Chapter

covered by the methods, and three groups evaluated which of the causal fac
the methods could have identified. HAZOP was the best, identifying 36 per
of the contributors. However, only 55 percent of the contributors were expect
to be covered by the four methods [323, 322]. This result is particularly
given that the analysis involved only determining which factors could potent
be identified by the methods—the number actually ‘identified in any applicatit
would be expected to be lower, "

Many evaluations of the predictive accuracy of reliability estimates ha
been done for individual instruments and components; these studies vary wide
in their results. In a reliability benchmark exercise, 10 teams from 17 organiza-
tions and from 9 European countries performed parallel reliability analyses o1
a nuclear power plant primary cooling system. The purpose was to determine
effect of differences in modeling and data. The ratio between the highest and low:
est frequencies calculated for the top event of the different fault trees was 36
When a unified fault tree was quantified by different teams using what each cott
sidered to be the best data, the corresponding ratio was reduced to 9.

Software Hazard and
Requirements Analysis

Computers do not produce new sorts of errors. They merely provide
new and easier opportunities for making the old errors.

—Trevor Kletz
Wise After the Event

14.15 Conclusions

Many different hazard analysis techniques have been proposed and are used, but
all have serious limitations and only a few are useful for software. But wheth
these techniques or more ad hoc techniques are used, we need to identify the
software behaviors that can contribute to system hazards. Information about these
hazardous behaviors is the input to the software requirements, design, and verifi
cation activities described in the rest of this book.

The vast majority of accidents in which software was involved can be traced to
requirements flaws and, more specifically, to incompleteness in the specified and
implemented software behavior—that is, incomplete or wrong assumptions about
the operation of the controlled system or required operation of the computer and
unhandled controlled-system states and environmental conditions. Although cod-
ing errors often get the most attention, they have more of an effect on reliability
and other qualities than on safety [80, 200]. :
: This chapter describes completeness and safety criteria for software require-
ments specifications. The criteria were developed both from experience in build-
Jing such systems and from theoretical considerations [135, 136] and. in essence,
are the equivalent of a requirements safety checklist for software. They can be
used to develop informal or formal inspection procedures or tools for automated
- analysis of specifications. The criteria are general and apply to all systems. unlike
. the application-specific safety requirements identified in a system hazard analy-
sis. Both application-specific hazards and general criteria need to be checked—in
fact, one of the general criteria requires checking the application-specific hazards.

359

360

Chapter 15. Software Hazard and Reguirements Analysis

Lutz applied the criteria experimentally in checklist form to 192 safatj_»
critical requirements errors in the Voyager and Galileo spacecraft software. These
errors had not been discovered until late integration and system test, and therefore

they had escaped the usual requirements verification and software testing process

[201]. The criteria identified 149 of the errors.! " Any after-the-fact experiment of

this sort is always suspect, of course; no proof is offered that these errors wo
have been found if the criteria had been applied to the requirements originally,

but the fact that they were related to so many real, safety-critical requirements
deficiencies is encouraging. It is not necessarily surprising, however, since most
of the criteria were developed using experience with critical errors, incidents, and

accidents in real systems.
Jaffe and colleagues have related the original criteria to a general state ma-
chine model of process control systems [136] that can be used to derive formal,

automated safety analysis procedures for specification languages based on state

machines. This chapter describes additional criteria that were not included in ear-
lier papers. The criteria are described only informally here; readers are referred
to the research papers for a formal treatment.

15.1 Process Considerationé

The software hazard analysis process will be influenced by the underlying acci-
dent model being used and its assumptions about the contribution of computers
to accidents. Computers contribute to system hazards by controlling the actions
of other components (including humans) either directly or indirectly. Humans are
controlled to some degree by providing the information to operators or designers
on which they base their decisions.

In an energy or chain-of-events model of accidents, software contributes to
hazards through computer control of the energy sources, the release or flow of
energy, the barriers, or the events that lead to accidents. In a systems theory model
that assumes accidents arise from the interactions among components, software
contributes directly to safety through computer control of these interactions.

The tasks of the software safety process defined in Section 12.1.1 that relate
to software hazard analysis include:

1. Trace identified system hazards to the software-hardware interface. Trans-
late the identified software-related hazards into requirements and constraints
on software behavior.

2. Show the consistency of the software safety constraints with the software
requirements specification. Demonstrate the completeness of the software

! Most of the unidentified errors involved design and thus were not the focus of the »
checklist.

15.1. Process Considerations

requirements, including the human-computer interface requirements, with
respect to system safety properties.

" The most direct way to accomplish the first step is with a top-down hazarc
is that traces system hazards down to and into the subsystems. In this
of analysis, the software-related hazards are identified and traced into the
are requirements and design. Currently, this goal is often accomplished by ¢
tree analysis down to the software interface.

In addition, because software can do more than what is specified in the re-
irements (the problem of unintended function), the code itself must be analyzec
‘ensure that it cannot exhibit hazardous behavior—that the code satisfies its re-
sments (even if the required behavior is shown to be safe) is not enough. Thic
ter looks at requirements analysis, while design and code analysis are de-
ribed in later chapters.

Software may also be the focus of a bottom-up subsystem hazard analysis
¢ practicality of this analysis is limited by the large number of ways tha
computers can contribute to system hazards. For example, a valve that has only
twe or three relevant discrete states (such as open, closed, or partially open
can be examined for the potential effects of these states on the system state
smputers, however. can assume s0 many states, exhibit so many visible anc
potentially important behaviors, and have such a complex effect on the systen
that complete bottom-up system analyses are, in most cases, impractical.
Bottom-up analyses may have some uses for software, but probably no
for identifying software hazards. For example, some specific types of compute.
ure and incorrect behavior can be analyzed in a bottom-up manner for thei
- effects on the system. In addition, forward analysis can examine (to some degree
a specification of software behavior to make sure that the behavior cannot leac
to an identified hazard. To accomplish the latter. the software behavior must be
 specified completely. and the specification language should have a rigorousl)
-~ and unambiguously defined semantics and be readable by application expert
and the user community. If the specification and analysis is not readable anc
. reviewable by system safety and application experts, confidence in the results wil
- be lessened.

Readability and reviewability will be enhanced by using languages that al
" tow building models that are semantically close to the user’s mental model of thi
system. That is, the semantic distance between the model in the expert’s mind am
the specification model should be minimized. In addition. reading the specifica
 tion or reviewing the results of an analysis should not require training in advance:
mathematics. Ideally, the specification language should reflect the way that engi
neers and application experts think about the system. not the way mathemati
cians do.

The second step of the process is to document the identified software be
havioral requireme'nts and constraints and to show that the software requirement

15.3. Compieteness in Requirements Specification:

exist. There is no formal or automated technique for this process: it re.
€ cooperation and joint efforts of the system and software engineers in
ying their own expertise and Judgment,

Completeness in Requirements Specifications

oSt important property of the requirements specification with respect to

Is completeness or lack of ambiguity. The desired software behavior must
¢ been specified in sufficient detail to distinguish it from any undesired pro-
. e . that might be designed. If a requirements document contains insufficient
15.2 Requirements Specification Components

Requirements specifications have three components: (1) a basic function or ob- : ien the specification js ambiguous or incomplete [135, 136].
Jective, (2) constraints on operating conditions, and (3) prioritized quality goals
to help make tradeoff decisjons. rather in the sense of a lack of ambiguity from the application perspective: The
The constraints define the range of conditions within which the system may Specification is incomplete if the System or software behavior is pot specified
operate while achieving its objectives. They are not part of the objectives; instead, ' recisely enough because the required behavior for some ¢vents or conditions is
they limit the set of acceptable designs to achieve the objectives. Constraints mitted or is ambiguous (is subject to more than one interpretation).
arise from quality considerations (including safety), physical limitations of the If the behavioral difference between tWo programs that satisfy the same re-
equipment, equipment performance considerations (such as avoiding overload of quirements is not significant for a subset of the requirements or constraints, such
equipment in order to reduce maintenance)f and process characteristics (such as as those related to safety, then the ambiguity or incompleteness may not matter,
limiting process variables to minimize production of byproducts). at least for that subset: The specification is sufficiently complete. A set of require-
Safety may be and often is involved in both functionality requirements
and constraints. In an airborne collision avoidance system, for example, the - lutely compiete: The requirement specification must simply be complete enough
basic mission—to maintain a minimum physijcal separation between aircraft— that it specifies safe behavior in all circumstances in which the system is to op-
obviously involves safety. There are also safety-related constraints—for example, & erate. Absolute completeness may be tnnecessary and uneconomical for many
the surveillance part of the System must not in any way interfere with the radars situations.

and message communication used by the ground-based air traffic contro] (ATC) Sufficient completeness. as defined here, holds only for a particular system
and environment. The same specification that is sufficiently complete for one 8ys-

in fact, they could most easily be accomplished by not building the System at all.
Rather, they are limitations on how such a collision avoidance system may be
realized.

Goals and constraints often conflict. Early in the development process, trade-
offs among functional goals and constraints must be identified and resolved ac-
cording to priorities assigned to each. We are most interested in the conflicts and
tradeoffs involving safety goals and constraints and in how adequately these goals
and constraints are realized in the actual requirements. Goals are just that—they
may not be completely achievable. Part of the safety process is to identify not
only conflicts, but safety-related goals for the software that cannot be completely
achieved. Decisions can then be made about how to protect the system using
means other than the software or about the acceptability of the risks if no other

cases) or a further requirements analysis is necessary.
The rest of this chapter defines criteria for completeness of sofrware require-
_ments specifications. Software requirements for the human—computer interface

15.4. Completeness Criteria for Requirements Analysis

Many types of incompleteness are application dependent and must be
tified using system hazard analysis or top-down analysis. Jaffe notes that Disturbances
application, at any given point in time, there is a set of kernel requirement
derive from current knowledge of the needs and environment of the app l
tion itself [135]. These kernel requirements are analytically independent ess inputs ——= — Process options
another—the need for the existence of any one of them cannot be dete : Controlled Process
from the existence of the others. For example, an autopilot p:i'ogram may or
not control the throttle along with the aerodynamic surfaces.

Without knowledge of the intent of the application, there can be no w
ascertain whether a particular requirements specification has a complete
kernel requirements. This type of incompleteness must be identified by s
engineering techniques that include modeling and analysis of the entire sy
with respect to various desired properties (such as safety). In other words,
safety implications of such incompleteness must be identified using system h
ard analysis (as described, for example, in Section 14.12) rather than the)
subsystem hazard analysis described in this chapter.

On the other hand, subsystem hazard analysis applied to requirements
detect incompletely specified kernel requirements. In addition, this type of 2
sis, involving rigorous examination of the specified software behavior, may
be able to detect some genuine functionality inadvertently omitted during the
tem engineering process. For example, a specification that includes a requirer
to generate an alert condition to tell an air traffic contrc‘ﬁler that an aircraft is
low is probably incomplete unless it also includes another requirement to i

the controller that an aircraft previously noted as too low is now back at a
altitude [135). Safety and robustness considerations can be exploited to dev
application-independent criteria for detectin g such incompleteness.

Measured
variables

Actuators Sensors

Controller

Internal model f——
of process

:

Set points, control aigorithms

15.1 L
box requirements specification captures the controller's internal model of
ocess. Accidents occur when the internal model does not accurately reflect

ate of the controlled process.

15.4 Completeness Criteria for Requirements Analysi

A requirements specification describes the required black-box behavior of
-omponent. Although design information is sometimes included in software
Juirements specifications, the safety analysis described here is concerned ‘onl
vith the black-box behavior of the software, which is the only aspect of the spe
ication that can directly affect system hazards. Design analysis is covered in la
‘hapters.

The requirements specification defines the function to be implemented)
1e computer. A description of any process control function uses as inputs

produces the corrective actions (or current outputs}.needed to achieve the
ess goals while satisfying the constraints on its t?ehavmrl. .
1In this chapter, the control function is described using a state mach}ne
el. State machines are convenient models for describing .corpputer beha\‘nor,
d-many specification languages use these mode_is. The criteria are described
terms of the components of a state machine model, but t.hey fzould be
lated to other models or applied to informal requirements specifications.

- A state machine is simply a model that describes a system ir.x terrns. of states
the transitions between the states. State machines are defined in Section 14.12
d an example is shown in Figure 14.11. The controlle?r outputs to actuators are
ciated with state changes in the model, which are triggered by measurements
process variables (see Figure 15.1). .

Theoretical control laws are defined using the true values of the process
. At any time, however, the controller has only measured values, which may

o The current process state inferred from measurements of the control
process variables

o Past process states that were measured and inferred
o Past corrective actions (outputs) that were issued by the controller
a Prediction of future states of the controlled process

365

R L L L SIS D IR Y O8O

15.4. Completeness Criteria for Requirements Analy

be subject to time lags® or measurement inaccuracies. The controller must use
these measured values to infer the true state of the process and to determine
the corrective actions necessary to maintain certain desirable properties in the
controlled system. Considering the problems of measurement error and time lags
is essential in developing safe control software. : The next sections informally describe what is required for a complete spe

A state machine mode] is an abstraction.;_As used here, it models the view ; ation of the triggers and outputs and the other parts of a black-box sta
of the process maintained by the computer (the internal model of the process), hine model of software behavior. Most of this discussion is taken fro;
which is necessarily incomplete (Figure 15.1). Hazards and accidents can result e [135].
from mismatches between the software view of the process and the actual state
of the process—that is, the model of the process used by the software gets out of
synch with the real process. For example, the software does not think the tank is
full and therefore does not stop the flow into the tank, or it does not know that the
plane is on the ground and raises the landing gear.

The mismatch occurs because the internal model is incorrect or incomplete
or the computer does not have accurate information about the process state. For
example, the model may not include a check for the proper process conditions be-
fore doing something hazardous—a check for weight on wheels is not included
on the state transition associated with the output to raise the landing gear. Al-
ternatively, the check may be included. but the computer may not have correct
information about the current state of the plane.

Safety then depends on the complef'ejfhess and accuracy of the software (in-
ternal) model of the process. A state machine specification of requirements ex-
plicitly describes this model and the functions performed by the software. The
goal of completeness analysis basically is to ensure that the model of the process
used by the software is sufficiently complete and accurate that hazardous process
states do not occur. Completeness criteria are defined for each of the state ma-
chine parts: the states, the transition (triggering) events, the inputs and outputs,
and the relationship between the transition events and their related outputs.

Completeness requires that both the characteristics of the outputs and the
assumptions about their triggering events be specified:

mplete trigger specification must include all conditions that trigger the o
that is, the set of conditions that can be inferred from the existence of .
- Such conditions represent assumptions about the environment in whj
gram Oor system is to execute.

4.1 Human—-Computer Interface Criteria

: I?uman—computer interface has many possible completeness criteria. Thes
a can be framed in terms of high-level abstractions applicable to this in
. Jaffe suggests that an alers queue, for example, is an abstraction wit]
pleteness criteria related to alert review and disposal, automatic reprioritiza
and deletion [135]. An alert queue is an abstraction external to the compute;
d thus appropriate for a black-box requirements specification. Some appropri-
ale human—computer abstractions and completeness criteria are presented in this

- chapter, but the essential requirements needed for other such abstractions can and
should be developed.

For human-computer interface

queues in general, the requirements specifi-
tion will include

o Specification of the events to be queued

o Specification of the type and number of queues to be provided (such as alert
or routine)

o Ordering scheme within the queue (priority versus time of arrival)

o Operator notification mechanism for items inserted in the queue

o Operator review and disposal commands for queue entries

a Queue entry deletion

trigger = output A second important abstraction for the human-computer interface is a rrans-

_ action, which may have multiple events associated with it Multiple-event trans-
. actions require additional completeness criteria such as those to deal with pre-
- emption in the middle of a transaction.

In response to a single occurrence of the given stimulus or trigger, the program
must produce only a single output set. A black-box statement of behavior allows
statements and observations to be made only in terms of outputs and the exter-

nally observable conditions or events that stimulate or trigger them (the triggers
for short). In terms of the state machine, this restriction means that both the states
and the events on the transitions must be externally observable.

Not only must the output be produced given a particular trigger, but it must
not be produced without the trigger:

trigger <= output

2 Time lags are delays in the system caused by sensor polling intervals or by the reaction
time of the sensors, actuators, and the actual process,

Often, requirements are needed for the deletion of requested information, An
air traffic controller, for example, may request certain graphic information such
as the projected path of a trial maneuver for a controlled aircraft, A complete re-
quirements specification needs to state when the trial maneuver graphics should
disappear. Some actions by the operator should leave this trial maneuver display
untouched (such as retrieving information from the aircraft’s flight plan to evalu-
ate the trial maneuver) while other actions should delete the transient information
without requiring a separate clearing action (such as operator signoff),

In general, Jaffe identifies three questions that must be answered in the
‘requirements specification for every data item displayable to a human:

1. What events cause this item to be displayed?

2. Can and should the display of this item ever be updated once it is displayed? -
If so, what events should cause the update? Events that trigger updates

may be
» External observables
» The passage of time
» Actions taken by the viewing operator
+ Actions taken by other operators (in multiperson systems)
3. What events should cause this data display to disappear?

In addition to data, the computer may control the labels (such as menus or :
software-labeled keys or buttons) associated with operator actions. Not only can

these labels change, but the software may be responsible for such things as high-
lighting a recommended action or deleting labels for actions that are unavailable
or prohibited under current conditions. Failure to specify all circumstances un-

der which data items or operator-action entry labels should change is a common

cause of specification incompleteness for the human—computer interface and a
potential source of hazards.

Specific criteria for these human—computer interface requirements are inte-
grated into appropriate sections of this chapter.

15.4.2 State Completeness

The operational states will, of course, be specific to the system. But in gen-
eral, these states can be separated into normal and non-normal processing modes
(where modes are just groups of states having a common characteristic), and
completeness criteria can be applied to the transitions between these modes.

o The system and software must start in a safe state. Interlocks should be
initialized or checked to be operational at system startup, including startup
after temporarily overriding interlocks.

Transitions from normal operation to non-normal operation are often associ-
ated with accidents. In particular, when computers are involved, many accidents
and failures stem from incompleteness in the way the software deals with startup
and with transitions between normal processing and various types of partial or
total shutdown.

o The internal software model of the process must be updated to reflect the
actual process state at initial startup and after temporary shutdown.

Unlike other types of software, such as data processing software, an im-
portant consideration when developing software for process control is that the
process continues to change state even when the computer is not executing. The
correct behavior of the computer may depend on input that arrived before startup;
what to do about this input must be included in the specification. Serious acci-
dents have occurred because software designers did not consider state changes

15.4. Completeness Criteria for Requirements Analysi:

e the system was in a manual mode and the computer was temporarily off.
-In one such accident in a chemical plant, described in Chapter 1, the com:

was controlling the valves on pipes carrying methanol between the plan
a‘_‘ tanker, and a pump was stopped manually without the computer knowing
similar accident occurred in a batch chemical reactor when a computer was
r off-line to modify the software [158]. At the time the computer was shu
. it was counting the revolutions on a metering pump that was feeding the
or. When the computer came back on-line, it continued counting where i
d Jeft off, which resulted in the reactor being overcharged.

o All system and local variables must be properly initialized upon startup,
including clocks.

There are two startup situations: (1) initial startup after complete process
tdown and (2) startup after the software has been temporarily off-line but the
rocess has continued under manual control. In both the initial startup and after
porary computer shutdown, the internal clock as well as other system and
local variables will need to be initialized. In addition, the second case (where only
e computer has been shut down) requires that the internal model of the process
ed by the software be updated to reflect the actual process state: the variables
and status of the process, including time, will probably have changed since the
computer was last operational.
A number of techniques are used for this resynchronization. Message serial-
ization (numbering the inputs), for example, is a commonly used technique that
¢an detect “lost” information and indicate potential discontinuities in software
operations. Another technique often used involves checking elapsed time between
apparently successive inputs by means of a self-contained timestamp in each in-
put (requiring clock synchronization) or via reference to a time-of-day clock upon
the receipt of each input.

o The behavior of the software with respect to inputs received before startup,
after shutdown, or when the computer is temporarily disconnected Sfrom
the process (off-line) must be specified, or it must be determined that this
information can be safely ignored, and this conclusion must be documented.

If the hardware can retain a signal indicating the existence of an input after
omputer shutdown and prior to startup, the program has two startup states—the
taput is present or is not present—and at least two separate requirements must be
_specified: one for startup when there is indication of a prior input signal and one
when there is not.

In the case of inputs that occur before program startup, the time of that input
t the number of inputs is not observable by the software, but one or some of the
puts may be available to the computer after startup. Which inputs are retained
hardware dependent: Some hardware may retain the first input that arrived,
ome the most recent, and so on. To avoid errors, systems where the ordering
incoming data is important must include requirements to handle pre-startup
puts.

370

Chapter 15. Software Hazard and Requirements Analysis 15.4. Completeness Criteria for Requirements Analysis

ight [235]. Another example involves an aircraft weapons management
‘attempts to keep the load even and the plane flying level by balanced
weapons and empty fuel tanks [235]. One of the early problems was
the plane was flying upside down, the computer would still drop a
fuel tank which then dented the wing and rolled off. In yet another
an aircraft was damaged when the computer raised the landing gear
to a test pilot’s command while the aircraft was standing on the run-

o The maximum time the computer waits before the first input must be

Any specification for a real-time system should also include requires
detect a possible disconnect occurring prior to program startup between
puter and the sensors or the process. After program startup, there should be
finite limit on how long the program waits for an input.before it tries var
native strategies—such as alerting an operator or shifting to an open-loop ¢
mechanism that does not use the absent input. This criterion is very si
a maximum-time-between-events criterion (discussed later), but it applies &
absence of even the first input of a given type. Even if the maximum time bet
events is checked, the special case of the first such interval after startup is.
omitted or handled incorrectly. There may (and in general will) be a series
tervals d1, dz, . . . during which the program is required to attempt various
of dealing with the lack of input from the environment. Eventually, however,
must be some period after which, in the absence of input, the conclusion m
that a malfunction has occured.

ome cases, there really is no requirement to respond to a given input
a subset of the states. But an input arriving unexpectedly is often an
v of a disconnect between the computer and the other components of the
should not be ignored. For example, a target detection report from a
- previously was sent a message to shut down is an indication that the
d not do so, perhaps because its detection logic is malfunctioning. If, in
unexpected input is of no significance, the requirements specification
still document the fact that all cases have been considered and that this

a Paths from fail-safe (partial or total shutdown) states must be specified. can be ignored (perhaps by specifying a “do nothing’" response to the

time in a safe but reduced-function state should be minimized.
o Interlock failures should result in the haiting of hazardous functions.

The software may have additional non—xftgnnal processing modes such
partial shutdown or degraded operation. More completeness criteria for some
these mode transitions are described later. <

The normal processing states may also be divided into subsets or m
of operation, such as an aircraft taking off, in transit, or landing. For saf
analysis, the states may be partitioned into hazardous and nonhazardous mo
with different completeness criteria applied to each.

Input and Cutput Variable Completeness

puts and outputs represent the information the sensors can provide to the
¢ (the controlled variables) and the commands that the software can pro-
the actuators (to change the manipulated variables). These input and out-
jables and commands must be rigorously defined in the documentation.

At the black-box boundary. only time and value are observable by the soft-
Therefore, the triggers and outputs must be defined only as constants or as
e and time of observable events or conditions. Events include program in-
prior program outputs, program startup (a unique observable event for each
tion of a given program), and hardware-dependent events such as power-
-tolerance interrupts. Conditions may be expressed in terms of the value
dware-dependent attributes accessible by the software such as time-of-day
or sense switches.

o There must be a response specified for the arrival of an input in any state,
including indeterminate states.

Completeness considerations require that there be a software response to th
arrival of an input in any state, including the arrival of unexpected inputs for
state. For example, if an output is triggered by the receipt of a particular inps
when a device is in state oN, the specification must also handle the case wh
that input is received and the device is in state oFF. In addition, not being
state ON is not equivalent to being in state OFF, since the state of the device may:
be indeterminate (to the computer) if no information is available about its §
Therefore, a requirement is needed also to deal with the case when the input
received and the computer does not know if the device is ON or OFF.

Many software problems arise from incomplete specification of state as
sumptions. As an example, Melliar-Smith reports a problem detected during
operational simulation of the Space Shuttle software. The astronauts attemp
to abort the mission during a particular orbit, changed their minds and cancele
the abort attempt. and then decided to abort the mission after all on the next or:
bit. The software got into an infinite loop that appears to have occurred because
the designers had not anticipated that anyone would ever want to abort twice o

All information from the sensors should be used somewhere in the specifi-
cation.

f information from the sensors is not used in the requirements, there is very
to be an important omission from the specification. In other words. if an
can be sent to the computer, there should be some specification of what
d be done with it.

- Legal output values that are never produced should be checked for potential
Specification incompleteness.

‘As with inputs, an important requirement for software behavior may have
forgotten if there is a legal value for an output that is never produced.

371

372

Chapter 15. Software Hazard and Reguirements Analysis 15.4. Completeness Criteria for Requirements Analysis

Detecting errors early, before they lead to accidents. is obviously a
oal.

For example, if an output can have values open and close and the require
specify when to generate an OPEN command but not when to generate CLOSE,
specification is almost certainly incomplete. Checking for this property may
to locate specification omissions. Robustness Criteria
robust, the events that trigger state changes must satisfy the followin g:
Every state must have a behavior (transition) defined for every possible
put.

The logical oR of the conditions on every transition out of any state
must form a tautology.

Every state must have a software behavior (transition) defined in case
there is no input for a given period of time (a timeout).

15.4.4 Trigger Event Completeness

The behavior of the control subsystem (in our case, the computer) is defined.
respect to assumptions about the behavior of the other parts of the systemn
conditions in the other parts of the control loop or in the environment in wi
the controller operates. A robust system will detect and respond appropﬁatelj
violations of these assumptions (such as unexpected inputs). By definition,
the robustness of the software built from the specification depends upon the ¢
pleteness of the specification of the environmental assumptions—there sh,
be no observable events that leave the program’s behavior indeterminate. The
events can be observed by the software only in terms of trigger events, and th
completeness of the environmental assumptions is related to the completeness.
the specification of the trigger events and thé,:_response of the computer to
potential inputs. ;

Documenting all environmental assumptions and checking them at runtin
may seem expensive and unnecessary. Many assumptions are based on the ph
ical characteristics of input devices and cannot be falsified even by unexpec
physical conditions and failures. For example, an input line connected to a 12_?
baud modem cannot fail in a way that causes the data rate to exceed 1200 bauiﬁﬁ
The interrupt signal may stick high (on), but for most modern hardware, that
will stop data transfer, not accelerate it. If the environment in which the pro-
gram executes ever changes, however, the assumption may no longer be valid;
the 1200-baud modem may be upgraded to 9600 baud, for example. Similarly, if
the software is ever reused, the environment for the new program may differ from
that of the earlier use. Examples were provided in Chapter 2 of problems arising
from the reuse of software in environments different from that for which it was
originally built.

In addition to being documented, critical assumptions—those where the im-
proper performance of the software can have severe consequences—should be
checked at runtime. Examples abound of accidents resulting from incomplete re-
quirements and nonrobust software. For example, an accident occurred when a
military aircraft flight control system was intentionally limited in the range of
control (travel) by the software because it was (incorrectly) assumed that the air-
craft could not get into certain attitudes.

Even when real-time response is not required, it is important that the soft-
ware or hardware log violations of assumptions for off-line analysis. A hole in
the ozone layer at the South Pole was not detected for six years because the ozone
depletion was so severe that a computer analyzing the data had been suppressing
it. havine been programmed to assume that deviations so extreme must be sensor

tautology is a logically complete expression. For example, if there is a

ent on a transition that the value of an input be greater than 7, then

ogically complete specification would also include transitions from that

en the input is less than 7 and equal to 7.

ese three criteria together guarantee that if there is a trigger condition
e to handle inputs within a range, there will some transition defined to

data that is out of range. There will also be a requirement for a timeout

ecifies what to do if no input occurs at all.

he use of an OTHERWISE clause (in specification languages that permit this)

t appropriate for safety-critical systems. Jaffe writes:

It was always tempting to guarantee the appropriate level of completeness at
any given point by just adding an “otherwise, do nothing” requirement, But
the more complex the situation, the more likely it is that there will be some
interesting case concealed within the “otherwise.” It is better to explicitly
delineate exactly what cases provide the “otherwise” condition and then
check for tautological completeness [135].

4.2 Nondeterminism

other restriction can be placed on the transition events to require deterministic
avior:

The behavior of the state machine should be deterministic (only one possible
transition out of a state is applicable at any time).

Consider the case where the conditions on two transitions are that (1) the
of the input is greater than zero and (2) the value of the input is less
2. If the input value is I, then both transitions could be taken, leading to
deterministic behavior of the software with respect to the requirements. The
lem is eliminated by forcing all transitions out of a state to be disjoint (two
sition conditions can never be true at the same time).

Although a specification does not have to be deterministic to be safe, non-
minism greatly complicates safety analysis and may make it impractical to

perform thoroughly. Moreover, software to control the operation of many haz-

ardous systems should be repeatable and predictable. Deterministic behavior aids
in guaranteeing hard real-time deadlines; in analyzing and predicting the behavior

of software; in testing the software; in debugging and troubleshooting, including

reproducing test conditions and replicating operational events; and in allowing
the human operator to rely on consistent behavior (an important factor in the de-
sign of the human-machine interface). :

15.4.4.3 Value and Timing Assumptions

Ensuring that the triggers in the requirements specification satisfy the previous
four criteria is necessary, but it is not sufficient for trigger event completeness.

The criteria ensure that there is always exactly one transition that can be taken out

of every state, but they do not guarantee that all assumptions about the environ-
ment have been specified or that there is a defined response for all possible input
conditions the environment can produce. Completeness depends upon the amount
and type of information (restrictions and assumptions such as legal range) that is
included in the triggers. The more assumptions about the triggers included, the
more likely that the four above criteria will ensure that the requirements include
responses to unplanned events.

Many assumptions and conditions aee application dependent, but some types
of assumptions are essential and should”always be specified for all inputs to
safety-critical systems. In real-time systems, the times of inputs and outputs are
as important as the values. Digital flight control commands to ailerons, for exam-
ple, may be dangerous if they do not arrive at exactly the right time: Flutter and
instability (which can and do lead to the loss of the aircraft) result from improp-
erly timed control movements, where the difference between proper and improper
timing can be a matter of milliseconds [135]. Therefore, both value and time are
required in the characterization of the environmental assumptions (triggers) and
in the outputs.

Essential Value Assumptions

Value assumptions state the values or range of values of the trigger variables
and events. An input may not require a specification of its possible values. A
hardwired hardware interrupt, for example, has no value, but it may still trigger
an output. When the value of an input is used to determine the value or time of an
output, the acceptable characteristics of the input must be specified, such as range
of acceptable values, set of acceptable values, or parity of acceptable values.

o All incoming values should be checked and a response specified in the event
of an out-of-range or unexpected value.

As noted earlier, even where an assumption is not essential, it should be
specified and checked whenever possible (whenever it is known) because the re-
ceipt of an input with an unexpected value is a sign that something in the en-

SRR AT i L I I LU LT e T 7 U P O

ment is not behaving as the designer anticipated. Checking simple value
aptions on inputs is comparatively inexpensive. Since failure of such as-
tions is an indication of various reasonably common hardware malfunctions
misunderstanding about software requirements, it is difficult to envision an
iplication where the specification should not require robustness in this regard—
inceming values should have their values checked, and there should be a specified
sponse in the event an unexpected value is received.

Some input values represent information about safety interlocks. These ai-
ys, need to be checked for values that may indicate failure and appropriate
Hon taken.

ential Timing Assumptions

e need for and importance of specifying timing assumptions in the software
fequirements stem from the nature and importance of timing in process control,
here timing problems are a common cause of runtime failures. Timing is often
inadequately specified for software. Two different timing assumptions are essen-
tial in the requirements specification of triggers: timing intervals and capacity or
- load. 3
Timing Intervals. While the specification of the value of an event is usual but
optional, a timing specification is always required: The mere existence of an ob-
-~ servable event (with no timing specification) in and of itself is never sufficient—at
the least, inputs must be required to arrive after program startup (or to be handled
as described previously).

o All inputs must be fully bounded in time, and the proper behavior specified
in case the limits are violated or an expected input does not arrive.

Trigger specifications include either the occurrence of an observabie signal
(or signals) or the specification of a duration of time without a specific signal.
- Both cases need to be fully bounded in time or a capacity requirement is neces-
. sary.

The arrival of an input at the black-box boundary has to include a lower
bound on the time of arrival and will, in general, include an upper bound on the
mterval in which the input is to be accepted. Requirements dealing with input
arriving outside the time interval and the nonexistence of an input during a given
interval (a duration of time without the expected signal) also have to be defined.
The robustness criteria will ensure that a behavior is specified in case the time
- Himits are violated.

The acceptable interval will always be bounded from below by the time of
the event that brought the machine to the current state. Some other lower bound
may be desirable, but the limit must always be expressed in terms of previous,
observable events.

¥ Load here refers to a rate, whereas capaciry refers to the ability to handle that rate.

Eae e mams mow

d been tested under a full load, and each, obviously, had inadequate
to a violation of the load assumptions.

inputs from human operators or other slow system components
y be incapable of overloading a computer, various malfunctions can
pessive, spurious inputs and so they also need a load limit specified. In
dent, an aircraft went out of control and crashed when a mechanical mal-
in a fly-by-wire flight control system caused an accelerated environment
#ight control computer was not programmed to handle [83]. Robustness
pecifying how to handle excessive inputs and specifying a load limit for
its as a means of detecting possible external malfunctions.

Even requirements such as “The event [shall occur at 11:00 A.M.”
biguous. The value of the time of [is the value of the reference clock
“simultaneously” with the occurrence of /. Conceptually, the clock is tic
the rate of one tick per unit of temporal precision. In general, / will o
tween two ticks of any clock, no matter how frequent the ticks. Therefore, ¢
that it must occur exactly at 11:00 A.M. is meaningless unless the speci
also states what clock is to be used. Even then, the time cannot be known
precisely than the granularity of the clock. Concrete discussion of specific clo
should be avoided in a software requirements specification; all that is really
essary to know is the required precision of the clock. Translating this preg
into an attribute of the input results in a requirement with bounding ineq
rather than an equality, such as 10:59 a.M. < time(]) < 11:01 A.M. (comn
written as time(I) = 11:00 A.M. & 1 min), which specifies an accuracy of phis
minus a minute on the timing. :

minimum and maximum load assumption must be specified for every
terrupt-signaled event whose arrival rate is not dominated (limited) by
other type of event.

general, inputs to process control systems should have both minimum
imum load assumptions for all interrupt-signalled events whose arrival
not dominated by another type of event. If interrupts cannot be disabled
out) on a given port, then there will always be some arrival rate for an
mupt signaling an input that will overload the physical machine. Either the
ine will run out of CPU resources as it spends execution cycles responding
nterrupts, or it will run out of memory when it stores the data for future
ing. Both hardware selection and software design require an assumption
the maximum number of inputs N signaled within an interval of time d, so
ormation should be in the requirements specification.
‘Maultiple load assumptions are meaningful although not necessarily required
' given case. For example, the load could be 4 per second but not more
7 in any two seconds nor more than 13 in four seconds. and so on. One
assumption is required; multiple assumptions may derive from application-
considerations. Multiple loads can also be assumed for a given input
n additional data characteristics, such as not more than 4 inputs per second
the value of input [is greater than 8, but not more than 3 per second when
gfeaser than 20.

o A trigger involving the nonexistence of an input must be fully bounded
time.

For requirements that involve the nonexistence of a signal during a g
interval, both ends of the interval must be either bound by or calculable
observable events. Informally, there must be an upper bound on the time the p
gram waits before responding to the lack of a signal. There must also be a specifi
time to start timing the lack of inputs or an infinite number of intervals (and t
outputs) will be specified. For example, a requirément of the type “If there is
input / for 10 seconds, then produce output O is not bound at the lower end ¢
the interval and is therefore ambiguous. Should the nonexistence interval start
time ¢, at t + ¢, t + 2¢, . . . 7 An example of a complete specification might b
“If there is no input /; for 10 seconds after the receipt of the previous input Z;
then produce output 0. The observable event need not occur at either end of the
interval—the ends need only be calculable from that event, such as “There is ne.
input for 5 sec preceding or following event E.”

Capacity or Load. In an interrupt-driven system, the count of unmasked input
interrupts received over a given period partitions the computer state space into at:
least two states: normal and overloaded. The required response to an input will
differ in the two states, so both cases must be specified.

Failures of critical systems due to incorrectly handled overload conditions
are not unusual. A bank in Australia reportedly lost money from the omission
proper behavior to handle excessive load in an automated teller machine (ATM}
[266]. When the central computer was unable to cope with the load, the ATMs
dispensed cash whether or not the customer had adequate funds to cover the with-
drawal. Failure to handle the actual load, although annoying to customers, would:
not by itself have caused as much damage as that resulting from the lack of an’
explicit (and reasonable) overload response behavior. Much more serious con-
sequences resulted from the failure of a London ambulance dispatching system
in 1992 under an overload condition [68]. According to reports, neither of these

' A minimum-arrival-rate check by the software should be required for each
physically distinct communication path. Software should have the capacity
to query ils environment with respect to inactiviry over a given communica-
tion path.

A load assumption with N equal to 1 is the same as an assumption on the
mum time between successive inputs. Robustness requires the specification
inimum arrival rate assumption for most, if not all. possible inputs since
ite, total inactivity by any real-world process is unlikely. Robust software
be able to query its environment about inactivity over a given communi-
path. Requirements of this type lead to the use of sanity and health checks
e software, as described in Chapter 16.

PO UL U SO0 WIS UL DY UL GG S Aaly s

shedding or reconfiguration is used. a hysteresis delay and other
st be included in the conditions required to return to normal pro-
vad.

Where interrupts can be masked or disabled, the situation is more:
cated. If disabling the interrupt can result in a “lost” event (dependi
hardware, the duration of the lockout, and the characteristics of the de
other end of the channel), the need for a load assumption will depend
the input is used. If the number of inputs / is completely dominated b
dent on) the number of inputs of a different type, then a load assumption ¥
not needed. .

Even if a particular statistical distribution of arrivals over time i§
and specified, a load limit assumption is still required. Assuming that th
distribution fits a Poisson distribution, for example, does not preclude:
sibility, no matter how improbable, of it exceeding a given capacity. If
is exceeded, there must be some specification of the ways that the sys
acceptably fail soft or fail safe.

‘state of degraded performance has been entered, a specification of
required to return to a normal processing mode, including a hys-
is necessary. After detecting a capacity violation, the system must
0 return to the normal state too quickly; the exact same set of cir-
that caused it to leave may still exist. For example, assume that the
ed the state to change is the receipt of the nth occurrence of in-
a period d, where the load is specified as limited to n — 1. Then, if
attempts to return to normal within a period x < d, the very next oc-
‘an I might cause the state to change again to the overload state. The
ld thus ping-pong back and forth. A hysteresis factor simply ensures
ition to normal operation is not too close in time to the inputs that
: averload.*

a hysteresis delay, system robustness requires specification of a se-
ks on the temporal history of mode exit and resumption activities to
nstant ping-ponging.

o The response to excessive inputs (violations of load assumptions)
specified.

The requirements for dealing with overload generally fall into one .
classes:

1. Requirements to generate warning messages.

2. Requirements to generate outnuts to reduce: the load (messages to
systems to “slow down”). ' #

3. Requirements to lock out interrupt signals for the overloaded channels

4. Requirements to produce outputs (up to some higher load limit) that:
reduced accuracy or response time requirements or some other charact
that will allow the CPU to continue to cope with the higher load.

5. Requirements to reduce the functionality of the software or, in extrer
cases, to shut down the computer or the process.

Output Specification Completeness

trigger events, the complete specification of the behavior of an output
gres both its value and its time.

afety-critical outputs should be checked for reasonableness and for haz-
rdous values and timing.

hecking to make sure that output values are legal or reasonable is straight-
and helpful in detecting software or other errors. In general, this should
vs be done for safety-critical outputs and may be desirable for other outputs.
us values can be determined by a top-down hazard analysis that traces
hazards to the software, as described previously.

re is no limit to the complexity of timing specifications for outputs, but,
least, specification of bounds and minimum and maximum time between
s is required, as it is for inputs. In addition, there are some special require-
ts for the specification of the outputs: environmental capacity, data age, and

The first three classes are handled in an obvious way. The behavior in t
fourth and fifth classes (commonly called performance degradation and functi
shedding) should be graceful—that is, predictable and not abrupt.

o If the desired response to an overload condition is performance degrdd
tion, the specified degradation should be graceful and operators should
informed.

Abrupt or random (although bounded) degradation often needs to
avoided. Certainly for operator feedback, predictability is preferable to variab
ity, at least within limits, even if the cost is a slight increase in average respor
time [84]. For safety considerations, however, as discussed in Chapters 6 and
when the program changes to a degraded performance mode or the computer
compensating for extreme or non-normal conditions, the operator should alwa:
be informed. Additional action may be required, such as disabling or requesti
resets of busy interfaces or recording critical parameters for subsequent analy:

mental Capacity Considerations

rite at which the sensors produce data and send it to the computer is the
1 in input capacity. Qutput capacity, on the other hand, defines the rate at

esis intervals are also useful for specifying conditions other than timing that cause
fions between states. especially transitions to non-normal processing modes.

o

Chapter 15. Software Hazard and Requirements Analysis 15.4. Completeness Criteria for Requirements Analysis

s the display for patterns and relationships and determines what is
what constitutes an event requiring operator attention.

- asynehronous interactions, however, the human-machine interface
make operators explicitly aware of events rather than merely high-
Iy interesting data on a parallel display. Examples of such events
and orders or requests from other operators. This type of asyn-
sraction can result in operator overload, but putting load limits on
.may not be practical. A general solution to the discrete event over-
s an event bucker-—generally, one or more queues of event data
erator review and acknowledgment. The information defining the
be inserted into the event queue and a standard signal used to sig-
event has been detected and queued. A particular operator position
everal predefined and operator-defined events that can be added to its

which the actuators can accept and react to data produced by the ¢o
the sensors can generate inputs at a faster rate than the output environr
absorb” or process outputs, an output overload might occur.

o For the largest interval in which both input and output loads are q

and specified, the absorption rate of the output environment must
exceed the input arrival rate.

Output load limitations may be required because of physical limita
the actuators (such as a limit on the number of adjustments a valve
per second), constraints on process behavior (excessive wear on actuato
Increase maintenance costs), or safety considerations (such as a restri'
how often a catalyst can be safely added to a chemical process).

Differences in input and output capacity result in the need to handle
cases:

1. The input and output rates are both within limits, and the “normal”
can be generated.
2. The input rate is within limits, but the output rate will be exce

Inormally timed output is produced, in which case some sort of special
18 required. &

ic update and deletion requirements for information in the human—
witer interface must be specified.

placed in queues may be negated by subsequent events. The require-
fication should include the conditions under which such entries may
cally updated or deleted from a queue. Some entries should be deleted
explicit operator request; however, workload may be such that the
nust be queued until the operator can acknowledge them. For example,
“air traffic control operator asks for the count of aircraft whose velocity
a certain speed, the response may be queued and should not disappear
operator acknowledges receipt.

queued events may become irrelevant to the operator, such as infor-
about a warning to an air traffic controller that an aircraft is too close to
d or to ground-based hazards such as tall antennas (called a minimum
ade warning or MSAW). The warning itself may be shown on the situa-
splay, but additional information that cannot be displayed may be put into
¥ the portion of the queue that contains the MSAW-related information
currently visible to the operator, it may be removed from the queue auto-
fy when the MSAW is removed from the situation display. If that portion
queue is currently visible, the queued information should not be removed:
ors generally find it distressing when information disappears while they
g at it or while they are temporarily glancing away.

There could be safety implications as well. Suppose that there are MSAWs
separate aircraft, but the queue display can accommodate only one event
ame. The operator might glance back at the display, not realizing that the first
has been removed and replaced by the second. The operator would then
e recommended course for the second aircraft and transmit it to the first
, not realizing that the event data he or she is reading is not the same data
second or two before.

3. The input rate is excessive, in which case some abaormal response is
sary (graceful degradation). ’

discrete load assumptions are specified. For example, the output capacity
be 10 per second but only 40 per minute, while the input sensor might |
peak rate of 12 per second but a sustained rate of only 36 per minute. '

o Contingency action must be specified when the output absorption rate
will be exceeded,

Over the short term, the program can buffer or shield the output enviro:
from excessive outputs. Over the long term, however, the program mighf B
catch up unless, for the largest interval in which both input and output capaci
are assumed and specified, the absorption rate of the output environment ey
or exceeds the input arrival rate, Contingency action must be specified for
where these assumptions do not hold.

o Update timing requirements or other solutions to potential overload p
lems, such as operator event queues, need to be specified.

he or she is never in doubt about which response pertains to which action
when the interaction is asynchronous, operator overload may not be a prot
[n some displays, such as an air traffic controller’s situation display, my
‘he data can be added, deleted, or changed in parallel with other human—

nterface activities without interfering with operator performance. In this case,

381

o The required disposition for obsolete queue events must include
tion of what to do when the event is currently being displayed and

is not.

requirements also apply to human-computer interface action se-
Re transactions require multiple actions, for example, a FIRE com-
followed by a CONFIRM MISSILE LAUNCH request from the computer
HFIRM action from the operator. Once the FIRE command has been
limit should be imposed on how long it remains active (before it
cally cancelgd) without confirmation from the operator. Such a time
 be important if the incomplete control sequence places the system in
itld_c state: Once such a sequence is started, it may take fewer actions or
create a hazard, and thus the exposure should be minimized or at least

In general, obsolete event data currently being displayed cannot be
ically deleted or replaced. It may be modified to show obsolescence and re
when the operator indicates to do so or when the overall display is
such a way that the obsolete event display becomes invisible (for exa
queue is advanced and the obsolete inf rmation is scrolled off the display).

Data Age
cation of a partially completed action seguence may require (1) specifi-

tton of multiple times and conditions under which varying automatic can-
Hation or postponement actions are taken without operator confirmation
d (2) specification of operator warnings to be issued in the event of such
ocation.

Another important aspect of the specification of output timing involves d ;
solescence. In practical terms, few, if any, input values are valid forever..
if nothing else happens and the entire program is idle, the mere passage of
renders much data of dubious validity eventually. Although the computer
the real world in which the computer is embedded (the process the com
controlling) is unlikely to be. Control decisions must be based on data froi
current state of the system, not on obsolete information.

some cases, the partially completed sequence should not be discarded
a warning to the operator. In other cases, a partially completed complex
ction should be set aside for subsequent, manual reactivation that is sim-
complete reinitialization. The “safing” sequence and the time periods
ed may themselves vary with the current state. On combat aircraft, for ex-
weapon selection or activation actions that are a prerequisite for weapon
sh-ould not be automatically revoked easily. On the one hand, when pilots
y in combat, they should not be further burdened with alarms notifying
that their preliminary weapon selection will be revoked automatically in
onds unless overridden. On the other hand. partial selection and activation
should not be allowed to continue indefinitely. A compromise is to let the
vary as a function of conditions detectable by the computer. If the operator
arly present and engaged in combat activities, the automatic revocation se-
ce might be postponed indefinitely until conditions change. A wheels down
engine idle or off condition might be the basis for a much shorter delay.

‘o All inputs used in specifying output events must be properly limited 1
time they can be used (data age). Output commands that may not be ab
be executed immediately must be limited in the time they are valid.

Data obsolescence considerations require that all input and output e
be properly bounded in time: The input is only valid to trigger an output @
it occurred within a preceding duration of time D. As an example of the
sible implementation implications of such a requirement, MARS, a distrib
fault-tolerant system for real-time applications, includes a validity time for ev
message in the system after which the message is discarded [165].

Frola and Miller [88] describe an accident related to the omission of a da
age factor. A computer issued a CLOSE WEAPONS BAY DOOR command on a B
aircraft at a time when a mechanical inhibit had been put on the door. The cLo
command was generated when someone in the cockpit pushed the close do:
switch on the control panel during a test. The command was not executed (be-
cause of the mechanical inhibit), but remained active. Several hours later, wh&fi
the maintenance was completed and the inhibit removed, the door unexpectedly
closed. The situation had never been considered in the requirements definition &
phase; it was fixed by putting a time limit on all output commands.

The information used in response to queries from operators may also be-
come obsolete before the operator can receive it. The requirements specification
needs to state if a query response sitting in the operator’s queue should be auto-
matically updated as the situation changes or flagged as possibly obsolete.

ency

.E: a computer is not arbitrarily fast, there is a time interval during which the
eipt of new information cannot change an output even though it arrives prior
the actual output action. The duration of this latency interval is influenced by
; tlhe hardware and the software design. An executive or operating system that
mits the use of interrupts to signal data arrival may have a shorter latency
al than one that uses periodic polling, but underlying hardware constraints
:vent the latency from being eliminated completely. Thus, the latency interval
be made quite small, but it can never be reduced to zero.
The acceptable length of the latency interval is determined by the process
the so'ftware is controlling. In chemical process control, a relatively long
ncy period might be acceptable, while an aircraft may require a much shorter

o Incomplete hazardous action sequences (transactions) should have a finite
time specified after which the software should be required to cancel the ©
sequence automatically and inform the operator.

384

Chapter 15. Software Hazard and Requirements Analysis

one. The choice of operating system, interrupt logic, scheduling priority, and
system design parameters will be influenced by the latency requirements. Also,

behavioral analysis of the requirements to determine consistency with process
functional requirements and constraints may not be correct unless the value of

this behavioral parameter is known and specified for the software. Therefore, the

requirements specification must include the allowable latency factor.

a A latency factor must be included when an output is triggered by an interval
of time without a specified input and the upper bound on the interval is not

a simple, observable event.

Triggering an output on an interval of time without a specified event occur-

ring always requires the specification of a latency factor between the end of the

interval and the occurrence of the output. Where the upper bound on the intervai

is a simple, observable event, latency is not an issue. However, where the intent.

is to signal the nonoccurrence of an input after some other event, a latency speci-
fication is required.

o Contingency action may need to be specified to handle events that occur
within the latency period.

Additional requirements may need to.be specified to handle the case where

an event is observed within the latency period. For example, if an action is taken
based on the assumption that some input never arrived and if it is later discovered

that the input actually did arrive but too late to affect the output, it may then be

necessary to take corrective action.

a A latency factor must be specified for changeable human—computer inter- :

face data displays used for critical decision making. Appropriate contin-
gency action must be specified for data affecting the display that arrives
within the latency period.

Latency considerations also affect specification of the human—computer in-
terface. Whenever a data display changes just prior to an operator basing a crit-
ical decision on it, the computer may need to query the operator as to whether
the change was noted before action selection. The display might involve, for ex-
ample, showing a set of operator options, including a recommended option and
several indications of poor ones. If the arrival of asynchronous data results in
a change to the recommended action, then whether the operator had sufficient
opportunity to observe that change will affect the required human-computer in-
terface behavior. As another example, an operator decision to fire a missile at
a target that has just had its displayed threat value reduced (but not completely
eliminated) may warrant extra interaction between the program and the operator.

o A hysteresis delay action must be specified for human—computer interface
data to allow time for meaningful human interpretation. Requirements may
also be needed that state what to do if data should have been changed during
the hysteresis period.

15.4. Completeness Criteria for Requirements Analysis

FM-UP FM-UP
FM-DOWN FM-DOWN
CwW CwW -
CHIRP CHIRP
Time T1 Time T2

GURE 15.2

consecutive snapshots of an operation action menu with the recommended
on highlighted. The recommendation must be constant long enough for
ingful human interpretation. Requirements are also needed to deal with
problems when the recommended action changes.

jable data. such as a computer-recommended operator action. must be con-
stant long enough for meaningful human interpretation. which leads to a require-
ent for a hysteresis delay (Figure 15.2). An additional requirement will then be
eeded to cope with situations where the action is selected after the occurrence
of an event that should have changed the displayed data but did not because it
ceurred before the expiration of the hysteresis delay from the previous change.

5.4.6 Output to Trigger Event Relationships

ome criteria for analyzing requirements specifications relate not to input or
atput specifications alone but to the relationship between them. Although, in
eneral, the relationship depends on the control function being specified, basic
rocess control concepts can be used to generate criteria that apply to all process
ontrol systems, such as feedback and stability requirements.

Responsiveness and spontaneity deal with the actual behavior of the con-
 trolled process and how it reacts (or does not react) to output produced by the
controller. In particular, does a given output cause the process to change, and if
- 30, is that change detectable by means of some input? Basic process control mod-
include feedback to provide information about expected responses to changes
g the manipulated variables and information about state changes caused by dis-
turbances in the process.

o Basic feedback loops, as defined by the process control function, must be
included in the software requirements. That is, there should be an input that
the software can use to detect the effect of any output on the process. The

9.4, LUIIPIBLEIIESS LIITeNna Tor Hequirements Analysis

requirements must include appropriate checks on these inputs in o

: . vironment responds foo quickly, coincidence rather than appropri-
detect internal or external failures or errors.

-fesponse behavior may be responsible. Most processes do not react
sly, but only after a delay (time lag). Thus, the specification of a la-
is required. A value-based handshake protocol can be used to elim-
d for the latency factor: Some field of the input / identifies it as a
onse to some specific output O.

uts are spontaneous—they may be triggered by environmental fac-
arily caused by some prior output. However, an input that is sup-
¢ nonspontaneous (it is only supposed to arrive in response to some
output) induces yet another requirement to respond to a presumably
(spontaneous) input.

Feedback is a basic property of almost all process control systems:
back information is not used by the software, the requirements specific
probably deficient. Basic feedback loops need to be included in the sof
quirements, while missing feedback loops provide clues as to incompl
the specification,

As an example, an accident occurred when a steel plant furnace was n
to production after being shut down for repair [16]. A power supply had
out in a digital thermometer during power-up so that the thermometer contix
registered a low constant temperature. The controller, knowing it was a cold
ordered 100 percent power to the gas tubes. The furnace should have
operating temperature within one hour, but the computer failed to check
thus detect) that the thermometer inputs were not increasing as they should
been. After four hours, the furnace had burned itself out, and major repairs
required.

This situation could easily have been avoided if information about t
acteristics of the process had been used to predict and check for the exp
behavior of the system. In this case, the only information needed to aw
accident was that the temperature should increase if the burners are on.

If the process does not respoad to an outpm as expected and within a gi
time period, there is presumably something wrong and the software should
required to act accordingly—perhaps by trying a different output, by alertis
human operator, or, at the least, by logging the abnormality for future, off-
analysis.

Ideally, process control systems should be designed such that the e
of every output affecting a manipulated variable in the system can be detected
by some input provided by the feedback loop. The situation is not always
simple, however. Disturbances interfering with the process can cause changes
are not initiated by the computer or can inhibit changes that the computer has
commanded.

ity requirements must be specified when the process is potentially un-

dition to feedback requirements, stability requirements, such as a phase
‘of at least 45 degrees and a gain margin of at least 3 decibels, may need
ified for one or more operating states. The stability requirements apply
s-control function, which is described by a control law or a transfer
relating output to input [23].

7 Specification of Transitions Between States

jirements analysis may involve examining not only the triggers and outputs
ated with each state and the relationship between them, but also the paths
states. These paths are uniquely defined by the sequence of trigger events
he path. Transitions between modes are particularly hazardous and suscep-
incomplete specification. and they should be carefully checked.

chability

‘Al specified states must be reachable from the initial stare.

a Every outpur to which a detectable input is expected must have assocmﬁeé pecifi f
with it: (1) a requirement to handle the normal response and (2) requi
ments ta handle a response that is missing, toe late, too early, or has
unexpected value.

Informally, a state is said to be reachable from another state if there is a path
 the first to the second. [n most systems, all states must be reachable from
i initial state. If a state is unreachable, there are two possibilities: (1) either
ate has no function and can be eliminated from the specification, or (2) the
should be reachable and the requirements document is incorrect and must be
ed accordingly.

Most state-based models include techniques for reachability analysis. In
X systems, complete reachability analysis is often impractical, but it may
assible in some cases to devise algorithms that reduce the necessary state
search by focusing on a few properties. The backward-reachability hazard
rsis techniques for state ‘machine models described in Chapter 14 are exam-
of algorithms that limit the amount of the reachability graph that must be

Every output to which a detectable response is expected within a given ti
period induces at least two requirements: The “normal” response requirem
and a requirement to deal with a failure of the process to produce the expe
response. The failure could involve the response having an erroneous or u
sonable value, the response arriving at the wrong time. or the expected respos
might be missing entirely.

o Spontaneous receipt of a nonspontaneous input must be detected and re-
sponded to as an abrnormal corndition.

3t

388

. 15.4. C iteri i i
Chapter 15. Software Hazard and Requirements Analysis ompleteness Criteria for Requirements Analysis

controller) should be reversible when the condition no longer holds (the

generated to get enough information to eliminate hazardous states from the)
18 mow at a safe altitude).

quirements specification.
is to be reversible by y, there must be a path between the state where x

i issued and a stat is i i
Recurrent Behavior state where v is issued.

e will usually be several different classes of the reversing outputs. The
iate reversing output, for example, may depend on whether the controller
nowledged the receipt of the original alert, is in the process of review-
alert, or has taken positive action to ameliorate the alert condition. The
omputer interface in particular is full of complex classes of reversible

Most process control software is cyclic—it is not designed to terminate un
normal operation. Its purpose is to control and monitor a physical environme
the nature of the application usually calls for it to repeat one single task con
ously, to alternate between a finite set of distinct tasks, or to repeat a sequence of
tasks while in a given mode. Most systems, however, include some states w
noncyclic behavior such as temporary or permanent shutdown states or the
where the software changes to a different operating mode.

o Desired recurrent behavior must be part of at least one cycle. Requi
sequences of events must be implemented in and limited by the specifi
transitions.

The specification should be analyzed to verify that desired behavior is re-
peatable. To be repeatable, the behavior must be part of at least one cycle, but
in many cases checking this behavior alone will not be sufficient; more complex
sequences of events may need to be identified. An output to turn on a piece of
equipment, for example, may be inappropriate unless the last output turned th
equipment off. Consider an output to start a piece of equipment. The equipment
may need to be started more than once, but it could be damaged if two START
commands are issued without an intermediate sTop command. To prevent this:
hazard, every cycle that includes a START also has to include a sTOP.

d time of arrival might be prohibited until an in-progress, manual naviga-
] update is completed or explicitly canceled.

“Preemption requirements must be specified for any multistep transactions in
-conjunction with all other possible control activations.

In general, there are three possible system responses to an operator action
a parallel-entry source prior to completion of a transaction initiated by some
ious control activation: (1) normal processing in parallel with the uncom-
transaction, (2) refusal to accept the new action, and (3) preemption of the
y completed transaction.

If preemption is possible, then the attempted activation of a multistep se-
ce requiring the use of a resource already involved in another incomplete
action provides the following three choices:

o States should not inhibir the production of later required outputs.

An inhibiting state for an output is a state from which the output cannot
be generated. If every state from which the output can be generated is unreac
able from an inhibiting state, then the output cannot be generated again once the
inhibiting state is reached. Whether or not this condition represents an incom

pleteness depends upon the application. 1. The new request could completely cancel the previous, incomplete transac-

tion, clearing or replacing any displays associated with it.
. The new request could preempt the shared resources, but the displayed state
could be preserved and restored upon completion of the new transaction.
The operator could be prompted and required to indicate the disposition
of the incomplete transaction, in which case there will in general be four
alternatives:
a. Cancel the incomplete transaction and start the newly requested one.
b. Complete the old transaction and then proceed automatically with the
new request.
c. Cancel the new request and continue with the old, incomplete transac-
tion. '
d. Defer but do not cancel the old, incomplete transaction.

Reversibility

In a process control system, a command issued to an actuator often can be can
celed or reversed by some other command or combination of commands. This -
capability is referred to as reversibility.

o Output commands should usually be reversible.

Outputs will usually require reversing commands. Therefore, outputs should
be reviewed and classified as to their reversibility. For an on command to be re- .
versible, the state in which the canceling oFF command is issued must be reach
able from the state in which the oN command was issued. For example, an alert™
condition to an operator (such as a below-minimum-safe-altitude warning to an

B I T R T o YRTN T

If any transactions are deferred and restored, obsolete information must be i

tified, as discussed previously. onstraint Analysis

to satisfying general completeness criteria, the requirements must also
A to include the identified, system-specific safety requirements and to be
with the identified software system safety constraints.

Path Robustness

For most safety-critical, process-control software, there are concerns beyond
reachability: Even if a state fulfills all reachability requirements, there is still t
question of the robustness of the path, or paths, affecting a particular state. '

Consider an output that has the possible values of UP and DOWN. Suppe
that every possible path from a state where an UP command is issued to
state where a DOWN command is issued includes the arrival of input I.
if the computer’s ability to receive / is ever lost (perhaps because of se
failure), there are circumstances under which it will not be able to issue a D
command. Thus, the loss of the ability to receive / can be said to be a soft fa
mode, since it could inhibit the software from providing an output with the v
DOWN. :

If the receipt of input [occurs in every path expression from all states ¢
produce UP commands to all states that produce DOwWN commands, the loss of t
ability to receive I is now said to be a hard failure mode, since it will inhibit ¢
software from producing a powN command.

ansitions must satisfy software system safety requirements and constraints.

1 14 system hazard analysis, hazards are traced to the software—system in-
. Such hazards involve specific software behavior expressed in terms of
and timing of outputs (or lack of outputs). In general, software-related
involve

Failing to perform a required function: The function is never executed or no
‘answer is produced.

erforming an unintended (unrequired) function, getting the wrong answer,
uing the wrong control instruction, or doing the right thing but under
nappropriate conditions (such as activating an actuator inadvertently, too
early or too late, or failing to cease an operation at a prescribed time).

Performing functions at the wrong time or in the wrong order (such as failing
- o ensure that two things happen at the same time, at different times, or in a

o Soft and hard failure modes should }e eliminated for all hazard-reducing particular order).
outputs. Hazard-increasing outputs should have both soft and hard failure

modes.

 Failing to recognize a hazardous condition requiring corrective action.
. Producing the wrong response to a hazardous condition.

The more failure modes the requirements state machine specification has,
whether soft or hard, the less robust with respect to external disturbances will be
the software that is correctly built to that specification. Robustness, in this case
may conflict with safety. A fail-safe system should have no soft failure modes,
much less hard ones, on paths between dangerous states and safe states. At the
same time, hard failure modes are desirable on the paths from safe to hazardou
(but unavoidable) states. An unsafe state, where a hazardous output such as &
command to launch a weapon can be produced, should have at least one, and .
possibly several, hard failure modes for the production of the output command: :
No input received from the proper authority, no weapons launch.

'Con-straint analysis on the software requirements specification includes a
hability analysis to determine whether the software, as specified, could reach
identified hazardous states.

a Reachable hazardous states should be eliminated or, if that is not possible
(they are needed to achieve the goals of the system), their frequency and
duration reduced.

It is not always possible to enforce a requirement that the software cannot
ach hazardous states—sometimes a hazardous state is unavoidable. But this
ibility should be known so that steps can be taken to minimize the risk as-
ated with the hazard, such as minimizing the exposure or adding system safe-
ards to protect the system against such states.

The type of analysis required to guarantee consistency between the software
irements specification and the safety constraints depends upon the type of
nstraints involved. The presence of constraints can potentially affect most of
criteria that have been described in this chapter. Some types of constraints
n be ensured by the criteria already described: others require additional analy-
. For example, basic reachability analysis can verify that only safe states are
hable.

Basic reachability. analysis may need to be extended, however, to consider
ditional constraints on the sequence of events. To illustrate, consider a simple

o Multiple paths should be provided for state changes that maintain or en
hance safety. Multiple inputs or triggers should be required for paths from
safe to hazardous states.

In general, operators should be provided with multiple logical ways to is-
sue the commands needed to maintain the safety of the system so that a single -
hardware failure cannot prevent the operator from taking action to aveid a haz-
ard. On the other hand, multiple interlocks and checks should be associated with
potentially hazardous human actions—such as a requirement for two indepen
dent inputs or triggers before a potentially hazardous command is executed by

the computer.

'one wHIBLRING (N€ Specitication Against the Criteria

control system to move the contro] rods in a reactor up and down. The ¢
actions to move the rods may be properly reachable and the paths robust.
tion, a constraint may require that a rod not be allowed to move within 3 ‘
of its previous movement. To guarantee this constraint, all transitions ‘
MOVE ROD1 command can be issued must first be identified. Path analy
then be used to find the sequences of events that will make the softw:
two consecutive MOVE ROD! commands. By showing that all possible
scribed by these sequences will take at least 30 seconds to traverse, the ¢
is guaranteed to be satisfied. If all the criteria described in this chapter fc
plete specification of timing requirements are satisfied, this analysis she
theoretically possible for a state-machine specification.

More generally, the specification may be checked for a general safety
that is defined for the particular system. This process is very similar to ch
that a specification satisfies a particular security policy [180]. The followis:
example of a general safety policy for which the specification could be ¢

te leading to an accident or to minimize the effects of an accident.
activation of a carbon dioxide firefighting system in what may be
‘space may Kill any occupants, but it may be necessary to prevent the
tire ship. Such difficult decisions obviously must be considered and

al procedures that can be used to analyze a particular requirements spec-
will depend on the form of that specification. The criteria for com-
of states, inputs and outputs, and the relationship between inputs: and
are easily checked for any type of specification. Criteria for the transi-
€en states will be checkable to a greater or lesser extent depending on
ity of the specification, the size of the specification, and the availability
ware tools to help with the checking.
eimdahl has automated the checking of the robustness and nondetermin-
Criteria (Sections 15.4.4.1 and 15.4.4.2) for specifications written in RSML,
idated his tools on an avionics collision avoidance system [116, 117]. Ad-
tools are being created for safety analysis of RSML requirements speci-

1. There must be no paths to unplanned hazardous states.
The computer never initiates a control action (output) that will
the process from a safe to an unplanned hazardous state.

2. Every hazardous state must have a path to a safe state. All paths fro
hazardous state must lead to safe states. Jime in the hazardous state &
minimized, and contingency action may be necessary to reduce risk
the hazardous state. B

If the system gets into a hazardous state (by an unplanned tra
that is not initiated by the computer such as component failures, hy : ing value and time intervals for all inputs and data age limits on all outputs
erTor, Or environmental stress), then the computer controller will tran :
the hazardous state into a safe state (every path from a hazardous state lg
to a safe state). The time in the hazardous state will be minimized to red
the likelihood of an accident.

There may be several possible safe states, depending on the type
hazard or on conditions in the environment. For example, the action to
taken if there is a failure in a flight-control system may depend on whet
the aircraft is in level flight or is landing.

If a safe state cannot be reached from a hazardous state, all paths Sfrom i
state must lead to a minimum risk state. At least one such path must exist.

If a system gets into a hazardous state and there is no possible pa
a safe state, then the computer will transform the state into one with
minimum risk possible given the hazard and the environmental conditiés
and it will-do so such that the system is in a hazardous state for the minimu
amount of time possible.

ions immediately apparent will be helpful in locating them.

'On many projects, requirements are not complete before software develop-
it begins. In addition, changes are often made as the design of the other parts
the system becomes more detailed and problems are found that necessitate
anges in the desired software behavior. It is therefore unlikely that the analy-
8is will be completed before software design begins. To avoid costly redesign and
fecoding, the requirements specification and analysis should be as complete as
ible as early as possible, Realistically, however, some of the analysis may
to be put off or redone as the software and system development proceeds.

W

It may not be possible to build a completely safe system—that is, to avoid;
hazardous states or to get from every hazardous state to a safe state. In that ey
the system must be redesigned or abandoned, or some risk must be accepted.
risk can be reduced by providing procedures to minimize the probability of §

