related
overload. The input to be processed
represents requirements created by the
new technology, and the blender rep-
resents the mind. A certain level of
mental effort is necessary to process
new technologies and their features.
Indeed, just like the energy that runs
the blender, mental effort is required to
process technological features.

However, while blenders might be
relatively similar in their processing
power, this certainly isn’t the case for
individuals. Some individuals can eas-
ily adapt to multiple technologies while
others struggle with only a few. Let’s
take the example of fi nding a washing

Overload—more precisely,
IT-related overload—has emotional
and cognitive symptoms.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P88E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 89

IMPACT

machine for your elderly mother, as de-
scribed earlier. You have to adapt your
perception of the washing machine’s
many features to anticipate those of
your mother. You must identify what
will be pertinent to her. Obviously,
your mother won’t need some (if not
most) of the software-supported fea-
tures of the new washing machines. For
her, these buttons likely will only serve
as a source of emotional and cognitive
overload when she tries to figure out
which options she should select to wash
her tea towels.

Loss of Skills in Younger Generations
Software marketers want us to believe
that all the technology mastery prob-
lems will fade away with new genera-
tions of technology users as the older
ones leave the market. We know that
the idea that younger generations will
be able to handle the technology so well
that they’ll never experience overload is
an illusion, owing to the limitation of
our brains. Our brains can only store
a limited amount of information at one
time,6 so IT applications could actu-
ally limit younger generations’ brains
even more. Recently, researchers dem-
onstrated that, in the developing brain,
associations are built on real-world in-
teractions between the body and envi-
ronment.7 For instance, they found that
neural activity was far more enhanced
in children who had practiced printing
by hand than in those who had simply
looked at letters on a screen.8 The hu-
man brain must cognitively adapt to
any new technology’s features.9

As economic growth in software
is led by hungry developers, market-
ers will want to portray older genera-
tions as outdated when they can’t cope
with new technologies. In ancient and
other civilizations, the old are revered
as wise, and getting old is an achieve-
ment in and of itself. In today’s society,
getting old is typically equated to being
outdated. Marketers want older folks to

believe that technologies are outsmart-
ing them and that they need a serious
update to stay in tune with the world
of modernity. Is that true? We think
not for several reasons. First, there will
always be younger generations of IT
developers to overload the aging gen-
eration of users. Second, many people
are concerned that our kids will lose
important skills. They won’t be able to
orient themselves without a GPS when
lost in town or add numbers without a
calculator. They could lose such skills if
we stop educating them. Who is to de-
cide which skills are to be lost?

Some designers see simplification of
software by designing one magic but-
ton as the solution. Is this progress?
Some miss the complexity of fiddling
with the equalizer on their sound sys-
tem while listening to music: they enjoy
the precision. Others are roused by the
complexity of their GPS and multiple
display options and voices: they enjoy
mastering them.

S ince the beginning of time, hu-
mans have wanted to be faster
and better and to overcome

their limitations. Today, software al-
lows amazing discoveries on Mars. But
in a world where the universe and an-
swers to its many mysteries seem to be
only one click away, we still face those
human limitations, both as individuals
and as teams of software developers.

So if the magical button isn’t a solu-
tion to all our problems, what could we
recommend instead? First, software de-
velopers need to carefully reflect on up-
grades. They need to ask themselves and
their teammates why a new version is
being brought to the market in the first
place and who it benefits. Functionality
extensions require an effort on the part
of users, so software developers should
only prepare upgrades that are truly
helpful to their users. Second, they need
to design new technologies that are cus-

tomizable and adaptable to users’ needs.
You can still please users who want
complexity and greater functionality,
but not at the expense of those who pre-
fer the magic button. Most importantly,
software developers should be respon-
sible and think faster than they develop,
not the other way around.

References
1. M.V. Genuchten and L. Hatton, “Compound

Annual Growth Rate for Software,” IEEE
Software, vol. 29, no. 4, 2012, pp. 19–21.

2. G. Ellison and D. Fudenberg, “The Neo-
Luddite’s Lament: Excessive Upgrades in the
Software Industry,” RAND J. Economics, vol.
31, no. 2, 2000, pp. 253–272.

3. P. Karr-Wisniewski and Y. Lu, “When More
Is Too Much: Operationalizing Technol-
ogy Overload and Exploring Its Impact on
Knowledge Worker Productivity,” Computers
in Human Behavior, vol. 26, no. 5, 2010, pp.
1061–1072.

4. A.F. Rutkowski and C. Saunders, “Growing
Pains with Information Overload,” Computer,
June 2010, pp. 94–96.

5. E.M. Hallowell, “Overloaded Circuits: Why
Smart People Underperform,” Harvard Busi-
ness Rev., Jan. 2005, pp. 1–9.

6. G.A. Miller, “The Magical Number Seven,
Plus or Minus Two: Some Limits on Our
Capacity for Processing Information,” Psycho-
logical Rev., vol. 63, no. 2, 1956, pp. 81–97.

7. K.H. James and T.P. Atwood, “The Role of
Sensorimotor Learning in the Perception of
Letter-Like Forms: Tracking the Causes of
Neural Specialization for Letters,” Cognitive
Neuropsychology, Feb. 2009, pp. 91–110.

8. “How Hand Writing Boosts the Brain,” Wall
Street J., 5 Oct. 2010; http://online.wsj.com/
article/SB10001424052748704631504575531
932754922518.html.

9. C. Saunders et al., “Virtual Space and Place:
Theory and Test,” MIS Q., vol. 35, no. 4,
2011, pp. 1079–1098.

ANNE-FRANCOISE RUTKOWSKI is an associ-
ate professor in the Information and Management
Department at Tilburg University. Contact her at
a.rutkowski@uvt.nl.

CAROL SAUNDERS is a professor at the College of
Business Administration at the University of Central
Florida and Schoeller Senior Scholar at the Dr. Theo
and Friedl Schoeller Research Center for Business
and Society. Contact her at csaunders@bus.ucf.edu.

LES HATTON is a director of Oakwood Computing
Associates and professor of forensic software engi-
neering at Kingston University. Contact him at les.
hatton@kingston.ac.uk or via www.leshatton.org.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

__

http://www.qmags.com/clickthrough.asp?url=www.leshatton.org&id=18138&adid=P89E2
http://www.qmags.com/clickthrough.asp?url=http://online.wsj.com/article/SB10001424052748704631504575531932754922518.html&id=18138&adid=P89E1
mailto:a.rutkowski@uvt.nl
mailto:les.hatton@kingston.ac.uk
mailto:csaunders@bus.ucf.edu
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
mailto:les.hatton@kingston.ac.uk

90 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

SOUNDING BOARD

Consider the W1 case-based rea-
soning (CBR) system, also known as
“Dub-ya” or the “the decider.”3 CBR
makes conclusions by inspecting the
nearest similar historical cases. To
make W1 a landscape miner (which
we’ll call W2), we can cluster the
training data into a tree of clusters,
where child nodes contain subclusters
of the parents. Then, a feature selec-
tor runs over the data to reject fea-
tures whose values can’t distinguish
the clusters. Specifi cally, we’re check-
ing the entropy of each attribute value
over all clusters and deleting those
with the highest entropy. Finally, we
can replace all leaf clusters with the
median of each cluster. The resulting
space of features and examples is very
small: dozens of features reduce down
to just a handful, and hundreds of ex-
amples reduce down to just one exam-
ple per cluster.

By restricting inference to just some
subtree of clusters (where the leaves
now contain just one representative
example), we can quickly build many
local models specialized to particular
contexts.

W2 has two important features.
First, it’s a landscape miner in that it
maps out different regions of data in-
side of which we might build different
models. Second, while the assembly of
ideas is somewhat unique, each part of
W2 is a known tool to the predictive
modeling community. That is, it’s pos-

sible for the predictive community mod-
eling community to refocus and redirect
its tools toward an interesting new goal.

Decision Mining
At a recent panel on software analytics
at ICSE 2012, industrial practitioners
reviewed the state of the art in data
mining.4 Panelists commented, “Pre-
diction is all well and good, but what
about decision making?” Data mining
is useful because it focuses an inquiry
onto particular issues, but data miners
are subroutines in a higher-level deci-
sion process.

To convert W2 into a decision miner
(which we’ll call W3), we add contrast
set learning. While classifi ers report
what’s true about different regions of
data, contrast set learners report how
those regions differ. Contrast sets can
be much smaller than classifi cation
rules, particularly if they’re gener-
ated as a postprocessor to some deci-
sion tree process. Contrast sets learned
high in a decision tree tend to wipe out
most possibilities and select for few
classes—they do this by using fewer ex-
tra constraints.

W3 uses the same clusters as found
by W2, but applies the principle of

envy. Each cluster fi nds the closest
neighboring cluster that it most de-
sires—for example, for effort estima-
tion, the neighboring cluster with the
projects that are cheaper to build. W3
then applies a contrast set learner to
the neighboring cluster to fi nd best
practices for achieving those better re-

sults in that cluster. In a recent IEEE
Transactions on Software Engineering
paper, I showed that such envy-based
“local learning” can result in much
better models than if we overgeneralize
by learning from all the data.5

The lesson of W3 is the same as W2:
new and innovative approaches to pre-
dictive modeling can be achieved by
refactoring our current tools.

Discussion Mining
Pablo Picasso once said “comput-
ers are stupid; they only give you an-
swers.” Discussion miners aren’t stu-
pid; they know that while predictions
and decisions are important, so too
are the questions and insights gener-
ated on the way to those conclusions.
In my view, discussion mining is the
next great challenge for the predic-
tive modeling community. In the com-
ing century’s heavily digital world,
such discussion tools are going to be
essential. Without them, humans will
be unable to navigate and exploit the
ever-increasing quantity of readily-
accessible digital information.

In some sense, discussion miners are
the very opposite of the Web:

The Web was designed for infor-
mation transport and access, with
a primary goal of rapid sharing of
new information.
If the Web were a discussion miner,
it would be possible to instantly
query each webpage to fi nd other
pages with similar (or disputing) be-
liefs, fi nd the contrast set between
then agreeing and disputing pages,
and then run queries that helped the
reader assess the plausibility of each
item in that contrast set.

Note that much of the current pre-
dictive modeling research wouldn’t
qualify as a discussion miner because,
in the usual case, most of that litera-
ture is still struggling with methods to

continued from p. 92

Prediction is all well and good,
but what about decision making?

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=P90E1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

MAY/JUNE 2013 | IEEE SOFTWARE 91

SOUNDING BOARD

create one model, let alone updating a
model as time progresses.

One fascinating open issue with
discussion miners is how they should
be assessed. In discussion mining, the
model’s goal is to find its own flaws
and replace itself with something bet-
ter, which brings to mind a quote from
Susan Sontag: “The only good answers
are the ones that destroy the ques-
tions.” In other words, we shouldn’t as-
sess such models by accuracy, recall, or
precision—rather, we should assess the
audience engagement they engender.
No, I don’t know how to do that either,
but I find it exciting that there are such
clear and important problems waiting
for us to solve tomorrow.

In terms of engineering principles,
Table 1 shows the internals of a dis-
cussion miner. Note that the predictive

modeling community already has the
parts needed to assemble this and other
new kinds of miners.

W e must move on, and we
can. Enough already with
algorithm mining: it’s

time to do other things. Industrial prac-
titioners aren’t really concerned with
the internal details of our algorithms
or how our data divides into regions.
They’re more concerned with the tools
needed to help push the community to
debate different possible decisions.

References
1. K. Dejaeger et al., “Data Mining Techniques

for Software Effort Estimation: A Compara-
tive Study,” IEEE Trans. Software Eng., vol.
28, no. 2, pp. 375–397.

2. T. Hall et al., “A Systematic Review of Fault
Prediction Performance in Software Engineer-

ing,” IEEE Trans. Software Eng., vol. 38, no.
6, pp. 1276–1304.

3. A. Brady and T. Menzies, “Case-Based
Reasoning vs. Parametric Models for Software
Quality Optimization,” Proc. 6th Int’l Conf.
Predictive Models in Software Eng. (PROM-
ISE 10), ACM, 2010; http://doi.acm.
org/10.1145/1868328.1868333.

4. T. Menzies and T. Zimmermann, “Gold-
fish Bowl Panel: Software Development
Analytics,” Proc. 2012 Int’l Conf. Software
Eng. (ICSE 2012), IEEE, 2012, pp. 1032–
1033.

5. T. Menzies et al., “Local vs. Global Lessons
for Defect Prediction and Effort Estimation,”
IEEE Trans. Software Eng., preprint, pub-
lished online Dec. 2012; http://goo.gl/k6qno.

TIM MENZIES is a full professor of computer sci-
ence at the Lane Department of Computer Science
and Electrical Engineering, West Virginia University.
Contact him at tim@menzies.us.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer
Society. IEEE headquarters: Three Park Ave., 17th Floor, New York, NY 10016-
5997. IEEE Computer Society Publications Office: 10662 Los Vaqueros Cir., Los
Alamitos, CA 90720; +1 714 821 8380; fax +1 714 821 4010. IEEE Computer So-
ciety headquarters: 2001 L St., Ste. 700, Washington, DC 20036. Subscription rates:
IEEE Computer Society members get the lowest rate of US$56 per year, which in-
cludes printed issues plus online access to all issues published since 1984. Go to www.
computer.org/subscribe to order and for more information on other subscription prices.
Back issues: $20 for members, $209.17 for nonmembers (plus shipping and handling).

Postmaster: Send undelivered copies and address changes to IEEE Software, Mem-
bership Processing Dept., IEEE Service Center, 445 Hoes Lane, Piscataway, NJ
08854-4141. Periodicals Postage Paid at New York, NY, and at additional mail-
ing offices. Canadian GST #125634188. Canada Post Publications Mail Agreement
Number 40013885. Return undeliverable Canadian addresses to PO Box 122, Ni-
agara Falls, ON L2E 6S8, Canada. Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of this ma-
terial is permitted without fee, provided such use: 1) is not made for profit; 2)
includes this notice and a full citation to the original work on the first page of

the copy; and 3) does not imply IEEE endorsement of any third-party products or
services. Authors and their companies are permitted to post the accepted version
of IEEE-copyrighted material on their own webservers without permission, pro-
vided that the IEEE copyright notice and a full citation to the original work appear
on the first screen of the posted copy. An accepted manuscript is a version which
has been revised by the author to incorporate review suggestions, but not the pub-
lished version with copyediting, proofreading, and formatting added by IEEE.
For more information, please go to: http://www.ieee.org/publications_standards/
publications/rights/paperversionpolicy.html. Permission to reprint/republish this
material for commercial, advertising, or promotional purposes or for creating
new collective works for resale or redistribution must be obtained from IEEE by
writing to the IEEE Intellectual Property Rights Office, 445 Hoes Lane, Pisca-
taway, NJ 08854-4141 or pubs-permissions@ieee.org. Copyright © 2013 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the source. Li-
braries are permitted to photocopy for private use of patrons, provided the per-copy
fee indicated in the code at the bottom of the first page is paid through the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

TA
B

L
E

 1 Internals of a discussion miner.

Level What Task Uses

0 Do Predict, decide Regression, classification, nearest neighbor reasoning

1 Say Summarize, plan, describe Instance section, feature selection, contrast sets

2 Reflect Trade-offs, envelopes, diagnosis, monitoring Clustering, multiobjective optimization, anomaly detectors

3 Share Privacy, data compression, integrate old and new rules,
recognize and debate deltas between competing models

Contrast set learning, transfer learning

4 Scale Do all of the above, quickly ?

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

__

http://www.qmags.com/clickthrough.asp?url=http://www.ieee.org/publications_standards/publications/rights/paperversionpolicy.html&id=18138&adid=P91E2
http://www.qmags.com/clickthrough.asp?url=www.computer.org/subscribe&id=18138&adid=P91E5
http://www.qmags.com/clickthrough.asp?url=http://ComputingNow.computer.org&id=18138&adid=P91E4
http://www.qmags.com/clickthrough.asp?url=http://goo.gl/k6qno&id=18138&adid=P91E3
http://www.qmags.com/clickthrough.asp?url=http://doi.acm.org/10.1145/1868328.1868333&id=18138&adid=P91E1
mailto:tim@menzies.us
mailto:pubs-permissions@ieee.org
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

92 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Editor: Neil Maiden
City University London,
n.a.m.maiden@city.ac.uk

Editor: Philippe Kruchten
University of British Columbia
pbk@ece.ubc.ca

SOUNDING BOARD

THE PREDICTIVE MODELING commu-
nity applies data miners to artifacts from
software projects. This work has been very
successful—we now know how to build pre-
dictive models for software effects and de-
fects and many other tasks such as learn-
ing developers’ programming patterns (see
the extended version of this article at http://
menzies.us/pdf/13idea.pdf for more detail).

That said, to truly impact the work of
industrial practitioners, we need to change
the predictive modeling community’s focus.
To date, it has spent too much time on algo-
rithm mining when the fi eld is moving into
what I call landscape mining. To support in-
dustrial practitioners, we’re going to have to
move on to something I call decision mining
and then discussion mining.

This article compares and contrasts the
four kinds of miners shown in Figure 1:

Algorithm miners explore tuning param-
eters in data mining algorithms.
Landscape miners reveal the shape of the
decision space.
Decision miners comment on how best to
change a project.
Discussion miners help the community
debate trade-offs regarding the different
decisions.

Note that algorithm and landscape min-
ing are more research-focused activities that
explore the miners’ internal details. How-
ever, decision and discussion miners are more
practitioner-oriented because they’re focused
on how a community can use conclusions.

Algorithm Mining
While it’s rarely stated, the original premise
of predictive modeling was that predictions
should guide software management—in
other words, once upon a time, the aim of a
prediction was a decision.

Sadly, that original aim seems to be for-
gotten. Too many researchers in the fi eld are
stuck in a rut, publishing papers that spend
very little time exploring the data and much
more time on the data algorithms. Most of
these papers focus on exploring confi gu-
ration options with the algorithms, rather
than refl ecting on the underlying data. Re-
cent papers report that there’s little to be
gained from such algorithm mining because
the “improvements” found from this ap-
proach are marginal, at best—for example,
for effort estimation and defect prediction,
simpler data miners do just as well or better
than more elaborate ones.1,2

Landscape Mining
Algorithm mining is a “leap before your
look” approach in which researchers throw
algorithms at data and then see what comes
out. A second approach is the “look before
you leap” option—mining the data to fi nd
the space of possible inferences before leap-
ing in with the learners. This is the data’s
“landscape.”

Beyond Data Mining
Tim Menzies

continued on p. 90

discussion
mining

decision
mining

futuretomorrow

landscape
mining

algorithm
mining

algorithm
mining

todayyesterday

FIGURE 1. Four kinds of miners shown left to right, past to future.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=http://menzies.us/pdf/13idea.pdf&id=18138&adid=P92E1
mailto:pbk@ece.ubc.ca
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

 www.usenix.org/facebook

 www.twitter.com/usenix www.usenix.org/youtube

 www.usenix.org/blog

 www.usenix.org/gplus

Stay Connected...

AND MORE!

Registration Discounts Available!
Registration opens in April.
Register by the Early Bird Deadline,
Monday, June 3, and save.

USENIX ATC ’13
2013 USENIX Annual

Technical Conference
Wednesday–Friday, June 26–28

www.usenix.org/atc13

ICAC ’13
10th International Conference on

Autonomic Computing
Wednesday–Friday, June 26–28

 www.usenix.org/icac13

HotPar ’13
5th USENIX Workshop on
Hot Topics in Parallelism
Monday–Tuesday, June 24–25

www.usenix.org/hotpar13

UCMS ’13
2013 USENIX Configuration

Management Summit
Monday, June 24

www.usenix.org/ucms13

Feedback Computing ’13
8th International Workshop on

Feedback Computing
Tuesday, June 25

www.usenix.org/feedback13

ESOS ’13
2013 Workshop on
Embedded Self-Organizing Systems
Tuesday, June 25
www.usenix.org/esos13

HotCloud ’13
5th USENIX Workshop on
Hot Topics in Cloud Computing

Tuesday–Wednesday, June 25–26
www.usenix.org/hotcloud13

WiAC ’13
2013 Women in Advanced
Computing Summit
Wednesday–Thursday, June 26–27
www.usenix.org/wiac13

HotStorage ’13
5th USENIX Workshop on
Hot Topics in Storage and
File Systems
Thursday–Friday, June 27–28
www.usenix.org/hotstorage13

HotSWUp ’13
5th Workshop on Hot Topics
in Software Upgrades
Friday, June 28
www.usenix.org/hotswup13

www.usenix.org/fcw13

June 24–28, 2013 • San Jose, CA
2013 USENIX Federated Conferences Week
Save the Date!

 www.usenix.org/linkedin

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.qmags.com/clickthrough.asp?url=www.usenix.org/blog&id=18138&adid=PCOVER 3A17
http://www.qmags.com/clickthrough.asp?url=www.usenix.org/linkedin&id=18138&adid=PCOVER 3A16
http://www.qmags.com/clickthrough.asp?url=www.usenix.org/facebook&id=18138&adid=PCOVER 3A15
http://www.qmags.com/clickthrough.asp?url=www.usenix.org/gplus&id=18138&adid=PCOVER 3A14
http://www.qmags.com/clickthrough.asp?url=www.usenix.org/youtube&id=18138&adid=PCOVER 3A13
http://www.qmags.com/clickthrough.asp?url=http://twitter.com/usenix&id=18138&adid=PCOVER 3A12
http://www.qmags.com/clickthrough.asp?url=www.usenix.org/hotswup13&id=18138&adid=PCOVER 3A11
http://www.qmags.com/clickthrough.asp?url=www.usenix.org/feedback13&id=18138&adid=PCOVER 3A10
http://www.qmags.com/clickthrough.asp?url=www.usenix.org/hotstorage13&id=18138&adid=PCOVER 3A9
http://www.qmags.com/clickthrough.asp?url=www.usenix.org/ucms13&id=18138&adid=PCOVER 3A8
http://www.qmags.com/clickthrough.asp?url=www.usenix.org/wiac13&id=18138&adid=PCOVER 3A7
http://www.qmags.com/clickthrough.asp?url=www.usenix.org/hotpar13&id=18138&adid=PCOVER 3A6
http://www.qmags.com/clickthrough.asp?url=www.usenix.org/hotcloud13&id=18138&adid=PCOVER 3A5
http://www.qmags.com/clickthrough.asp?url=www.usenix.org/icac13&id=18138&adid=PCOVER 3A4
http://www.qmags.com/clickthrough.asp?url=www.usenix.org/esos13&id=18138&adid=PCOVER 3A3
http://www.qmags.com/clickthrough.asp?url=www.usenix.org/atc13&id=18138&adid=PCOVER 3A2
http://www.qmags.com/clickthrough.asp?url=www.usenix.org/fcw13&id=18138&adid=PCOVER 3A1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo

www.computer.org/ses13

REGISTER NOW!
Take advantage of
early-bird pricing!

Register
by June 1
and SAVE 25%!

Whittaker
Microsoft

Wolfram

Microsoft
Research

Software Engineering

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

V
I

D
E

O

http://www.qmags.com/clickthrough.asp?url=www.computer.org/ses13&id=18138&adid=PCOVER 4A1
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.computer.org/software&id=18138&adid=logo
http://www.qmags.com/clickthrough.asp?url=www.qmags.com&id=18138&adid=logo
http://youtu.be/0ll4oTYHKi0
http://online.qmags.com/media/ISW/2013/May-June/video_isw0513_04v1w.swf

	Zoom In:
	Next Page:
	Search Issue:
	For navigation instructions please click here:
	Zoom Out:
	Contents:
	http://www:
	qmags:
	com/clickthrough:
	asp?url=www:
	computer:
	org/software&id=18138&adid=logo:

	qmags:
	com&id=18138&adid=logo:

	Front Cover:
	Previous Page:
	Page 35:
	Page 58:
	Page 67:
	Page 25:
	Page 28:
	Page 42:
	Page 50:
	Page 73:
	Page 80:
	Page 87:
	Page 24:
	Page 86:
	Page 20:
	Page 13:
	Page 18:
	Page 7:
	Page 14:
	Page 15:
	Page 9:
	Page 16:
	Page 92:
	POP-UP:
	p1:
	Page 90:
	multi_inner:
	close TOC:
	multi:
	Page 4:
	Page 16t:
	Page 18t:
	Page 50t:
	pg16_pop:
	close16:
	stop16:
	play 16 AU:
	pg16:
	pg18_pop:
	close18:
	stop18:
	play 18 AU:
	pg18:
	pg50_pop:
	close50:
	pg50:
	link_50:
	link_50_a:
	link_50_b:
	link_50_c:
	Page 4t:
	Page c4:
	pg4_pop:
	pg4:
	link_4:
	close4:
	play_4:
	play_4_mac:
	close_4:

