Chapter

16

Designing for Safety

Engineers should recognize that reducing risk is not an impossible
task, even under financial and time constraints. All it takes in many
cases is a different perspective on the design problem.

—Mike Martin and Roland Schinzinger
Ethics in Engineering

Software temptations are virtually irresistible. The apparent ease of
creating arbitrary behavior makes us arrogant. We become sorceror's
apprentices, foolishly believing that e can control any amount of
complexity. Our systems will dance for us in ever more complicated
ways. We don't know when to stop. . . . We would be better off if we
tearned how and when to say no.
—G.E McCormick
When Reach Exceeds Grasp

Safety must be designed into a system. Identifying and assessing hazards is
tenough to make a system safe; the information obtained in the hazard analysis
ds to be used in the design. As discussed earlier, most accidents are not the
sult of lack of knowledge about hazards and their causes but of the lack of
tive use of that knowledge by the organization.

Safeguards may be designed into the product, or they may be designed into
e procedures that operators are given for specific situations. Often, the most
somplex and tricky problems are left to the operators, who are then blamed when
are unsuccessful and accidents occur. Now that operators are being replaced
3y computer software that is supposed to carry out the same procedures, the onus

ill be on the software.

395

B R Y T A It)

Ievel, a computer can monitor the temperature and the rate of increase
warning early enough to avoid a hazard [158].

ame time, the system must be protected against software errors.
e backups and safety devices are now being replaced or controlled
e eliminating protection against software errors and making safety al-
dependent on the software being perfect. However, assuming that
I be correct when first used and that ail errors will be removed
is unrealistic, as argued in Chapter 2. Virtually no nontrivial soft-
s that will function as desired under all conditions, no matter what
cur in the other components of the system. Therefore, all system de-
consider the consequences of software errors and build in protection

Simple design, features often can improve safety without increasing
plexity or cost, but this requires considering safety early in the design:
An illustration of this idea is the motor-reversing system described in Ch
where the simple rearrangement of two functions, at no additional cost,
inates a potential battery shorting problem [214]. Other real-life examp
magnetic refrigerator door latches (to prevent children from being trap
side), deadman switches (which ensure that a system is powered only s
as pressure is exerted on a handle or footpedal), and old-fashioned ra
semaphores (gravity and weight-operated devices that lowered and automati
assumed the sTOP position if the cable broke). Many of these simple and safé
vices are now being replaced by computers that may not provide an equi
level of safety. In some cases, similar approaches can be applied to software,’
little information about designing such safety mechanisms into software has b
compiled and codified.

We need to be careful though: Poorly designed risk reduction mea
can actually increase risk and cause accidents. Chapter 4 discussed some of
reasons for this phenomenon. Such designs, for example, can increase syst
complexity. Adding unnecessary complexity is common when safety is not «
sidered early in design but is instead added on at the end, often in the form of
ple redundancy or protection systems. In addition, predicating designs on
assumptions about human behavior or independence between components
defeat atternpts to reduce risk while allowing the elimination of other, mor
fective measures or allowing the reduction of safety margins.

In some cases, safety mechanisms are an attempt to compensate for a
basic system design. Operators may come to rely on them and take fewer preca
tions; when they fail, serious accidents may result. System design should make
possible to work in the vicinity of machines without disturbing production unnec:
essarily, A poorly designed safety device that slows down production or makes
more difficult will encourage operators to bypass or trick it. “It is a much bett
strategy to design a practical safety system than one that cannot be tricked” [328];

Both software and system design are affected by the introduction of com-
puters into safety-critical systems. Software now controls dangerous systems, and
system-safety functions are commonly being implemented in software. Softwa
engineers need to understand the basic principles behind safe system design so+
they can include them in the software design. It is not enough simply to check
the software requirements for consistency with system safety goals and then te
implement those requirements: Not everything can be written down in require-
ments specifications, and software developers must understand enough about sys-
tem safety that they do not inadvertently contribute to hazards. In turn, software
engineers have a great deal of knowledge to contribute to system-safety efforts.

The use of computers also introduces new possibilities for system safety in
terms of increased functionality and more powerful protection mechanisms. In
chemical plant, for example, a rapid rise in the temperature in a reactor vessel
can indicate a runaway reaction long before the temperature actually reaches a

ortunately, protecting against software errors may be more difficult than
g against hardware failures. Failure modes of electro-mechanical sys-
well understood, and components can often be built to fail in a particular
‘example, a mechanical relay can be designed to fail with its contacts
4 pneumatic control valve can be designed to fail closed or open. Those
s can then be used to design the system to fail into a safe state, such as
down a dangerous machine. It is difficult, however, to plan for software
since they are unpredictable. Many computer hardware failures and some
errors can be detected and handled, but doing so requires a great deal of
and effort.
\lthough clever ways to design software to enhance safety have been de-
for specific projects, little has been published or is widely known. This
describes standard system safety design approaches and some of their
ations to software design. The safe software design techniques described
from exhaustive; hopefully they will start people thinking about additional
 to apply standard safety engineering approaches to software design.

1 The Design Process

are two basic approaches to safe design: (1) applying standards and codes
ractice that reflect lessons learned from previous accidents and (2) guiding

by hazard analysis. These approaches are complementary and both should
d.

.1 Standards, Codes of Practice, and Checklists

ardware, general safety design principles have been incorporated into stan-
codes of practice, and checklists in order to pass on lessons learned from
idents. For example, the proper use of pressure relief valves is specified in
ards for pressure vessels in order to avoid explosions, while the use of elec-
al standards and codes reduces the probability of fires. There are no equivalent

“TABLE 16.1
Checklist Examples

16.1. The Design Process

ugh a large number of design errors are possible in hardware, the
usually focus on those that lead to known hazards. Checklists are often

Mechanical Hazards Checklist (incomplete)

1.
2,

How are pinchpoints, rotating components, or other moving parts guarded?

Have sharp points, sharp edges, and ragged surfaces not required for the
function of the product been eliminated?

How have bumpers, shock absorbers, springs, or other devices been used
to lessen the effect of impacts?

Are openings small enough to keep people from inserting fingers into
dangerous places?

Do slide assembilies for drawers in cabinets have limit stops to prevent
them from being pulled out too far?

If a product or assembly must be in a particular position, how is this
guaranteed? Is it marked with a warning and a directional arrow?

How are hinged covers or access panels secured in their open positions
against accidental closure?

How are the rated load capacities enforced? Is the equipment at least
pasted with rated load capacities?

Pressure Checklist (incomplete)

1.

How have connectors, hoses, and fittings been secured to prevent
whipping if there is a failure?

Is there any way to accidentally connect the sysief’;m to a source of pressure
higher than that for which the system or any of its components was
designed?

Is there a relief vaive, vent, or burst diaphragm?

How will the exhaust from the relieving device be conducted away safely
for disposal?

How can the system be depressurized without endangering a person who
will work on t?

Do any components or assemblies have to be instalied in a specific way? If
so, what means are used to prevent a reversed installation or connection?

n software design reviews. although they are much less well developed
dware and are oriented toward coding errors in general and not to-
in particular. Since software is not by itself hazardous, there are no
are hazards to consider in design checklists, but checklists could
ed that included safe software design features (as opposed to com-
g errors) from the design features described in this chapter and other

the introduction of computers into safety-critical systems, many of the
ted and incorporated into hardware standards and codes are being
because of a lack of knowledge on the part of the software engi-
because the principles are not translated into the language of the new
or into the different and sometimes more complex designs possible using
5. Some design principles may not hold when computers replace electro-
cal systems, but most do, and these must be incorporated into system and
designs to avoid needless repetition of past accidents.

Design Guided by Hazard Analysis

gh checklists and standards are extremely important, their use alone often
dequate to prevent accidents, especially in complex systems or in systems
eomputers allow new features that are not necessarily handled by proven
and standards. Therefore, the design must also eliminate or control the
hazards identified for a particular system.

e software tasks identified in Chapter 12 related to software design were:

Develop system-specific software design criteria and requirements, testing
fequirements, and computer-human interface requirements based on the
dentified software safety constraints and software-related hazards.

standards for safe software. Many of the software design features suggeste
various standards are aimed at reliability, maintainability, readability and so on
although little scientific, empirical evaluation of these features has ever
place. When these qualities coincide with safety requirements in a particular s
tem, they may make the software safer: when they conflict with safety or ha
little to do with the particular system hazards, they may have little effect on safe

and may even increase risk.

Design checklists are another way to systematize and pass on engineeri
experience and knowledge. Safety checklists identify design features or crite
found to be useful for specific hazards. Table 16.1 gives examples of part

checklists for mechanical hazards and pressure systems.

race safety requirements and constraints to the code; identify those parts
that control safety-critical functions and any safety-critical paths that lead to
their execution. Design to control the identified hazards.

‘The system hazard analysis identifies software-related safety requirements
onstraints, which are used to validate the software requirements, as de-
d in Chapter 15. These safety-related requirements and constraints should
‘be identified to the developers and used to guide design. They need to be
d into the design to identify the parts of the software that control safety-
operations so that analysis. special design efforts, and special verification
then be focused on those functions.

The first step in using hazard analysis information in design is to generate
n criteria and general design principles for the software. Some of these
ia may be the same as or related to the system design criteria identified
system hazard analysis (see Section 13.1.6). They should state what is to

39

400

Chapter 16. Designing for Safety 16.2. Types of Design Techniques and Precedence

earning from our failures. The basic system safety design goal is to
identified hazards or, if that is not possible, to reduce the associated
ceptable level.

a function of (1) the likelihood of a hazard occurring, (2) the likeli-
: hazard leading to an accident (including duration and exposure), and
ity or consequences of the accident (see Chapter 9). A design can be
er by reducing any or all of these three factors. System safety guidelines
t risk reduction procedures be applied with the following precedence:

be achieved rather than how to achieve it so that the designer has the
to decide how the goals can best be accomplished. A criterion might t
software must fail into a safe state if events A, B, or C occur; that the
must not generate avoidance maneuvers that cause unnecessary crossi
in a collision avoidance system; or that the software must not issue m
for the robot to move without receiving proper operator inputs.

Too often, careful consideration in design and testing is focused on t
mal (or nominal) operation of a system, but much less attention is paid
neous or unexpected (off-nominal) states. Software especially suffers fro
problem: Much of it is not designed to be robust against unexpected inpu
environments or to protect against coding or requirements errors.

From the start, testability and analyzability of the design—which o
mand simplicity—should receive serious consideration in decision makin;
tification and verification of safety are extremely costly procedures and
impossible or impractical for some large systems unless the design is sp
tailored to be certifiable. The design should leverage the certification
minimizing the verification required and simplifying the certification pro

The high-level software design process usually identifies the basic n
and the interactions among them, including a set of data flows. Cha [48
shown how to identify safety-critical modulcsfjand data and how to derive
mal safety constraints on the modules using a representation of the design
directed graph. The nodes of the graph represent the functions that the mc
compute, and the edges denote the data dependency among the modules. So
the same goals can be achieved by applying informal techniques to standard d
flow and control flow specifications.

Like any requirements, a traceability matrix and tracking procedures w
the configuration control system need to be established to ensure traceability
safety requirements and their flow through the documentation.

Conditions change, and decisions need to be reviewed periodically. The s
tem design and software will change over time as well. The design specificatiC
should include a record of safety-related design decisions (including both :
eral design principles and criteria and detailed design decisions), the assump
underlying these decisions, and why the decisions were made. Without such dox
umentation, design decisions can easily be undone accidentally. Finally, incid
that occur during the life of the system can be used to determine whether the
sign decisions were well founded and allow for learning from experience.

ard elimination: Designs are made intrinsically safe by eliminating
zards. Hazards can be eliminated either by eliminating the hazardous state
from system operation or by eliminating the negative consequences
} associated with that state. and thus eliminating the hazard by defi-
n (if a state does not lead to any potential losses, it is not a hazard).

ard reduction: The occurrence of hazards is reduced. Accidents are less

y if the hazards that precede and contribute to them are less likely. For

?mple, if two aircraft do not violate minimum separation standards (the

'St dard hazard in air traffic control), they will not collide. Similarly, if the

onditions that lead to a hazard are less likely to occur, the hazard likelihood
reduced.

ard control: If a hazard occurs. the likelihood of it leading to an acci-
nt is reduced. One type of hazard control is to detect the hazard and trans-
r to a safe state as soon as possible. Accidents do not necessarily follow
from a hazard; usually. other conditions must be present in the environment
of the system that, together with the hazard, lead to losses. Reducing the
robability of an accident involves minimizing the duration and exposure of
the hazard in the hope of reducing the probability that those other conditions
will develop and an accident will occur.

Damage minimization: The consequences or losses of the accident are re-
. duced. Losses from an accident often cannot be eliminated by the system
- design alone because the accident occurs outside the boundary of the system.
. But designers can provide warnings and contingency actions, and govern-
ments or other outside forces often have options available to them to reduce
potential losses.

The design precedence does not imply that just one of these approaches
Id be taken. All are necessary because not all hazards will be foreseen, the
of eliminating or reducing hazards may be too great (in terms of money or
red tradeoffs with other objectives), and mistakes will be made.

_ The higher in the precedence, the more likely the measures are to be suc-
I in avoiding losses; if a hazard is eliminated or its occurrence reduced, for
ple, there needs to be less reliance on control measures (including humans
may make mistakes or protection devices that may fail, may not be prop-
¢ maintained, may be turned off or not functioning, or may be ignored in an
ergency). Also, as has been stressed repeatedly in this book, it is easier and

16.2 Types of Design Techniques and Precedence

The idea of designing safety into a product is not new. As shown in Chapter
it was advocated by John Cooper and Carl Hansen in the last century. With
development of system safety and reliability engineering has come an increa
emphasis on preventing accidents instead of the more standard engineering

401

of barriers or physical separations between it and humans or property.
el hazard control measures include such design goals as limiting the
in the process, safe energy release in the event of containment fail-

Giie]

Hazard Elimination

Subsitution ic control devices to maintain control over energy sources, barriers,
Simplification g targets, and manual backups to maintain safe energy flow if there
Decoupling system failures. The effectiveness of barriers, such as containment

Elimination of specific human errors

safety zones, depend only on their reliable operation rather than on
Reduction of hazardous materials or conditions

ilar hypothesized chain of events or causal factors. Accordingly, safe
¥y containment systems often involves the use of design allowances
ors rather than hazard analysis.

been seen, the energy model is only one possible accident model.
focuses on safety as a control problem will emphasize appropriate
-and controls and perhaps shutdown systems if the controls fail. A

PO T T T

D Y b L e P oL e U o, =7 Py~

Hazard Reduction

Design for controllability

Ba{{iféﬁouts : ents model may try to eliminate the identified events leading to the
i F system model that focuses on component interactions will suggest
Interlocks tures that limit interactions and that eliminate hazardous states from

TR

design,

specific design features applied will therefore depend upon the accident
ected. The rest of the chapter describes some of these design features,
tchapter presents approaches to design of the human-machine interface.

Failure minimization
Safety factors and safety margins
Redundancy

Hazard Control 2

Reducing exposure
Isolation and containment
Protection systems and fail-safe design

Hazard Elimination

t effective way to deal with a hazaid is to eliminate it or to eliminate
bility that it will lead to an accident (which, by definition, eliminates the

Damage Reduction i

‘the meat of lions was good to eat, farmers would find ways of farming
ns. Cages and other protective equipment would be required to keep them
der control and only occasionally, as at Flixborough, would the lions
ak loose. But why keep lions when lambs will do instead? [154, p.66]

FIGURE 16.1 '
Safe design techniques in order of their precedence.

the energy model of accidents, an intrinsically safe design is one that is in-
of generating or releasing sufficient energy or causing harmful exposures,
ormal or abnormal conditions (including outside forces and environmen-
res), to cause a hazard. given that the equipment and personnel are in their
alnerable condition. In a more general systems model, an intrinsically safe
R is one in which hazardous states or conditions cannot be reached under
ditions. Of course, philosophically speaking, nothing is impossible. The-
ly, you could be hit by a meteorite while reading this book. But from a
cal engineering standpoint, the occurrence of some physical conditions or
§ 18 so remote that their consideration is not reasonable.

cheaper to build safety in than to add it on. An inherently safe process will &
be cheaper than a hazardous one with many “add-on” safety devices I195-].

Figure 16.1 shows the basic system safety design techniques and their pr
dence within the general categories. The specific design features chosen to;
vent hazards will often depend upon the accident model used and thus upor
types and causes of hazards that are hypothesized. As seen in Chapter 10,
different models of accidents have been proposed.

For example, if accidents are defined as loss of control of energy, then b
accident prevention strategies will often include the use of controls on the ene

104 -

Chapter 16. Designing for Safety

systems. If the normal cooling system fails, emergency systems are
to prevent overheating. In contrast,

Several techniques can be used to achieve an intrinsically safe desigs
tution, simplification, decoupling, elimination of the potential for hu

and reduction of hazardous materials or conditions. : _
Advanced gas cooled reactors are cooled to a substantial extent by con-

vection if forced circulation is lost. Fast breeder reactors and other de-
signs still under development (such as the high temperature gas reactor
and the PIUS (process inherent ultimate safety) cannot overheat even if
all cooling systems fail completely. In the PIUS design, a water cooled
reactor is immersed in a vessel containing borate solution. If coolant
pressure is lost. the reactor is flooded by the solution which stops the
reaction and cools the reactor [191].

16.3.1 Substitution

One way of eliminating hazards is to substitute safe or safer conditions of
als for them, such as substituting nonflammable materials for combustib
rials or nontoxins for toxins. Of course, substitution may introduce other
but the goal is for these new hazards to be minor. For example, using p
or hydraulic systems instead of electrical systems may eliminate the possi
fatal injuries from an electrical hazard, but not the more minor hazards a
with compressed air. Some examples of substitution follow:

extremely critical cases, using very simple hardware protection
s may be safer than introducing computers and the necessarily greater
y inherent in implementing an analog function on a digital computer.
le, a simple access door or panel that breaks a circuit on high-voltage
when opened is much safer than sophisticated electronic devices that
human entering an area and send the information to a computer, which
st send a command to an actuator to shut down the equipment. There is no
gical imperative that says we must use computers to control hazardous

o In the chemical industry, water or oils with high boiling points have B
substituted for flammable oils as heat transfer agents; silicious n
have been eliminated from scouring powders; flammable refrigerants
been replaced by fluorinated hydrocarbons {154]; and hydraulic insl
pneumatic systems have been used to avoid violent ruptures of pr
vessels that could generate shock waves [108]. Similarly, pressure
are generally tested with water or other liquids and not with gas becau
rupture of a vessel containing pressurized gas can generate a shock wave
damage similar to that caused by a high explosive. A liquid will not exg
the way a gas will when pressure is released, and therefore no shock W
will be created after rupture [107].

o Some missiles have used hybrid propulsion systems, containing both a §6)
fuel and liquid oxidizer, which eliminate the possibility of combustion
explosion as long as the two are separated. They also eliminate the poss
ity of uncontrolled combustion due to cracks, voids, and other separatios
the solid propellant [106].

o Kletz [152] tells of a plant where a chlorine blower was to be made 1o
titanium, a material suitable for use with wet chlorine but which “burns”.
dry chiorine. The chlorine passes through a water scrubber before reac]
the blower, and an elaborate trip system was designed to make sure that i
chance of dry gas reaching the blower would be small. Following a i
of the design, the complex trip system was scrapped and a rubber-co er
blower installed instead. Although this blower was less reliable than #
titanium one, it eliminated the hazard resulting from the blower coming
contact with dry chlorine.

o After the Apollo 13 near accident (see Appendix B), a review board ree
mended replacement of Teflon insulation in the oxygen tanks of the
mand and service module system with stainless steel [108].

Simplification

the most important aspects of safe design is simplicity. A simple design
fo minimize the number of parts, functional modes, and interfaces, and it
small number of unknowns in terms of interactions with the system and
/stem operations [265].

row has examined a large number of accidents in many types of sys-
concludes that interactive complexity and tight coupling are the major
factors in these accidents [259]. William Pickering, a director of the
ypulsion Laboratory, credits the success of early U.S. lunar and planetary
ft to simplicity and a conservative approach:

- Fhe most conservative designs capable of fulfilling the mission requirements
t be considered. Conservative design involves, wherever possible. the
of flight-proven hardware and, for new designs, the application of state-
‘of-the-art technology, thereby minimizing the numbers of unknowns present
the design. New designs and new technologies are utilized, but only when
eady existing flight-proven designs cannot satisfy the mission require-
- nts, and only when the new designs have been extensively tested on the
und (265, p.136].

echnology and new applications of existing technology often introduce
wn unknowns” (sometimes referred to as UNK-UNKs). Brown notes that
accident investigation, discussions of these are generally prefaced by

o In the nuclear industry, pressurized water reactors depend on engin o-would have thought . . . ™ [42].

16.3. Hazard Elimination

405

406

Chapter 16. Designing for Safety 16.3. Hazard Elimination

or, which eliminates pump, cooler, and pipelines; mixing is achieved
gas produced as a byproduct.
ing to Kletz [152], some of the reasons for complexity in system

Simpler systems provide fewer opportunities for error and failure.
tence of many parts is usually no great problem for designers or operators
interactions are expected and obvious. But when the interactions reach a
complexity where they cannot be thoroughly planned, understood, antici
and guarded against, accidents occur [259].

Interfaces are a particular problem in safety: Design errors are often
in the transfer of functions across interfaces. Simple interfaces help to mi;
such errors and to make the designs more testable. ;

As argued in Chapter 2, it is easier to design and build complex inte
with software than with physical devices. Normally, increasing the compl
of physical interfaces greatly increases the difficulty of design and constr
The same rule of thumb is not true for software, which can be used
easily to implement complex physical interfaces or complex interfaces
the computer hardware and software itself. Building a reliable and erro
complex interface using software is extremely difficult, of course, but this Ie
seems not to have been learned yet by many engineers.

Reducing and simplifying interfaces will reduce risk. Interface pra
often lie in the control systems; thus, a basic design principle is that ¢
systems not be split into pieces {344]. Contrary to this basic engineering
principle, a current trend in complex systems is to break up control systems
implement them on multiple microprocessors, thus increasing the number o
terfaces. Where obvious and natural interfaces exist, this separation is reasons
But sometimes more interfaces are created than necessary, leading to acci
For example, in one modern military aircraft, the weapons management sy
was originally implemented on one microprocessor, which both launched:
weapon and issued a weapon release message to the pilot. Pilots quickly 1
the timing relationships between messages and weapon release, and they ti »
their maneuvers accordingly. For some reason, the two functions were later ¢ 3 autopilot, the first full-authority fly-by-wire system ever deployed, flew
vided up and put on separate computers, changing this timing relationship. As ore than 15 years without an in-flight anomaly [29]. Boebert, one of its de-
accident resulted when a pilot, after seeing the weapon release message, do s, attributes its success to the purposeful simplification of the design. Using
and the plane was hit with its own missile. they called a rate structure, the design rules allowed no interrupts and no

Kletz has written extensively about simplifying chemical plant desig branches in the code; the control flow was “unwound” into one loop that
Most of the serious accidents that occur in the oil and chemical industries xecuted at a fixed rate. This design is an example of simplifying control
sult from a leak of hazardous material [152]. Leaks can be eliminated or reduc the expense of data flow:
by designs with fewer leakage points, such as substituting continuous, one-p
lines for lines with connectors [106]. If equipment does leak, design features ¢
ensure that it does so at a low rate that is easy to stop or control.

Major chemical plant items, such as pressure vessels, do not often fail unle
they are used well outside their design limits or are poorly constructed. Ins
most failures occur in subsidiary equipment—pumps, valves, pipe flanges, and
on. Designs can be changed to eliminate as many of these subsidiary devices
possible. For example, using stronger vessels may avoid the need for relief valves
and the associated flare system [291]. As another example, adipic acid used
be made in a reactor fitted with external coolers. Now it is made in an internal

Beed to add on complicated equipment to control hazards: If the design
de intrinsically safe by eliminating or reducing hazards, less added-on
ment will be necessary. If hazards are not identified early, when it is
ossible to change the design to avoid them, the only alternative is to
mplex equipment to control them.

desire for flexibility: Multistream plants with numerous crossovers and
ves (so that any item can be used on any stream) are flexible but have
erous leakage points, and mistakes in valve settings are easy to make,

 use of some types of redundancy to increase reliability: These increase
iplexity and may decrease safety.

g computers to the control of systems often results in increased com-
Adding new functions to a system using computers is relatively easy:
ers are finding that they can add functions that before were impossible or
tical, and they are finding it difficult to practice restraint without the expe-
of long years of failures in these attempts (although we are quickly build-
that experience). Even when there are failures, they are often attributed to
other than the inherent complexity of the projects attempted.

2 seeming ease with which complexity can be added both to a System
software and to the software itself is seductive and misleading. As in
tem, complexity in software design leads to errors. The complexity of the
1in the Therac-25 software added myriad possibilities for unplanned inter-
s and was an important factor in the accidents. In contrast, the Honeywell

ince there were no subroutines, all modules had to communicate by “hiding
note under a rock™ and having the recipient look under the rock for it. One
it flags abounded; but this turned out to be a testing advantage because you
could build special hardware to “snapshot™ the flag vector every cycle and
erefore trace the essential state as the thing flew [29].

Many software designs are unnecessarily complex. The nondeterminism in
y popular software design techniques is inherently unsafe because of the im-
ibility of completely testing or understanding all of the interactions and states
oftware can get into. Nondeterminism also makes diagnosing problems more
cult because it makes software errors look like transient hardware faults: If

407

408

Chapter 16. Designing for Safety 16.3. Hazard Elimination

g execution, for example, should be readily observable by reading the
ting or design document.

the software is executed again after a failure, it is likely to work because i
timings will have changed. By eliminating some forms of nondeterminis;
multitasking, many of the problems associated with synchronization and pos
race conditions are eliminated. _

In many real-time process control applications (such as aircraft contro
users, tasks, and communication are known in advance. All processing and co
munication among System components can be determined at design time, wit
creates the opportunity for significant reductions in operating system comp
ity. Sundstrom argues that effective and safe pilot interfaces require a predic
repeatable system response and thus software that is repeatable in operation
predictable in performance.

The need for deterministic software execution stems from (1) the ne
time periodicity in control systems, (2) the need to analyze and predict algorit
behavior, (3) the need to test software and to reproduce test conditions and re
cate events, and (4) the need of the human operator to rely on consistency. Sin
providing time predictability is a major consideration in safe design, it may B
better not to allow software to request input and output or to schedule other tas
Sundstrom recommends some additional ways of achieving deterministic sof
ware behavior, including: (1) a priori scheduling, (2) exclusive mode definitior
and (3) state transition tables (using only the current state to make control de:
cisions). These features together lead to predictable, repeatable system respon:
and behavior. ;

Boebert provides one explanation for the overuse of complex designs in
software control systems:

actions between components should be limited and straightforward.
orst-case timing should be determinable by looking at the code.
> code should include only the minimum features and capabilities re-

ed by the system and should not contain unnecessary or undocumented
tures or unused executable code.

software design should also eliminate hazardous effects of common
ailures on the software. For example, critical decisions (such as the
7 to launch a missile) should not be made on the values often taken by
omponents (such as all ones or all zeros). As suggested by Brown,

fety-critical functions shall not employ a logic 1 or 0 to denote the safe
armed (potentially hazardous) states. The armed and safe states shall
be represented by at least a four bit unique pattern. The safe state shall be
pattern that cannot, as a result of a one or two bit error, represent the
ed pattern. If a pattern other than these two unique codes is detected, the
'~ software shall flag the errors, revert (o a safe state, and notify the operator
45, p.11].

essages can be designed in ways that eliminate the possibility of computer
are failures having hazardous consequences. In June 1980, for example,
gs were received at U.S. command and control headquarters that a ma-
lear missile attack had been launched against the United States [307]. The

commands prepared for retaliation, but the officers at Cheyenne Moun-
were able to ascertain from direct contact with the warning sensors that no

who either knew nothing other than operating systems or held OS designs np ing missiles had been detected and the alert was canceled. Three days later,
as the ultimate paradigm of software. So CS students and new grad softwa me thing happened again. The false alerts were caused by the failure of a

engineers came out thinking that an autopilot should look like Unix [291. ' uter chip in a multiplexor system that formats messages sent out contin-
to command posts indicating that communication circuits are operating

rly. This message was designed to report that there were 000 ICBMs and
'SLBM:s detected; instead. the integrated circuit failure caused some of the
5 to be replaced with twos. After the problem was diagnosed, the message
s were changed to report only the status of the communication system (and
ing about detecting ballistic missiles), thus eliminating the hazard.

The design of software to control a turbine provides an example of the
sation of many potentially dangerous software design features [122]. The
requirements for the generator are that (1) the governor must always be
to close the steam valves within a few hundred milliseconds if overstressing
en catastrophic destruction of the turbine is to be avoided, and (2) under no
wmstances can the steam valves open spuriously, whatever the nature of the
al or external fault.

" The software to control the turbine is designed as a two-level structure,
the top level responsible for the less important control functions and for
yisory, coordination, and management functions. Loss of the upper level

I Iaid full blame for this circumstance on CS [Computer Science] facul y

The explanation may also be that computer science students normally write op:
erating systems and compilers, but probably will never write a control progra
while in school. Thus, the reason for much unnecessary design complexity ma;
simply be educational and curricular.

A complex software design is usually easier to build than a simple one, ane
the materials, being abstractions, contain almost unlimited flexibility. Construet:
ing a simple software design for a nontrivial problem usually requires discipline.
creativity, restraint, and time. ;

Software engineers do not yet agree on what features 2 simple design should *
have. Defining the criteria such features should satisfy is easier:

o The design should be testable, which means that the number of states is i
ited, implying the use of determinism over nondeterminism, single-taski
over multitasking, and polling over interrupts.

o The design should be easily understood and readable; the sequence of ever

40

10

cannot endanger the turbine and does not cause it to shut down. The u

Chapter 16. Designing for Safety 16.3. Hazard Elimination

ack (quantities must be precise and resources cannot be substituted
uses conventional hardware and software and resides on a processo other).
from the safety-critical base-level software processor.

The base level is a secure software kernel that can detect signifi
ures of the hardware that surrounds it. It includes self-checks to decide
incoming signals are sensible and whether the processor itself is functio
rectly. A failure of a self-check causes reversion of the output to a
through the action of fail-safe hardware.

There are two potential safety problems: (1) the code responsible
checking, validating incoming and outgoing signals, and commanding -
safe shutdown must be effectively error free; and (2) spurious corruption
vital code must not cause a hazardous condition or allow a dormant en
manifested.

The base-level software is held as firmware and written in asse:
speed. No interrupts are allowed in this code other than the one nonma
terrupt used to stop the processor in case of a fatal store fanlt. The avoid
interrupts means that the timing and sequencing of processor operation
defined for any particular state at any time, allowing more rigorous and
tive testing. It also means that polling must be used. A simple design in
all messages are unidirectional and in which no comtention or recovery pro
are required helps ensure a higher level of predictability in the operation {
base-level software. ‘ '

The organization of the base-level functional tasks is controlled by z
prehensive staie table that, in addition to defining the scheduling of tasks,
mines the various self-check criteria that are appropriate under particular ¢
tions. The ability to predict the scheduling of the processes accurately means
precise timing criteria can be applied to the execution time of the most impet
code, such as the self-check and watchdog routines. Finally, the store is co
ously checked for faults.

ts in tightly coupled systems are a result of unplanned interactions.
ions can cause domino effects that eventually lead to a hazardous
Coupling exacerbates these problems because of the increased num-
aces and potential interactions: Small failures propagate unexpect-

simple examples of the use of decoupling to eliminate hazards are
to restrict the spread of fire and (2) overpasses and underpasses at
rsections and railway crossings to avoid collisions.

y not just decouple all systems? Complex and tightly coupled systems
fficient (in terms of production) than loosely coupled ones. There is
less underutilized space, and more multifunction components [259]. In
transformation systems (which include computers) require many non-
ractions.

puters tend to increase coupling in systems since they usually control
system components; in fact, they become the coupling agent unless steps
-in the system design to avoid it. If Perrow’s hypothesis is correct—
plexity and coupling are the causes of what he calls system accidents
en adding computers to potentially dangerous systems is likely to in-
cidents unless extra thought is put into the design of the system and the
e to prevent them.

‘e principle of decoupling can be applied to software as well as system
Medularization is used to control complexity, but how the software is split
acial in determining the effects and may depend on the particular quality
designer is trying to maximize. In general, the goal of modularization
& minimize, order, and make explicit the connections between modules. The
principle of information hiding is that every module encapsulates design
ons that it hides from all other modules; communication is allowed only
explicit function calls and parameters. Besides basic information hiding,
of the principles of software coupling and cohesion [359] also can be used
ouple modules.

When the highest design goal is safety, modularization may involve group-
gether the safety-critical functions and reducing the number of such mod-
 {and thus the number of interfaces) as much as possible. An additional
ge of isolating the safety-critical parts of the code is that the most difficult
tly verification techniques can be focused on these components.

After safety-critical functions are separated from noncritical functions, the
er needs to ensure that errors in the noncritical modules cannot impede
ation of the safety-critical functions. Adequate protection of the safety-
functions will need to be verified.

A common design technique to enhance security is to build the software
d a security kernel—a relatively small and simple component whose cor-
s is sufficient to ensure the security of the software. Similarly, a safery

16.3.3 Decoupling

A tightly coupled system is highly interdependent: Each part is linked to m
other parts, so that a failure or unplanned behavior in one can rapidly affec
status of others. A malfunctioning part in a tightly coupled system cann
easily isolated, either because there is insufficient time to close it off or beca
its failure affects too many other parts, even if the failure does not happen qui
Tightly coupled systems [259] are more rigid, with an overall design that incl

o More time-dependent processes that cannot wait or stand by until they
attended to.

o Sequences that are invariant (such as the requirements that event B foll
event A).

o Only one way to reach a production goal.

411

412

kernel might consist of a protected set of safety-critical functions, or it

Chapter 16. Designing for Safety 16.3. Hazard Elimination

of various kinds, defaults and implicit type conversions, and
s [128, 92 and 91]. Overloading variable names so that they are
do not have a single purpose is also dangerous. On the other hand,
ages with static type checking and the use of guarded commands
all possible conditions are accounted for in conditional statements
branch is fully specified as to the conditions under which it is
to help eliminate potential programming errors. Some of the most
d languages (such as C) are also those that, according to what is
language design, are the most error prone.

- way to reduce potential human error is to write specifications and
t are easily understood. Many languages produce or encourage spec-
programs that are not very readable and thus are subject to misin-
1 or misunderstanding.

tain operating system functions that protect the safety-critical modules:

Design analysis procedures can be used to identify safety-criti
and data, which can then be protected by firewalls. Firewalls may b
such as in the turbine design described earlier where the critical code is
on a separate computer, or they may be logical. In a logical firewall,
computer is created for each program by making the computer act 2
of programs or files is the only set of objects in the system, even tho
objects may be present. Even when the computer is dedicated to one pro
application code still needs to be protected against the operating system:
barriers between the operating system and the application programs are.d
to protect the operating system from the application, but not vice versa.

Logical separation is enforced by providing barriers between |
modules. To implement a firewall, the design must somehow preven|
rized or inadvertent access to or modification of the code or data. This
protection obviously includes preventing self-modifying code. 1t also!
reducing coupling through hardware features, such as not using the sam
output registers and ports for both safety-critical and non—safety-cri
tions. Additional access control technigues (m"iistly derived from the 5
community) are described in Section 16.4.2.

In some systems, critical code or data can be protected physically fr
tentional mutilation by being placed in permanent (read-only) or Semi-pers
(restricted write) memories.

Reduction of Hazardous Materials or Conditions

pletely eliminating a dangerous material or substituting a safer one is
ble, it may still be possible to reduce the amount of the material to a level
e system operates properly but the hazard is eliminated or significantly
us, a plant can be made safer by reducing inventories of hazardous
s in process or storage.

chemical industry started paying attenton to this principle after the
pugh accident in England in 1974 (Appendix C), in which the large scale
losses was due to the presence of large amounts of flammable liquid 1n the
at high pressure and temperature. The MIC in the Bhopal accident was
1 intermediate that was convenient but not essential to store.

he success of this approach in the chemical industry has been striking. For
inventories have been reduced by factors of up to 1,000 or more by
ning separation equipment and heat exchangers, improving mixing, and
ing batch reactors with continuous ones.

reduction in inventory is sometimes achievable only as a result of inten-
ion, that is, by an increase in the pressure or temperature of the reaction.
ome of the advantage of less material in the process is offset by the addi-
energy available to expel the contents of the vessel [291]. The advantage
ification (and one reason for its rapid acceptance) is that it reduces cost,
 smaller vessels, pipes, valves, and so on are needed.

‘Another way to eliminate or reduce hazards is to change the conditions un-
vhich the hazardous material is handled—that is, to use hazardous materials
r the least hazardous conditions possible while achieving the system goals.
sment is often oversized to allow for future increases in throughput, but the
off may be greater risk. For example, potential leak rates can be reduced
ducing the size of pipes—a severed three-inch pipe will produce more than
2 the release rate of a severed two-inch pipe.

16.3.4 Elimination of Specific Human Errors

Human error is often implicated in accidents. One way to eliminate ope
and maintenance error is to design so that there are few opportunities for
in the operation and support of the system. For example. the design can
incorrect assembly impossible or difficult. In the aircraft industry, it is com
to use different sizes and types of electrical connectors on similar or adj
lines where misconnection could lead to a hazard. If incorrect assembly ¢z
be made impossible, then the design should make it immediately clear th
component has been assembled or installed incorrectly, perhaps by color co

Other human factors issues apply here, such as making instruments rea
or making the status of a component clear (whether a valve is open or close
example). This topic. including the implications for the design of the sof
operator interface. is covered in more depth in Chapter 17.

According to Horning, the design of a programming language can’
human errors in several ways: masterability, fault proneness, understan
maintainability, and checkability [128]. Not only must a language be si
but it must encourage the production of simple and understandable prog
Although careful experimental results are limited, some programming lan,
features have been found to be particularly prone to error—among them po

413

ses, hardhats, passive restraint systems in vehicles, and fences) or
‘safe states (such as weight-operated railroad semaphores that drop
 position if a cable breaks, relays or valves designed to fail open or
tractable landing gear for aircraft in which the wheels drop and lock
position if the pressure system that raises and lowers them fails).
ection does not require any special action or cooperation to be effec-
refore is preferable to active protection (which requires that a hazard
be detected and corrected). Passive safety devices are not perfect,
for example, snow and ice may jam weighted railroad semaphores so
fail safe.

safeguards require some actions to provide protection: detecting a
monitoring), measuring some variable(s), interpreting the measure-
osis), and responding. Thus, they require a control system of some
s and more often these control systems involve a computer.

are tradeoffs between these two approaches. Whereas passive devices
ysical principles such as gravity, active devices depend on less reliable
and recovery mechanisms. On the other hand, passive devices tend to
wman activity and design freedom more and are not always feasible to
L.

Other hazards can be eliminated or reduced by processing the hazar
tertals at lower temperatures or pressures. In the chemical industry, this
- which is the opposite of intensification, is called attenuation. As an ex
manufacture of phenol traditionally has been carried out close to the tem
at which a runaway reaction can occur, Automatic equipment has to be {
be) provided to dump the contents of the reactor into a large tank of
temperature gets too high. In more recent designs, the operating tempe
lower, and the dump facilities may not be necessary [152]. Again, signi
savings can be achieved.

The principle of reduction of hazardous materials or conditions can
applied to software. For example, software should contain only the code
absolutely necessary to achieve the desired functionality: Operational so
should not contain unused executable code. Unused code should be remo
the program recompiled without it. Eliminating unused code has important
cations for the use of commercial off-the-shelf (COTS) software in safety-i
systems. Usually, code that is written to be reused or that is general encugh |
reused contains features that are not necessary for every system. Althoug
is a tradeoff here, the assumed increased reliability of COTS software
have any effect on safety (it may even increase risk, as discussed in Chi
while the extra functionality and code may lead to hazards and may make
ware hazard analysis more difficult and perhaps impractical.

Because of the possibility of inadvertent jumps to undesired locati
memory (perhaps due to electromagnetic radiation or electrostatic interfe
processor memory not used by the program should be initialized to a patters
will cause the system to revert to a safe state if executed. All overlays
occupy the same amount of memory, and again any unused memory for a p
ular overlay should be filled such that a safe state will result if it is inadverfi
executed.

Design for Controllability

y to reduce hazards is to make the system easier to control, for both
s and computers. Some processes are inherently more “operable” than
[172]. For example, some processes have an extreme reaction to changes
ers are more gradual and take more time, Time pressures increase stress,
turn increases the probability of making a mistake.

lear reactors provide an example of designs that can differ greatly in
ease of control and their dependence on added-on control and trip sys-
Compared to other designs, gas-cooled nuclear reactors give the operator
time in which to react to problems and thus more time to reflect on the
yiences of an action before needing to intervene. At the other extreme,
obyl-style boiling-water reactors (which have a positive power coefficient
output rates rather than the negative power coefficients of other commer-
igns) are more difficult to control. As Kletz says, “It is easier to keep a
e on a concave-up saucer than on a convex saucer. Chernobyl was a marble
‘convex surface” [191].

16.4 Hazard Reduction

Even if hazards cannot be eliminated, in many cases they can be reduced.
of the general approaches described in the previous section apply. For ex
even if a perfectly safe material cannot be substituted, there may be one avai
with a much lower probability (but still within the realm of reason) of lea
the hazard. In addition, the duration of conditions that can lead to an accident
often be reduced. Hazard reduction may also involve lessening the possibili
human error in design, operation, and maintenance, or reducing the severf
the possible consequences of a hazard (for example, low-voltage circuitry ca
used to avoid lethal shocks). ;
Various types of safeguards can be used to limit hazards. Such safe,
may be passive or active. Passive safety devices either (1) maintain safe
their presence (for example, shields and barriers such as containment ve:

mental Control

nportant aspect of controllability is incremental control, that is, allowing
actions to be performed incrementally rather than as a single step [98].
incremental control, the controller can (1) use feedback from the behavior of
controlled process to test the validity of the models upon which the decisions
> made, and (2) take corrective action before significant damage is done.

18 -

‘Intermediate States

Chapter 16. Designing for Safety

encing programs are a third type of computer aid used in process
ect sequencing of valve operations is a potential cause of acci-
s plants. Two types of computer assistance in the safe sequencing
been proposed: (1) analyzing a valve sequence proposed by an
ine whether it is hazardous and (2) synthesizing safe valve se-
The latter is much more difficult and potentially error prone.

Ease of control also results from a design that gives the operator mor
than just continuing to run under the given conditions or shutting o
process completely. Various types of fall back or intermediate states
be designed into the process. In some software-controlled systems, for
multiple levels of functionality are defined, including a minimal set of fi
required for safety. If a problem occurs in the noncritical functions, |
control can be backed up to a lower level of functionality. Levels may €
full functionality, reduced capability, and emergency mode. The software
designed to handle the multiple control modes and the transitions betweern.

As an example, air traffic control (ATC) can be continued safely, al
at the expense of efficiency, with a small subset of essential ATC
To protect against massive system failures, the specification for the ne
ATC system requires a mode of operation, called emergency mode, whe
that subset of essential functions is provided. The ATC system can ente
mode whenever the controller or performance monitor judges that the
functions have degraded to a performance threshold below which ATC E
would be compromised. Of course, great care needs to be taken in impleme
this design, given the large number of problems and accidents that occur
changing modes.

roblem requires some form of monitoring, which involves both
conditions that are assumed to indicate a potential problem in the
1(2) validating or refuting assumptions made during design and analy-
‘example of validating assumptions, a simulation of the controlled
to validate the software requirements during development might be
parallel with the control software during operations and compared
tual process measurements. If discrepancies occur, the requirements
process may have been flawed.

loring can be used to indicate

r a specific condition exists.

r a device is ready for operation or is operating satisfactorily.
r required input is being provided.

ether a desired or undesired output is being generated.

r a specified limit is being exceeded, r whether a measured param-
abnormal [108].

Decision Aids

Computers can also be provided to operators to assist in controlling the
including alarm analysis, disturbance analysis, and valve sequencing. No
one of the primary functions of a process control computer is checking if p
measurements have exceeded their limits and an alarm needs to be raiseé
large, complex plants, a great many alarms may be raised at the same i
and operators may have difficulty sorting the alarms and diagnosing faults
problem is most acute in the nuclear industry, which has, as a result, taken
lead in developing automated alarm analysis [10]. The computer may striy
the alarms as trees or networks showing the interconnections between the v:
alarms in the plant to help the operator diagnose the problem (see Chapter 17

A second type of aid is used to analyze process disturbances. Instrum
tation collects information, which is preprocessed to check limits, validate
data, filter and derive process variables from measured variables, and se
noise from true deviations. To detect disturbances, the software uses disturbz
models (such as cause-consequence diagrams) to represent the anticipated f
of events. These models are then compared with the actual plant data; col
quences are predicted, and, if possible and feasible, corrective actions and
mary causes are suggested to the operator [21]. This type of analysis is qui
difficult to perform reliably and is fairly controversial from a safety standpe '
The implications of using such aids from a human-machine interaction sta
point is described further in the next chapter. :

eneral, there are two ways to detect equipment malfunction: (1) by moni-
pment performance. and (2) by monitoring equipment condition [172].
monitoring usually requires the operator to check the equipment phys-
formance checks can be made from the control room using instrument

Fimstruments, other types of instruments, and so on.

mitors, in general, should (1) detect problems as soon as possible after
e and at a level low enough to ensure that effective action can be taken
zardous states are reached; (2) be independent from the devices they are
: (3) add as little complexity to the system as possible; and (4) be easy
n, check, and calibrate.

pendence is always limited [9]. Checks require access to the information
hecked. In most cases, providing access introduces the possibility of cor-
the information. In addition, monitoring depends on assumptions about
icture of the system and about the types of faults and errors that may (or
t) occur. These assumptions may be invalid under certain circumstances.
(and incorrect) assumptions may be reflected both in the design of the
r and in the devices being monitored. In fact, the success of monitoring

16.4. Hazard Reduction

a7

218 Chapter 16. Designing for Safety 16.4. Hazard Reduction 4

depends on how good these assumptions are—that is, how well they
assumptions of the monitored device or program. :
A monitoring system provides feedback to an automatic device or

tors (or both) so that they can take remedial action. Measurement should,
as possible, be made directly on the critical variables or on closely re
tions. The monitor must be capable of detecting critical parameters i
ence of environmental stresses that may degrade performance, such as
temperature variations, moisture, and pressure changes. The feedback
timely, easily recognizable, and easily interpreted as to whether a norma
usual condition exists. For example, a simple way to provide feedback is
a display, such as a dial, with a predetermined limit where an indicator ¢
the existing level. An automobile gauge to monitor engine oil pressure
the current level and indicate a limit that signifies an abnormality. Alesse
type of feedback is a light that goes on to warn the driver when the oil pr
less than a preset level—by that time, the driver may be in trouble [108]. -
Monitoring is especially important when performing functions kno
particularly hazardous, such as startup and shutdown or any non-normal
ing mode. The monitor should ensure that the system powers up in a safe stz
that safety-critical circuits and components. are operating correctly. Simi
should be performed in the event of power loss or intermittent power failu
riodic tests should then be run to ensure that the system is operating safely.
computers are involved, checks might include periodic tests of memory, the
bus, data transmission, and inter-CPU communication. :
Monitoring should be capable not only of detecting out-of-limit par2
(limit-level sensing control) in the process but also of detecting problems i
instrumentation system itself. Sometimes, distinguishing exactly where the’
lem arose—in the instrumentation or in the process—is difficult. Instrumen

error should not be assumed automatically. Chapter 15 contains an exa

the delayed detection of the ozone hole over the Antarctic because a com
was programmed to assume extreme deviations were sensor faults and to 1

Fail

not detected

Supervisory checks

not detected

Audit checks

not detected

Code-level checks

not detected

Hardware checks

6.2
of software checking.

&ro, Checksums are commonly used to make sure the program is loaded
correctly or that data that should not change has not been altered.
sum is a numerical value that is a function of the binary patterns that
the program code or memory locations, such as the value produced by
gether all words of the program as if they were integer binary num-
-checking is often built into computer hardware (such as parity checks),
ities for additional checks are included in or can be added to operating

them.
In extremely critical applications. monitors must be designed to indicate

failures of their own circuits or, in the case of computer monitors, any software
rors. Detecting circuit failures is much easier (in general) than detecting sof
errors; for this reason (and others), hardware monitors may be safer than sof
monitors in extremely critical situations where an indication of a monitor f

S

t the code module level, coding errors and implementation errors can be
. Assertions are statements (Boolean expressions on the system state)
&3 expected state of the module at different points in its execution or about
ected value of parameters passed to the module. Assertions may take the
range checks (values of internal variables lie within a particular range
execution), state checks (specific relationships hold among the program
), and reasonableness checks (values of inputs and outputs from modules

or error is critical.

Monitoring Computers

Computers can be used to monitor external devices and processes, or they m
be the focus of the monitoring. In the latter case, checks can be classifie jossible or likely).

a hierarchy (Figure 16.2). At the lowest level, hardware checks are used to uditing (independent monitoring) is performed by a process separate from
tect computer hardware failures or individual instruction errors, such as atte g checked. Audits may check the data passed between modules, the con-
to violate memory protection schemes, execute privileged instructions, or of global data structures, or the expected timing of modules or processes.

In system level checking, a supervisory system observes the ¢
nally in order to provide a viewpoint that is totally detached from thy

system. Additional hardware or completely separate hardware may Safety Executive Ff“i'saf?
the observer will often observe both the controlled system and the ¢ Snggif:;ng
unexpected behavior. ; S
In general, the farther down in the hierarchy the check can b g Policies
better in terms of (1) detecting the error closer to the time it occurred g T
erroneous data is used, (2) being able to isolate and diagnose the prob handlir?g 1
(3) being able to fix the erroneous state rather than having to recover. = ‘
state. Higher-level checks detect errors by observing external behavior r T—— i
effects of errors; therefore, they may take longer to discover that some :
gone wrong. Some errors, however, cannot be detected except at a hi] (change-schedule, 3 Scheduler |
of abstraction, In all cases, information about the errors that were enc i trace, signal-fault, ; T
should be stored for later analysis. B init-fail-safe...) i
Unfortunately, writing effective code-level checks for software errors | Human
hard [181], and practicality usually limits the number of checks that can " operators

b

e = o e AT TR Ty T R A B

in a system constrained by time and memory. By limiting the checks to
are safety-critical (as determined by the hazard analysis), cost-effective
software monitoring may be possible. Special software design and code a
procedures can be used to guide in the content and placement of the ch
described in Chapter 18 [184]. 4

Care needs to be taken to ensure that the added monitoring and check
not cause failures themselves. In a study of self-checks added to detect sg
errors [181], the self-checks added more errors than they detected. R
mechanisms may also be complex or error prone. In fact, a large percen
the errors found in production software are located in the error-detection orel
handling routines, perhaps because they get the least use and testing.

One way of dealing with these problems is to use a safety kernel or saft
ecutive [184, 185] that coordinates the various monitoring mechanisms. A '"
executive allows centralization and encapsulation of safety mechanisms
concomitant advantages of reusability and possible formal verification of he
erations of the executive. In the design shown in Figure 16.3, the detecti
unsafe conditions, external to the executive, is achieved through in-line safe
sertions [184] and auditing and watchdog processes. Upoen detection of an uj
software state, the executive is passed control and becomes responsible fo
forcing safety policy and deciding on the appropriate mechanisms to be used!
recovery.

One of the tasks of the safety executive is to communicate with the
uler. In real-time systems, the criticality of tasks may change during proces
and may depend upon runtime environmental conditions. For example, if
system load increases the computer response time above some critical thres
runtime reconfiguration of the software may be achieved by delaying or temp
ily eliminating noncritical functions. Another important task of the safety e;
tive is to provide information to human operators about the state of the comns
and the state of the recovery actions.

6.3
for a safety executive.

advantage of using a safety kernel or executive is that the monitoring
wvery features of the design become visible and consistent, and safety
e brought to the forefront, where more informed decisions can be made.
that safety has been adequately handled is difficult if these features are
roughout a large program. Also, because of the separation of mechanism
icy in the kernel, modifications and improvements can be made to safety
s without seriously impacting the entire system. Finally, the potential
safety kernels or executives makes the application of sophisticated and
hensive verification and validation techniques more practical.

Barriers

1y to reduce the probability of the system getting into hazardous states is
barriers, either physical or logical, between physical objects, incompati-
ials, system states, or events. A barrier may make access to a dangerous
or state impossible or difficult (a lockout), may make it difficult or im-
e to leave a safe state or location (a lockin), or may enforce a sequence of
or events (an interlock). Barriers may be applied redundantly (in serial or
1) and may have passages (such as gates or channels) between them whose

422.

" Lockouts

Chapter 16. Designing for Safety 16.4. Hazard Reduction

(or, in the case of data, their destruction or change) at the wrong
‘catastrophic: an insulin pump administering insulin when the blood
or a missile launch routine activated inadvertently are two examples.
has suggested that security technigues involving authority limitation
rotect safety-critical routines and data [170]. For example, the ability
4re to arm and detonate a weapon might be severely limited and care-
iled by requiring multiple confirmations. Here again there is a conflict
eliability and safety: To maximize reliability. errors should be unable to
pperation of a weapon, while for safety, errors should often lead to
ion. In other words, reliability requires multipoint failure modes, while
7. in some cases, be enhanced by a single-point failure mode.
ty limitation with regard to inadvertent activation may be imple-
retaining a human controller in the loop and requiring a positive in-
ontroller before execution of hazardous commands. The human will

A lockout prevents a dangerous event from occurring or prevents Sof
something from entering a dangerous area or state. The simplest type of 1
a wall or fence or some type of physical barrier used to block access :
ous condition (such as sharp blades, heated surfaces, or high-voltage equ

Lockouts are useful when electrical or magnetic signals can intes f
programmable devices. This phenomenon is called electromagnetic i
or EMI Examples of EMI include radio signals, electrostatic discharges,
tromagnetic particles (such as alpha or gamma rays).

EMI can be especially difficult to diagnose because of its transient
In one case, a programmable device in a ship’s crane was intermittently X
strangely. It turned out that the radio officer was stringing an aerial b
jibs of the cranes in order to increase the range of the ship’s transmit
crane’s cables became receiving antennas [358].

EMI is a major problem for sophisticated military aircraft. In the
Black Hawk helicopter, for example, radio waves caused complete hyd
ure, effectively generating false electronic commands. Twenty-two peop
killed in five Black Hawk crashes before shielding was added to the
controls. After the problem was discovered, the Black Hawk was not pern
fly near about 100 transmitters throughout the Wérld [235].

A study by Ziegler and Lanford showed that densities in current
chip technologies are such that about one computer hardware error a week
be attributable to cosmic ray interference at the electron level. As microt
turization increases, so does the probability of this interference [235]. Ele
components, including computers, need to be protected in some way
electromagnetic radiation, electrostatic interference, power interrupts and
stray voltages, and gradual depletion of power supplies.

Electrical interference can be eliminated or minimized in three ways |
(1) it can be reduced at its source (for example, suppressing arcing at switch’
tacts with capacitors), (2) the source and the electronic device can be sep
as much as possible (for example, providing an independent electrical st
the system), or (3) a barrier can be erected around the programmable devi
example, installing shielding or an interference filter).

Authority limiting is a type of lockout that prevents actions that could
the system to enter a hazardous state. As an example, the control surfaces
aircraft (or the mechanisms that drive them) may be designed so that an autg
hardover command causes a worst-case maneuver that is still within the
maneuvering envelope; no matter what the autopilot does, the aircraft st
cannot be compromised. Such authority limitations have to be carefully a '
to make sure they do not prohibit maneuvers that may be needed in ext
situations.

Lockouts in software include design techniques to control access t6
modification of safety-critical code and variables. Safety-critical software
has a few modules or data items that must be carefully protected because

besides the information provided by the computer.
ous software design techniques developed to provide security may also
able to this type of authority limiting. Basically, these techniques control
v associating access rights to modules or users [64]. The access rights
in the form of general access modes (read, write, execute) associated
protected object or with access control lists that list the authorized users
ghts of each (Figure 16.4a). Alternatively, capabilities [65, 188] may be
with the user of the protected component (Figure 16.4b). Capabilities
ticket in that their possession authorizes the holder to access the object.
control lists are essentially equivalent to having a guard at a door with a
 who are permitted to enter; capabilities can be compared to passing out
door and allowing entry to everyone with a key.
elaborate protection schemes can be built using a reference moni-
controls all access to protected data. Only authorized accesses are al-
erlocks, such as batons, may also be useful in providing protection (see
8).
solution to the more general problem of restricting communication (rather
data access) is a protected subsystem that performs authorization checks
allowing communication between modules. Secure software systems are
t around a “security kernel”—a relatively small and simple component
s correctness is sufficient to ensure the security of the software (see Sec-
3.3). Rushby has suggested that the security kernel approach is an appro-
ay to ensure “negative” properties or things that must not happen {304]-—
mple, the requirement that a weapon not be armed until it has been readied
ne. Security kernels reside at the lowest levels of a hierarchical system
influence the higher levels of the system by not providing facilities—if
nel does not provide mechanisms for achieving certain behavior and if no
nechanisms are available, then no layers above the kernel can exhibit that

‘specific type of kernel. called a separation or encapsulation kernel, can

 require some independent source of information on which to base the

423

424 Chapter 16. Designing for Safety 16.4. Hazard Reduction

enforce a lockout or firewall. It controls all communication and in-
etween components and can eliminate some errors of commission. In
ontrol system, for example. if the kernel provides no paths for infor-
tontrol, or data flow between any software component and the warhead
hanism—except that intended to trigger the arming function-—then no
pt in those two components can cause the warhead to be armed prema-
eral, an encapsulation kernel can be used to control communication
fce separation, to ensure sequencing, and to maintain an invariant stating
onent is within its safe operating envelope [304].

hese lockout designs must be kept very simple or the extra protection
y only add to the software error problem.

File MB

File MB Access Rights
User ID Rights

Murphy | owner, read, write

Eldon read, write

Avery read

Corky read

(oo vt

(a) Access Rights: Each file has an associated intain a condition. They may be used

list of authorized users and their rights.
eep humans within an enclosure, where leaving under certain conditions

uld involve proximity with dangerous objects or not allow them to con-
to control the system—for example, seat belts and shoulder harnesses

Murphy .
. . E Signature vehicles, safety bars in Ferris wheels and roller coasters. and doors on
Capability List — Aors.
Object Rights ‘contain harmful products or byproducts, such as electromagnetic radia-
Degrees on, pressure, noise. toxins, or ionizing radiation and radioactive materials.

T RIE e T

contain potentially harmful objects—for example, cages around an indus-
robot to protect anyone in the vicinity in case the robot throws some-

Fire missile | read, execute

Degrees read Angle E :

Angle read, write :
) : Fire missile E .
Signature read 4 e -

T T T L C e et T e S e o R e ES L R

T Tt B A 38 P

maintain a controlled environment—for example. buildings, spacecraft,
e suits, and diving suits.

constrain a particular sequence of states or events—for example, using
d governors on moving objects (such as on industrial robots or other
hinery) to eliminate damage in case of collision or to allow people to
t out of the way if the objects move unexpectedly. Slowing operation
eed when a human approaches allows workers to know that their presence
s been detected. Safety valves. relief valves, and other devices maintain
sure below dangerous levels.

(b) Capabilities: Each user has a list of objects and rights.

FIGURE 16.4
Access rights and capabilities.

Software needs to be protected against failures and other events in its
sent—including erroneous operator inputs, such as inputs that arrive out
-__and it must be designed to stay in a safe state (and to keep the system
e state) despite these events. Chapter 15 defined software requirements
to ensure that the software is robust against mistaken environmental as-
ons. Specifying them is not enough, however: the code must implement

-obustness requirements.

425

426

Chapter 16. Designing for Safety

16.4. Hazard Reduction

idents is to install an interlock that only the person making the re-
e. The possibility still exists, however, that the interlock can be
bypassed. In one incident, the doors to a weapons bay on an aircraft
a by compressed air. An airman working on the system accidentally
‘pressure by loosening a fitting while standing between the doors;
ght and crushed him [106]. Physically blocking open the doors so
locked out is an alternative in this case. When computers are in-
mplexity may be increased, and physical interlocks may be defeated
n Chapter 15, an incident was described where a computer uneéxpect-
the bomb bay door on an aircraft after a maintenance interlock was

interlocks

Often, the sequence of events is critical. Interlocks are commonly used.
correct sequencing or to isolate two events in time. An interlock ensures.

o That event A does not occur inadvertently (for example, by requi
separate events such as pushing buttons A and B).

o That event A does not occur while condition C exists (for ex
putting an access door over high-voltage equipment so that if d
opened, the circuit is broken).

o That event A occurs before event D (for example, by ensuring

will fill only if a vent valve is opened).
ers are now often removing physical interlocks and safety features

and replacing them with software. That was a disastrous mistake in
-25 design, but they are not alone in making it. Most weapon systems
ther replaced hardware interlocks and safety features with software or
e to control them. Other types of systems are quickly following suit.
es software control or implementation of interlocks introduce a more
sign, but the procedures for enhancing safety that have been built up
in engineering have not yet been developed for software.
t. hardware interlocks may be important in systems with computer
_order to protect the system against software errors. Examples of cir-
ther hardware independent of the computer and software include
| deadman switches to permit termination of computer-controlled X-
ures, electrical interlocks for collision avoidance when motions are
_controlled, and hardwired electrical sensors to assess the status of crit-
e-controlled system elements.
ilities must be provided to override interlocks during maintenance or
the design must preclude any possibility of inadvertent interlock over-
f the interlocks being left in an inoperative state once the system be-
ational again. If software is used to monitor hardware interlocks, it
ify before resuming normal operation that the interlocks have been re-
er completion of any tests that remove, disable, or bypass them. While
flocks are being overridden, information about their state should be made
to any person who might be endangered. In general, if humans are inter-
vith dangerous equipment, the software controller or physical interlocks
hould ensure that no inadvertent machine movement is possible.
& software also may need to assure that proper sequences are followed and
authority has been given to initiate hazardous actions. For example,
g a weapon, the software may be required to receive separate arm and
mands to avoid inadvertent firing. Similarly, after an emergency stop of
nd, the operator or the software should be required to go through a restart
s to assure that the machine is in the assumed proper state before it is
The equipment should not simply go to the next operation.
amming language concurrency and synchronization features are used
r events, but they do not necessarily protect against inadvertent branches

The first two types of interlocks are inhibits; the third is a sequencer. E
of interlocks include

o A pressure-sensitive mat or light curtain that shuts off an industrial £
someone comes within reach. '

o A deadman switch that must be held to permit some device to @
when released, the power is cut off and the device stops. :

o Guard gates and signals at railroad crossings to ensure that cars ANG
are not in the intersection at the same time. Traffic signals are a
example.

o A device on machinery that ensures that all prestart conditions are
fore startup is allowed, that the correct startup sequence is followed, '
the process conditions for transition from stage to stage are met.

o Pressure relief valves equipped with interlocks to prevent all the valves.
being shut off simultaneously.

a A device to prevent the disarming of a trip system or a protection s¥
unless certain conditions are met first and to prevent the system from
left in a disabled state after testing or maintenance.

o Devices to disable a car’s ignition unless the automatic shift is in PARK.

o The freeze plug in an automobile engine cooling system whose expa:
will force the plug out rather than crack the cylinder if the water in the t
freezes. Similarly, to protect against excessive heat, a fusible plug in a
becomes exposed when the water level drops below a predetermined
and the heat is not conducted away from the plug, which then melts
opening permits the steam to escape, reduces the pressure in the boilex,
eliminates the possibility of an explosion.

The system should be designed so that hazardous functions will stop i
interlocks fail. In addition, if an interlock brings something to a halt, ad
status and alarm information must be provided to indicate which interloeks
responsible [172].

People have been killed or endangered when the equipment they
energized to repair was inadvertently activated by other personnel. One wa

42

428 Chapter 16. Designing for Safety 16.4. Hazard Reduction 429

caused either by a software error (in fact, they are often so comp
error prone themselves) or by a computer hardware fault. Partial protects
afforded by the use of a baton, a simple software device to ensure pro
flow to safety-critical routines. Basically, a baton is a variable that 18
a routine and checked before the routine is executed to determine ¥
required prerequisite tasks have entered their signature. The baton m:
simply of a unique numerical value passed to a subroutine or check
beginning of a block of safety-critical code; if the variable does not:
required value, then the branch to this code was illegal. A come-fro
a type of baton that is used in multiple message structures to ensure
filtered and that the process receives data only from a valid source.
More elaborate handshaking procedures are possible, but the more €

the design. the more likely that errors will be introduced by the prot
vices.

Isolated element
Exclusion Region

Inoperable in abnormal
environments

Example: Nuclear Detonation Systems

The approach to safety in nuclear weapon systems in the United States il
the use of several types of barriers. The nucledr detonation safety pro
somewhat unique in that safety, in this case, depénds on the system not ¥

High Consequence
,1994.)

ation safety. (Source:
Operations Safety Symposium, Sandia National Laboratories, Albuquerque, July 13

Discriminator/

driver

voltages ——

o

. ; c

The goals in a nuclear system are (1) to provide detonation when a .E’ =
and (2) to preclude inadvertent or unauthorized detonation under no E g2
abnormal conditions. Thus, the concern here is with unintended operation. %0

Three basic techniques (called positive measures) are employed: {
tion (separating critical elements whose association could lead to an um
result), (2) incompatibiliry (using unique signals), and (3) inoperability (k
the system in a state that is incapable of detonation) [316].

Figure 16.5 shows a general view of these systems. The nuclear devi
is kept in an inoperable state, perhaps with the ignition device removed or W
an arming pin: Positive action has to be taken to make the device operabl
device is also protected by various types of barriers (isolation).

Nuclear detonation requires an unambiguous indication of human i
be communicated to the weapon. Trying to physically protect the entire
nication system from all credible abnormal environments (including sab
is not practical. Instead, nuclear systems use a signal pattern of suffic
formation complexity that it is unlikely to be generated by an abnormal
ronment. Not needing to protect the communication (unique signal) lines

AN
m

Communications channel
incompatible—Unique signal
lear weapon systems,

uas
reader

barriers, and inoperability for nuclear deton

le-based passive safety in nuc

c

: . . S 25 ®
mizes or eliminates many design, analysis, testing, and software-comput 2 5
nerability problems. However, the unique signal discriminators (1) must &¢ g & @

Unique Signal
Source

the proper unique signal while rejecting spurious inputs, (2) must have rej
logic that is highly immune to abnormal environments, (3) must provid
dictably safe response to abnormal environments, and (4) must be analyzab
testable.

The unique signal sources are protected by barriers, and a removab
rier is placed between these sources and the communication channels. M

Subsystem using a unigue signal,
Stanley D. Spray. Princip

Human
intent ::

Isolated
component
FIGURE 16.5

430 Chapter 16. Designing for Safety 16.4. Hazard Reduction 431

and others have expressed concern about whether organizational

Stimuli Communication Safing and nent factors, as described in Chapter 4, might override the technical
Source System System 07].
Unique
intondid /—\ i'g"f' re Minimization
thril:;n] @ hazards are not the result of individual component failures, some
and reducing the failure rate will reduce the probability of those haz-
8.5.2 briefly described several of these reliability-enhancing tech-
three most applicable to complex systems are safety margins, redun-
Unigue eITOr recovery.
signal
Intended m no. 2
human — AABABBB tors and Margins
SRt U devices and systems have many uncertainties associated with them:
Is from which they are made; the skill that goes into designing and
them: their behavior in extreme environmental conditions such
or high temperature; and incomplete knowledge about the actual
_ Arming conditions, including unexpected stresses, to which they are exposed.
Intended Arming and signals handbooks contain failure rates for standard components, but these
22{; in] fusing system sbject to implied limits under different conditions and are statistical
only: Failure rates of individual components may vary considerably
mean [214].
Human-machine with these uncertainties, engineers have used safety factors or safety
interface hich involve designing a component to withstand greater stresses than
pated to occur (see Figure 16.7). A safety factor is expressed as the
nominal or expected strength to nominal stress (load): A part with a
FIGURE 16.6

1966, a Strategic Air Command (SAC) B-52 and a KC-135 tanker collided
airborne alert refueling mission near Palomares, Spain. The bomber exploded in
nd four hydrogen bombs fell to the earth. There was no nuclear detonation, but
ational explosive materials from two of the bombs exploded when they hit the
eading considerable radioactive material. One hydrogen bomb was lost at sea
three months. As a result. the U.S. Secretary of Defense, Robert McNamara,
eliminating the SAC airborne alert program, but was overruled [307].

ry 1968, a similar accident occurred when a Strategic Air Command B-52
as on an airborne alert mission over Thule. Greenland. The co-pilot turned
heater to its maximum heat to combat the cold, and a few minutes later a
nber detected the smell of burning rubber. A search found a small fire in the

e lower cabin. The flames grew out of control. the flight instruments became

e because of the smoke, and all electrical power was lost. Six of the seven crew
sjected successfully and landed safely in the snow. The plane crashed with

t impact of five hundred miles per hour, and the jet fuel exploded. Again, no
tonation occurred; as in Palomares, however, the conventional high explosives
rmonuclear bombs on board went off, dispersing radioactive debris over a

e of ice. The international protests against American nuclear weapons policy
diy resulted in the termination of nuclear-armed airborne alert flights [307].

The use of multiple safety subsystems requiring unigue signals (double
intent with arming) to ensure proper intent. (Source: Stanley D. Spray. Pr
based passive safety in nuclear weapon systems, High Consequence Opei
Safety Symposium, Sandia National Laboratories, Albuquerque, July 13, 18

unique signals may be required from different individuals along various co
nication channels, using different types of signals (energy and informati
ensure proper intent to detonate the weapon (Figure 16.6). While this a
enhances safety, it most likely reduces the probability that nuclear detonation
take place when desired (reliability). :
Nuclear experts are proud of the fact that no inadvertent nuclear deto
of U.S. weapons has ever occurred. Accidents have happened, however, in-
planes carrying these weapons crashed and conventional explosive materi
the bombs went off on impact, dispersing radioactive material around the

432 . Chapter 16. Designing for Safety

16.4. Hazard Reduction

of two, for example, is theoretically able to stand twice the expected
blem with this concept is that the strength of a specific material
canse of differences in its composition, manufacturing, assembly.
ironment, or usage. Therefore, a calculated safety factor of two for
in general may be much less for a particular component: Averages
of values over which a particular characteristic may vary.

blem is alleviated somewhat by the use of measures other than ex-
‘or mean in the calculations—such as comparing minimum proba-
and maximum probable stress (called the safery margin) or comput-
at specified standard deviations from the mean—but the problem is
d. Most solutions involve increased cost for individual components:
the nominal strength, (2) decrease the nominal stress that will be im-
reduce the variations in strength or stress. Even then, computing the
safety is difficult for ordinary, stable stresses and even more difficult
nttally changing stresses must be considered.

cy

y involves deliberate duplication to improve reliability. Functional re-
duplicates function, but may do it with different designs. One of the
components should be able to achieve the functional goals regardless
rational state of the other components. Redundancy may be achieved
standby spares (switching in a spare device when a failure is de-
e one currently being used) or (2) by concurrent use of multiple de-
élpiicate a function and voting on the results (with the majority result

). If only two devices are used in parallel, then fault detection—but not
jon—is possible. Complex failure detection and comparison voting
may be required in some situations. In addition, reconfiguration may be
to switch out failed parts and switch in spares.

. use of this approach in nuclear power plants has resulted in a large
of spurious scrams [349]. To avoid this problem, the redundancy may
:m'oive independent channels, all carrying the same kind of information
iected so that no protection action will be taken unless a certain number
channels trip simultaneously. This approach results in some reduction
reliability (compared with alternative redundant designs). but reduces
 shutdowns.

ther example of a conflict between safety and reliability can be seen
, redundancy used to increase reliability will at the same time decrease
nd vice versa. The use of two redundant components is much better for

Probability :
of |
occurrence :
[
|
i
Expected Stress
failure strength
(a) Probability density function of failure for two parts
with same expected failure strength.
—— Safety factor —
| |
| |
| |
| I
Probability : ;
of [|
occurrence] :
! |
| |
|
| :
Expected k1 Expected
load Margin strength
of safety
{b) A relatively safe case.
f~—— Safety factor —
| !
Probability ‘r |
of ! |
occurrence : i
l i
Expected Expected
load strength

(c) A dangerous overlap but the safety factor is the same as in |

FIGURE 16.7

Safety margins. (Adapted from Willie Hammer. Handbook of System and

Safety, 1972, p. 274. Prentice-Hall, Englewood Cliffs, New Jersey.)

ction than the use of three, but reliability is reduced over that of a single
t or of more than two components. Reliability is enhanced when more
components are used, but error detection is poorer than when only two
ents check each other.

- more reliable a component, the more likely it is to operate spuriously
n some cases, spurious operation may be as or more hazardous than the

433

434

Chapter 16. Designing for Safety 16.4. Hazard Reduction

failure of the system to function at all. The problems with Ranger f
in Section 8.5.2, is an example of redundancy causing spurious agc
ruined a mission. In describing this incident, Weaver concludes, “res
not always the correct design option to use.”

Functional redundancy may be accomplished through identical
sign redundancy) or through intentionally different designs (design
Diversity is used to try to avoid common-cause and common-mode
providing complete diversity is difficult. Weaver, after examining divg
clear power plant designs, concludes that “diversity must be carefis
and applied. The probability that diversity will prevent an accident
very good if such diversity is not expressly designed for that purpose.”

Finding and eliminating all potential dependencies in redundant
systems can be extremely difficult. Examples include the following:

and the care with which independent checks are made by inspec-
nance personnel.

ircle begins to appear as redundant components introduce more
h_ich adds to the problem of common-cause failures. which leads to
being installed:

nse most often advocated for protection against common-mode/
i-cause failures has been diversity, However, while diversity in in-
ion has been used for a long time, failures have still occurred.
develop that cannot be anticipated by the designer, with the re-
‘the improvement gained through diversity is limited. Then, too, di-
defeats attempts at standardization and may even result in increased
i‘ai}ures as well as increased plant costs. With functionally designed
dically tested diverse and redundant systems, the real concems

.) . caused by common external influences and inadvertent human re-
o A military aircraft was lost when supposedly diverse compo

from titanium, all failed at the same vibration level [32].

o A fire in the cable-spreading room of the Browns Ferry nuclear pow
(described in Chapter 4) disabled many electrical and control circuit
resulted in the loss of the redundant protection systems. Before the 4
common-cause failure of all the protection Systems had been de:
“credible.” Harry Green, the superintendent at Browns Ferry, said
fire: “We had lost redundant components that we didn’t think
lose” [350].

o The Turkish Airlines DC-10 crash outside Paris resulted from the ¢
of the baggage hold, which was underneath the passenger comps
opening at altitude. This event caused the baggage hold to dep
which in turn caused the collapse of the cabin floor. The triplicated
lines were all under the floor, so when it collapsed all control of the
was lost.

o The simultaneous failure of the auxiliary feedwater valves was instri
in initiating the loss-of-coolant accident at Three Mile Island. M
the common-cause failure of the high-pressure injection system resul
the uncovering of the core. Weaver believes that additional diversity
feedwater system probably would not have prevented the accident [164

o Just when Challenger’s primary O-ring gasket failed, allowing hot .
to escape, a second adjacent O-ring, designed originally for redunt
was unseated from its groove by the movement of the rocket casing
pressure [295].

s

' pattern is recognizable. Systematic common-mode/common-cause
are the result of adding complexity to system design. They are the
of a philosophy that has become circular. To date, all proposed
* are for more of the same—more components and more complexity
em design [104, p.191].

dancy appears to be most effective against random failures and less
nst design errors. It has been applied to software (which, of course,
esign errors) in an attempt to make it fault tolerant. Software can
types of redundancy: data and control.

a redundancy, data structures or messages used in one program or
between computers include extra data for detecting errors, such as
s and other error-detecting and error-correcting codes, checksums, cyclic
check characters, message sequence numbers, sender and receiver
, and duplicate pointers or other structural information.

trol or algorithmic redundancy has also been proposed (and used) for
This type of redundancy involves either (1) built-in reasonableness
the computations of the computer and the execution of alternative rou-
he test is not passed or (2) writing multiple versions of the algorithms and
the result.

problem with reasonableness checks is the difficulty in writing them.
limited types of mathematical computations (such as matrix inversion),
reverse operations that, when applied to the results of a computation,
oduce the inputs. In general, this type of reverse operation does not
ead, the outputs or intermediate results are checked to see if they are
given the type of operation being performed. Reasonableness checks
1t to formulate in general and writing them may be as error prone as
the original algorithm [181].

alternative is to write multiple versions of the software and vote on
during operation. If multiple algorithms for a particular computation

Dependencies may be introduced between redundant or diverse compa
not only through design but during routine maintenance. testing, and rep
maintainers perform a task incorrectly on one piece of equipment, they are’
to do it incorrectly on all pieces of equipment [189]. In addition, functional s
dancy tends to instill false confidence, which leads to the relaxing of test regi

435

436 Chapter 16. Designing for Safety 16.4. Hazard Red
.4, Hazard Reduction

are known to have singularities in different parts of their input space,
approach might be useful. Here. the multiple algorithms used can be ca
planned, as Weaver suggests is necessary for the effective use of diver
hardware design.

The most common application of the multiple version idea, howev
use separate teams to write versions of the software, assuming that differe
ple are likely to make different mistakes and design different algorithms:
assumption has not been supported by experimentation. In fact, every expexiiil
with this approach that has checked for dependencies between software {
has found that independently written software routines do not fail in a sta
cally independent way [39, 38, 73, 163, 181, 164). This result is not surp: i
People tend to make mistakes in the harder parts of the problem and in ha
nonstandard and boundary cases in the input space—they do not make mist:
randomly. _

The problem of common-cause failures between independently devel 0]
software routines is not easily solved. Any shared specifications can le
common-cause failures. The same problem exists in developing test data to
the software—the testers may omit the same off-nominal or unusual cases
the developers overlooked. 7 :

These drawbacks do not mean that nultiple versions should not be used,
users should have realistic expectations of the benefits to be derived along ¥
the costs involved. Claims that ultrahigh software reliability will be achieved
just not supported by the empirical and experimenta] evidence {164]. In fact
added complexity of providing fault tolerance in this fashion may itself ¢
runtime failures, just as it can in hardware redundancy. Examples include
synchronization problems arising from software backup redundancy on the
Space Shuttle flight and the NASA experiences (Chapter 4} where all the
tal control system failures during flight testing of an experimental aircraft
traced to errors in the redundancy management system. In addition, mathema
models have shown there are limits in the potential software reliability increas
possible using this approach [74].

The cost of multiversion programming is not only at least n times the ¢
of producing one version—where n is the number of versions to be produced—
but also n times the cost of maintenance, which is already high for software.
though arguments have been advanced that the increase in cost will be less than 7
these arguments rest on the assumption that some aspects of the software devel:
opment process will not have to be duplicated. Anything not duplicated, howev
can potentially contribute to common-cause errors. Furthermore, in experimy
with this technique, Knight and Leveson found that in order to get the versions.
vote correctly, the specifications had to be much more complete than usually nee-
essary. In other words, many aspects of the processing and outputs (about whic
nobody really cared) had to be specified in greater detail than usual to make
results comparable. In the end, the specification phase took more time and
than would normally have been required. _

Certainly, some benefits can be derived from this approach, but the real ques

ether the limited resources of any project should be spent in producing
versions of the software, or whether it would be more cost effective to
-resources on techniques to avoid or eliminate software errors. Spend-
on producing multiple versions of the software usually means that costs
somewhere else. Some people have suggested saving costs by simply
e multiple versions against each other. This type of testing allows large
of test cases to be executed, but it is dangerous because it ensures that
’rfrhat will not be tolerated during operational use (the errors that cause
incorrect results) will not be found during testing.

tice, the users of this approach end up with a great deal of similarity
ns of the multiple versions of the software. In order to get versions to
2 real-time environment (or to be able to compare intermediate results),
ns for the independent teams are often overspecified and constrained
n little real software design diversity. Thus, the safety of the system
on the existence of a quality that has been inadvertently eliminated by
slopment process.

e is no way to determine how different two software designs are in their
behavior (which is all that counts in this case). Even when very different
sns are used, the differences may not help because the problem may not
e algorithm but in the handling of difficult input cases: The dependencies
arise from the difficulty of the common problem being solved, not from
encies in the solution techniques. In one experimental evaluation of this
se, the algorithms used in most of the versions were very different, as
,-. programming errors made, yet the programs failed on the same inputs
e primary problem with attempts to tolerate software errors using redun-
is that they may not be directed to where the safety problem lies. Mul-
versions of the software written from the same requirements specification
ctive only against coding errors (and sometimes only a limited set of
), while, as stated earlier, empirical evidence suggests that most safety prob-
stem from errors in the software requirements, especially misunderstandings
ut the required operation of the software. Any redundancy, then, will simply
cate the misunderstandings.

'.very

. If errors are detected by the monitoring and checking procedures described
- then failures can be reduced if successful recovery from the error occurs
e the component or system fails. Recovery can be performed by humans,
¢ can be automated: Comparisons between these two approaches are complex
¢ left for Chapter 17.

Recovery from software errors is sometimes possible. In general, software
recovery can be forward or backward. In backward recovery, the computer
ins to a previous state (hopefully one that preceded the creation of the er-
eous state) and continues computation using an alternate piece of code. No

38

16.5. Hazard Control

Chapter 16. Designing for Safety

data structures use redundancy in the structure (such as extra point-
(such as extra stored information about the structure) to allow recon-
the data structure is corrupted [330]. Linked lists with backward as
rd pointers, for example, allow the list to be constructed if only one
or incorrectly changed. .
ration or dynamic alteration of the control flow is a form of partial
at allows critical tasks to be continued while noncritical functions are
mporarily eliminated. Such reconfiguration may be required because
y overload, perhaps caused by peak system usage ot by internal con-
b as excessive attempts to perform backward recovery. ‘

ime control systems usually have tasks that are iterated many times
. In general, this type of software is insensitive to single-cy‘cie errors,
orrected on the next iteration. Single-cycle errors may originate from
ata (which is fixed in the next sensor reading) or simply from a sin-
the algorithm or code (which will produce correct results fgr shgtlltly
at data). The rate at which new data is received may make it possible
gle-cycle errors and simply “coast” (that is, repeat the last output or
safe output) until new data is received.

the problem with both forward and backward recovery procedures
‘usually depend on assumptions about the state of the system and the
ion of the software (software requirements specifications) that may

atternpt is made to diagnose the particular software error that caused
neous state or to assess the extent of any other damage that may have b
Multiversion software, as described earlier, is merely a special case of
recovery where the versions are run in parallel so that state restora
necessary. In forward recovery, the erroneous part of the state is
processing continues without rolling back the state of the machine.

Backward recovery procedures assume that the alternate code
better than the original code. There is, of course, a possibility that th
code will work no better than the original code, particularly if the error
from flawed specifications and misunderstandings about the required ©
the software.

Backward recovery may be adequate if it can be guaranteed th
neous computer state will be detected and fixed before any other
system is affected. Unfortunately, this property usually cannot be
An error may not be readily or immediately apparent: A small err
quire hours to build up to a value that exceeds a prescribed safety tole
Forward recovery relies, on the other hand, on being able to locate
erroneous state, which can be difficult.]

In practice, forward and backward recovery are not necessarily 2
the need for forward recovery is not precluded by the use of bac
ery. For example, containment of any possible radiation or chemical
be necessary at the same time software recovery is being attempted. I
stances, forward recovery to repair any system damage or minimize b
be required [179].

Forward recovery is needed when

mechanisms have been proposed for implementing these procedures

The real problem is in detecting errors and figuring out how to
om them, not in devising programming language mechanisms (o im-
the detection procedures. Some programming languages contain special
handling mechanisms that reduce the implementation effort. Many of

age features for error and exception handling, however, are so com-
they may cause the introduction of errors in the error—handhlng routines

more problems than they solve. In general, error-handling mecha-
¢ everything else, should be as simple as possible.

o Backward recovery procedures fail. :
o Redoing the computation means that the output cannot be produced

o The software control actions depend on the incremental state of th
(such as torquing a gyro or using a stepping motor) and cannot be H
by a simple software checkpoint and rollback [297].

o The software error is not immediately apparent and incorrect ouf
already occurred.

Not only is it difficult to roll back the state of mechanical devices that
affected by undetected erroneous outputs, but an erroneous software o
have passed information to other modules, which then must also be]
Procedures to avoid domino effects in backward recovery are complex
error prone, or they require performance penalties such as limiting the a
concurrency that is possible. In distributed systems, erroneous informa
propagate to other nodes and processors before the error is detected.

Forward recovery techniques attempt to repair the erroneous st
may simply be an internal computer state or the state of the controlled
Examples of forward recovery techniques include using robust data
dynamically altering the flow of control, and ignoring single cycle errors.

Hazard Control

hazards cannot be eliminated, accidents can sometimes still be prevented
g the hazard and controlling it before damage occurs. qu example,
With the use of a relief valve to maintain pressure below a particular lev.el.
- may have a defect that allows it to burst at a pressure less th_an the relief

g. For this reason, building codes often limit the steam boiler pressure
e used in densely populated areas, or they may require the use of hazard

vices. ‘
e, by definition, there must be other conditions in the environment that

439

440 -

Chapter 16. Designing for Safety 16.5. Hazard Control

combine with the hazard to cause an accident, reducing the level
tion of the hazard may increase the probability that the hazardous
reversed before all the necessary preconditions for an accident occw
ple, keeping hazardous materials under lower pressure Or transpor
smaller amounts or through smaller pipes will reduce the rate at wh
ejected or lost from the system: The basic design can help in making
controllable.

Resources, both physical and information (such as diagnos
information), may be needed to control hazards in an emergency, a
these resources need to be managed so that an adequate amount
able when an emergency arises. As discussed in Chapter 6, too ma
too much information may hinder hazard control. Warning signals 8
present for long periods or be too frequent, as people quickly become:
to constant stimuli. An operator was killed in an automated factory,
when a 2,500 pound robot came up behind him suddenly. The robots:
tating warning lights to show they were “armed.” but the lights shone ¢
and indicated only that the robots were capable of starting up—no re
of movement was provided [90]. The reason that the designers had
clude an audible warning when the robot was about to move may have
incorrect assumption that humans would never have to enter the prod:
while the robots were operational.

Hazard control measures include limiting exposure, isolation and
ment, protection systems, and fail-safe design.

, critical flags and conditions in software should be set or checked
ssible to the code that they protect. In addition, critical conditions
complementary: The absence of an arm condition, for example,
e used to indicate that the system is unarmed.

ation and Containment

take the form of barriers between the system and the environment,
nment vessels and shields. which isolate hazardous materials, op-
equipment away from humans or the conditions that can cause the
ad to an accident.

ximity of a hazard to an unprotected population will influence the
its consequences. The explosion of a chemical plant at Flixborough
atively isolated from an urban population) caused 28 deaths, while
 release at Bhopal (which was located in the midst of a crowded
) involved over 2,000 deaths and 200,000 injuries. Even if plants
in an isolated area, the transport of dangerous materials can bring
contact with large populations: The explosion of a road tanker in San

n, in 1978 killed over 200 people.

lection Systems and Fail-Safe Design

rol may also take the form of moving the system from a hazardous
safe or safer state. The feasibility of building effective fail-safe protec-
2 depends upon the existence of a safe state to which the system can
and the availability of early warning, which in turn requires a suitable
the course of events between the warning and an accident. A system may
, single safe state—what is safe may depend on the conditions in the
d the current system operating mode. A general design rule is that haz-
s should be difficult to get into, while the procedures for switching to
should be simple.
al protective equipment includes gas detectors, emergency isolation
ips and alarms, relief valves and flarestacks, steam and water curtains,
s, nitrogen blanketing, fire protection equipment such as insulation and
ys, and firefighting equipment.
example, a panic button stops a device quickly, perhaps by cutting off
is feature might be useful when an operator bas to enter an unsafe area
g equipment that moves. One of the problems with a panic button is
re it is within reach when needed; sometimes, a rope is strung around
jal robot work area and a pull anywhere on the rope will operate the

16.5.1 Limiting Exposure

In some systems, it is impossible to stay only in safe states. In fact,
risk states may be required for the system to accomplish its functions. A
design goal for safety is to stay in a safe state as long and as much as pos!
example, nitroglycerine used to be manufactured in a large batch reactor.
is made in a small continuous reactor, and the residence time has been
from two hours to two minutes [154]. ;

Another way to reduce exposure is to start out in a safe state and
change to a higher risk state. The command to arm a missile, for example,’
not be issued until the missile is near its target. In the computer shutdown
at the Darlington Nuclear Power Generating Station, the software contai
variables that are used to determine (on the basis of sensor inputs) whether
down the plant. Each time through the code, the software initializes these
variables to the tripped value. If a software control flow or other error oc:
results in the omission of some or all of the checks on the sensor inputs, t
will be tripped. Basically, the safe state for the software in this instance.
the variables to contain a value that will result in plant shutdown; the: :
variables are assigned this value at all times except right after a check h
made that determines that the condition of the plant is safe.

lear industry, the term “protection system” typically refers only to the
ystems that detect conditions necessitating some type of safeguarding action
equipment that performs the action; the latter are called safety systems or
safety features. Protection system is used here 1o mean both.

441

442 -

16.5. Hazard Control

Chapter 16. Designing for Safety

iply be interrupts, since they need not convey any other information.
have been given various names: keep-alive signals, health checks,
ks. Sanity checks can also be performed by the computer on other
ermine whether input data from that device or information about the
‘device is self-consistent and reasonable.

ion system itself should provide information about its status and
ons fo the operator or bystander. For example. a light might flash or
might sound if a person enters a hazardous zone to indicate that the
ystem is working and has noticed the intrusion. The status of various
| actuators involved in the control system might also be displayed
tor. Whenever a system is powered up, a signal or warning should
to operators and bystanders. Conversely, if the software or other
as to shut down the system or revert to a safe state, the operator
formed about the anomaly detected. any action taken, and the current
figuration and status. Before shutting down. the controller may need
or undo some damage.

non design goal is to control the hazard while causing the least dam-
ption to the system. Achieving this goal requires making tradeoffs
ety and interrupting production or damaging equipment. Stressing
t beyond normal loads (and thus increasing equipment damage or re-
aintenance actions) may be necessary to reduce the risk of human in-

panic button. Operators need to be trained to exhibit the correct panic.
response to an unexpected event.

Again, passive devices are safer than active devices. Some e
be designed to fail into a safe state: Pneumatic control valves, for
available as “open-to-air” (open upon air failure) or “close-to-air”
failure), or a mechanical relay can be designed to fail with its contact
ting down a dangerous machine. Occasionally, programmable electr
can be designed to fail into a safe state. If not, then designers must a
components (an operator or an automatic system) that will detect a
state and provide an independent way of moving the equipment into &
Any shutdowns by a computer, including shutting itself down, must
no potentially unsafe states are created in the process. :

One example of a simple protection device is a watchdog ti
a timer that the system must keep restarting. If the system fails to
timer within a given period, the watchdog initiates some type of protectit
Care must be taken to eliminate the possibility of common-cause failu
watchdog and the thing being monitored. For example, if a watchdog
used to check software, the software should not be responsible for inif
the watchdog, and protection should be provided against the software i‘
resetting it. An infinite loop in the software routihe that resets the watchd
example, could destroy the watchdog’s ability to detect the software error.

Wray relates a case of a common-cause failure of a watchdog and
puter it was monitoring: s shutting down, some action may be necessary to avoid harm. such
up an errant rocket. At the same time, such safety devices may them-
sse harm, as in the case of the emergency destruct facility that acciden-
up 72 French weather balloons.
designer also has to consider how to return the system to an operational
i a fail-safe state. The easier and faster it is to do this, the less likely it is
safety system will be purposely bypassed or turned off.
se of these requirements and because some systems must continue to
7_ a minimum level in order to maintain safety, various types of fallback

be designed into a system. For example, traffic lights are safer if they
a blinking red or yellow state rather than fail completely. The X-29 is
mental, unstable aircraft that cannot be flown safely by human control
its digital computers fail, control is switched to an analog backup device
avides less functionality than the computers but at least allows the plane to
1y.
back states might include

It happened recently to a system that was operating a network of #
known as “output contactors,” which controlled the power supply
electrical equipment. The user had, unwittingly, fitted the system
mains transformer that was too small for the job. There were no p
during the first 18 months of operation because no one had used
than two of the contactors at the same time. One day, however,
tem’s microcomputer called for all of the contactors to operate
neously. This overloaded the transformer, whose output voltage dn
and reduced the electrical supply to the microcomputer. The microco
stopped working—and it did so before switching off the contactors a
ing down the machine. The result was some expensive damage as
chine continued working longer than it was supposed to. Although the
a watchdog on the system, it too was affected by the low supply vol
failed to cut out the primary contactor [358].

In general, a device (such as a watchdog) at the interface between
puter and the process it 1s controlling can use timeouts to detect a total co
failure and bring the system to a safe state. If the computer fails to send th
face device a signal at the end of a time interval, such as every 100 millise
the device assumes that the computer has failed and initiates fail-safe action
interface device might be another computer: A multiprocessing system, for &
ple, might require regular transmissions between the computers. Such tras

ial shutdown: The system has partial or degraded functionality.

old: No functionality is provided, but steps are taken to maintain safety or
t the amount of damage.

mergency shutdown: The system is shut down completely.

ually or externally controlled: The system continues to function, but
sntrol is switched to a source external to the computer; the computer may

443

4

Chapter 16. Designing for Safety 16.6. Damage Reduction

Park suggests using redundancy. Third, the sensor and challenge
it be as independent as possible from the monitor subsystem.
ard detection system may consist of three subsystems: (1) a
ct the hazardous condition, (2) a challenge subsystem to exercise
nsor, and (3) a monitor subsystem to watch for any interruption of
md-response sequence [252].
e reader may notice that the complexity level is creeping up and
tion systems are starting to resemble the Rube Goldberg de-
sharpener in Chapter 2. thus decreasing the probability that they
needed. This complexity is one reason why safe design features
e levels of precedence are preferable.

be responsible for a smooth transition. which can be probien
back is due to computer malfunction.

o Restart: The system is in a transitional state from non-normai

The conditions under which each of the control modes should be i
determined, along with how the transitions between states will be 3
and controlled.

There may also be requirements for multiple types of shutdown |
for example:

o Normal emergency stop: Cut the power from all the circuits. .

o Production stop: Stop as soon as the current task is completed
is useful if shutting down under certain conditions, such as mid
cause damage or problems in restarting.

o Protection stop: Shut down the machine immediately, but not age Reduction

cutting the power from all the circuits (which could result in dam

cases). The protection stop command may be monitored to mé
obeyed, and there may be a provision to implement an emerge

18 not.

‘reduce damage in the event of an accident is required because it
possible to reduce risk to zero, and the analysts and designers may
e all hazards. In particular, they may fail to foresee the consequences
oris: Changes to plant and methods of operation often have unfore-
ts. Furthermore, humans will make occasional mistakes, and our
on them is not eliminated by installing automatic devices. Finally,
usually limited: Designers need to determine which hazards should
immediately and which can be left, at least for the time being.
“emergency, there probably will be no time to assess the situation,
what is wrong, determine the correct action, and then carry out that
‘Therefore, emergency procedures need to be prepared and practiced
s can be handled effectively. Contingency planning usually involves
a “point of no return.” when recovery is no longer possible or likely
e minimization measures should be started. Without predetermining
people involved in the emergency may become so wrapped up in
to save the system that they wait too long to abandon the recovery efforts
bandon them prematurely.

raing systems, like any alarm system, should not be on continuously
y because people quickly become insensitive to constant stimuli, as
er. A distinction might be made between warnings used for drills and
for real emergencies.

ge minimization techniques include providing escape routes (such as
, fire escapes, and community evacuation), safe abandonment of prod-
materials (such as hazardous waste disposal), and devices for limiting
‘damage to equipment or people. Some examples of the latter are

If the system cannot be designed to fail into a safe state or 8
change to a safe state in the event of a failure, then the hazard detectors:
ultra-high reliability, be designed to fail safe themselves, or be desig
failure can be detected. For example, equipment can be added to test
subsystem periodically by simulating the condition that a sensor is-8
detect [252]. If the sensor fails to respond to a challenge or if it respo
challenge is present, then a warning signal is generated. Park provides a
of such a design for an industrial robot:

For example, an appropriate challenge to a light barrier used as’
sion detector would be a small motor-driven vane which repea
through the light curtain. If the sensor fails to respond when the v
posed to be in the path of the light beam. then either the sensor or
have [sic] failed, or the motion of the vane has been interfered
sensor shows that an object is present in the sensing area when th
not supposed to be, then either a real intrusion has occurred, or th
stuck, or the sensor has failed. Only if the signal from the sensor
from “safe” to “unsafe” in step with the motion of the vane can
tain that no obstruction is present and that the safety device itself is#

properly.

Park sees three design criteria as important in such safety dev
the challenge must not obscure a real hazard. In the light curtain exa
vane must pass through the light beam many times per second, becay
object intruding into the protected space might be undetected for as lo
entire challenge interval. Second. the sensor and challenge subsystems.

iding oil and gas furnaces with blowout panels that give way if over-
ssurization results from delayed ignition of accurnulations of fuel vapors
ad gases. This feature prevents or reduces damage to furnace walls, boiler

445

446

Chapter 16. Designing for Safety

tubes, and other critical parts of the equipment and structure
els or frangible walls are also used in explosives-processing p 3
explosion could destroy a structure completely [172].

o Collapsible steering columns on automobiles or signposts on
accident occurs, the steering column or signpost collapses and the
of injury is minimized.

o Shear pins in motor-driven equipment: If there is an overload,
causes shearing of the pin, thus preventing damage to the drive

Design of the
man—Machine Interface

16.7 Design Modification and Maintenance

Designs must be maintained, just as physical devices are. Change may.
sary because of changes in the environment or workplace, changes in
changes in requirements and needs, the introduction of new technol
ence that shows that the design does not satisfy the requirements
that assumptions upon which the design was analyzed or implement
hold, or the occurrence of accidents or incidents. :

Many accidents can be attributed to the fact that the system did
as intended because of changes that were not fully coordinated or ful 3
to determine their effect on the system [264]. Flixborough and the Hyi
walkway collapse are classic examples.’ For this reason, reanalysis of
features of the design must occur periodically and must always be
when some known change occurs or when new information is obtained
the safety of the design into doubt.

To make design changes safely, the design rationale—why partic
features were included—is needed. Changes can inadvertently elimir
tant safety features or diminish the effectiveness of hazard controls. §
rationale documentation must be updated and compared to accident and
reports to ensure that the underlying assumptions are correct and have
invalidated by changes in the system or the environment.

e problem, I suggest, is that the automation is at an intermediate
el of intelligence, powerful enough to take over control that used
be done by people, but not powerful enough to handle all abnor-
ities. Moreover, its level of intelligence is insufficient to provide
he continual, appropriate feedback that occurs naturally among hu-
n operators. To solve this problem, the automation should either
ade less intelligent or more so, but the current level is quite in-
.. .. Problems result from inappropriate application, not

—Donald Norman
The Problem with Automation

The designers] had no intention of ignoring the human factor. . . .

ut the mechanical and technological guestions became so over-
helming that they commanded the most attention.

—1John Fuller

Death by Robot

_Although traditional human-machine interface (HMI) design has a long his-
of experience and investigation, the introduction of computers has invali-
much of what was known. Digital computers were introduced into control
in the 1960s. They were used mostly for data acquisition, but limited uses
ontrol also started at this time. Since then, computers gradually have re-
conventional instrumentation until many systems today use only computer

3In 1981, a walkway at the Kansas City Hyatt-Regency Hotel collapsed, killing
people and injuring 200. Investigation showed that the design was changed &
construction without an appropriate structural analysis of the new design. After
roof collapse during construction, the dwner requested an analysis of the redesi

was never done [127]. 447

