
Requirements
Development, Verification,
and Validation Exhibited in
Famous Failures
A. Terry Bahill1, * and Steven J. Henderson1, 2

1Systems and Industrial Engineering, University of Arizona, Tucson, AZ 85721-0020

2U.S. Military Academy, West Point, NY 10996

Received 11 February 2004; Accepted 31 August 2004, after one or more revisions
Published online in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/sys.20017

FAMOUS FAILURES

ABSTRACT

Requirements Development, Requirements Verification, Requirements Validation, System
Verification, and System Validation are important systems engineering tasks. This paper
describes these tasks and then discusses famous systems where these tasks were done
correctly and incorrectly. This paper shows examples of the differences between developing
requirements, verifying requirements, validating requirements, verifying a system, and vali-
dating a system. Understanding these differences may help increase the probability of
success of future system designs. © 2004 Wiley Periodicals, Inc. Syst Eng 8: 1–14, 2005

Key words: design; inspections; case studies

1. INTRODUCTION

Requirements Development, Requirements Verifica-
tion, Requirements Validation, System Verification and
System Validation are important tasks. This paper starts

with a definition and explanation of these terms. Then
it gives two dozen examples of famous system failures
and suggests the mistakes that might have been made.
These failures are not discussed in detail: The purpose
is not to pinpoint the exact cause of failure, because
these systems were all complex and there was no one
unique cause of failure. The systems are discussed at a
high level. The explanations do not present incontro-
vertible fact; rather they represent the consensus of
many engineers and they are debatable. These explana-
tions are based on many papers, reports, and movies
about these failures and discussion of these failures in

Regular Paper

*Author to whom all correspondence should be addressed (e-mail:
terry@sie.arizona.edu.

Contract grant sponsor: AFOSR/MURI F4962003-1-0377

Systems Engineering, Vol. 8, No. 1, 2005
© 2004 Wiley Periodicals, Inc.

1

many classes and seminars since 1997. It is hoped that
the reader will be familiar with enough of these systems
to be able to apply the concepts of requirements devel-
opment, verification and validation to some of these
systems without an extensive learning curve about the
details of the particular systems. When used in classes
and seminars, this paper has been given to the students
with a blank Table II. The students were asked to read
this paper and then Table II was discussed row by row.

2. REQUIREMENTS DEVELOPMENT

A functional requirement should define what, how well,
and under what conditions one or more inputs must be
converted into one or more outputs at the boundary
being considered in order to satisfy the stakeholder
needs. Besides functional requirements, there are doz-
ens of other types of requirements [Bahill and Dean,
1999]. Requirements Development includes (1) elicit-
ing, analyzing, validating, and communicating stake-
holder needs, (2) transforming customer requirements
into derived requirements, (3) allocating requirements
to hardware, software, bioware, test, and interface ele-
ments, (4) verifying requirements, and (5) validating
the set of requirements. There is no implication that
these five tasks should be done serially, because, like all
systems engineering processes, these tasks should be
done with many parallel and iterative loops.

There is a continuum of requirement levels as more
and more detail is added. But many systems engineers
have been dividing this continuum into two categories:
high-level and low-level. High-level requirements are
described with words like customer requirements, top-
level requirements, system requirements, operational
requirements, concept of operations, mission state-
ment, stakeholder needs, stakeholder expectations, con-
straints, external requirements, and what’s. Low-level
requirements are described with words like derived
requirements, design requirements, technical require-
ments, product requirements, allocated requirements,
internal requirements, and how’s. Some of these terms
have different nuances, but they are similar. In this
paper, we will generally use the terms high-level and
low-level requirements, and we will primarily discuss
high-level requirements.

3. VERIFICATION AND VALIDATION

Because the terms verification and validation are often
confused, let us examine the following definitions:

Verifying requirements: Proving that each require-
ment has been satisfied. Verification can be done

by logical argument, inspection, modeling, simu-
lation, analysis, expert review, test or demonstra-
tion.

Validating requirements: Ensuring that (1) the set
of requirements is correct, complete, and consis-
tent, (2) a model can be created that satisfies the
requirements, and (3) a real-world solution can
be built and tested to prove that it satisfies the
requirements. If Systems Engineering discovers
that the customer has requested a perpetual-mo-
tion machine, the project should be stopped.

Verifying a system: Building the system right: en-
suring that the system complies with the system
requirements and conforms to its design.

Validating a system: Building the right system:
making sure that the system does what it is sup-
posed to do in its intended environment. Valida-
tion determines the correctness and completeness
of the end product, and ensures that the system
will satisfy the actual needs of the stakeholders.

There is overlap between system verification and
requirements verification. System verification ensures
that the system conforms to its design and also complies
with the system requirements. Requirements verifica-
tion ensures that the system requirements are satisfied
and also that the technical, derived, and product require-
ments are verified. So checking the system requirements
is common to both of these processes.

There is also overlap between requirements valida-
tion and system validation. Validating the top-level
system requirements is similar to validating the system,
but validating low-level requirements is quite different
from validating the system.

Many systems engineers and software engineers use
the words verification and validation in the opposite
fashion. So, it is necessary to agree on the definitions
of verification and validation.

The Verification (VER) and Validation (VAL) proc-
ess areas in the Capability Maturity Model Integration
(CMMI) speak of, respectively, verifying requirements
and validating the system. Validation of requirements is
covered in Requirements Development (RD) Specific
Goal 3 [http://www.sei.cmu.edu/cmmi/; Chrissis, Kon-
rad and Shrum, 2003]. The CMMI does not explicitly
discuss system verification.

3.1. Requirements Verification

Each requirement must be verified by logical argument,
inspection, modeling, simulation, analysis, expert re-
view, test, or demonstration. Here are some brief dic-
tionary definitions for these terms:

Logical argument: a series of logical deductions

2 BAHILL AND HENDERSON

Inspection: to examine carefully and critically, espe-
cially for flaws

Modeling: a simplified representation of some as-
pect of a system

Simulation: execution of a model, usually with a
computer program

Analysis: a series of logical deductions using mathe-
matics and models

Expert review: an examination of the requirements
by a panel of experts

Test: applying inputs and measuring outputs under
controlled conditions (e.g., a laboratory environ-
ment)

Demonstration: to show by experiment or practical
application (e. g. a flight or road test). Some
sources say demonstration is less quantitative
than test.

Modeling can be an independent verification tech-
nique, but often modeling results are used to support
other techniques.

Requirements verification example 1: The prob-
ability of receiving an incorrect bit on the telecommu-
nications channel shall be less than 0.001. This
requirement can be verified by laboratory tests or dem-
onstration on a real system.

Requirements verification example 2: The prob-
ability of loss of life on a manned mission to Mars shall
be less than 0.001. This certainly is a reasonable re-
quirement, but it cannot be verified through test. It
might be possible to verify this requirement with analy-
sis and simulation.

Requirements verification example 3: The prob-
ability of the system being canceled by politicians shall
be less than 0.001. Although this may be a good require-
ment, it cannot be verified with normal engineering test
or analysis. It might be possible to verify this require-
ment with logical arguments.

3.2. Requirements Validation

Validating requirements means ensuring that (1) the set
of requirements is correct, complete, and consistent, (2)
a model that satisfies the requirements can be created,
and (3) a real-world solution can be built and tested to
prove that it satisfies the requirements. If the require-
ments specify a system that reduces entropy without
expenditure of energy, then the requirements are not
valid and the project should be stopped.

Here is an example of an invalid requirements set for
an electric water heater controller.

If 70° < Temperature < 100°, then output 3000 Watts.

If 100° < Temperature < 130°, then output 2000
Watts.

If 120° < Temperature < 150°, then output 1000
Watts.

If 150° < Temperature, then output 0 Watts.

This set of requirements is incomplete, what should
happen if Temperature < 70°? This set of requirements
is inconsistent, what should happen if Temperature =
125°? These requirements are incorrect because units
are not given. Are those temperatures in degrees Fahr-
enheit or Centigrade?

Of course, you could never prove that a requirements
set was complete, and perhaps it would be too costly to
do so. But we are suggesting that many times, due to
the structure of the requirements set, you can look for
incompleteness [Davis and Buchanan, 1984].

Detectable requirements-validation defects include
(1) incomplete or inconsistent sets of requirements or
use cases, (2) requirements that do not trace to top-level
requirements [the vision statement or the Concept of
Operation (CONOPS)], and (3) test cases that do not
trace to scenarios (use cases).

At inspections, the role of Tester should be given an
additional responsibility, requirements validation.
Tester should read the Vision and CONOPS and specifi-
cally look for requirements-validation defects such as
these.

3.3. System Verification and Validation

One function of Stonehenge on Salisbury Plain in Eng-
land might have been to serve as a calendar to indicate
the best days to plant crops. This might have been the
first calendar, and it suggests the invention of the con-
cept of time. Inspired by a visit to Stonehenge, Bahill
built an Autumnal Equinox sunset-sight on the roof of
his house in Tucson.

Bahill now wants verification and validation docu-
ments for this solar calendar, although he should have
worried about this before the hardware was built. This
system fails validation. He built the wrong system. The
people of England must plant their crops in the early
spring. They need a Vernal Equinox detector, not an
Autumnal Equinox detector. The ancient ones in Tuc-
son needed a Summer Solstice detector, because all of
their rain comes in July and August. System validation
requires consideration of the environment that the sys-
tem will operate in.

In 3000 B.C., the engineers of Stonehenge could
have verified the system by marking the sunset every
day. The solstices are the farthest north and south (ap-
proximately). The equinoxes are about midway be-
tween the solstices and are directly east and west. In the
21st century, residents of Tucson could verify the sys-

 FAMOUS FAILURES 3

tem by consulting a calendar or a farmer’s almanac and
observing the sunset through this sight on the Autumnal
Equinox next year. If the sunset is in the sight on the
day of the Autumnal Equinox, then the system was built
right. When archeologists find Bahill’s house 2000
years from now, he wants them to ask, “What do these
things do?” and “What kind of people built them?”

System-validation artifacts that can be collected at
discrete gates include white papers, trade studies, phase
reviews, life cycle reviews, and red team reviews. These
artifacts can be collected in the proposal phase, at the
systems requirements review (SRR), at the preliminary
design review (PDR), at the critical design review
(CDR), and in field tests.

System-validation artifacts that can be collected
continuously throughout the life cycle include results of
modeling and simulation and the number of operational
scenarios (use cases) modeled.

Detectable system-validation defects include (1) ex-
cessive sensitivity of the model to a particular parameter
or requirement, (2) mismatches between the
model/simulation and the real system, and (3) bad de-
signs.

At inspections, the role of Tester should be given an
additional responsibility, system validation. Tester
should read the Vision and CONOPS and specifically
look for system-validation artifacts and defects such as
these.

A very important aspect of system validation is that
it occurs throughout the entire system life cycle. You
should not wait for the first prototype before starting
validation activities.

3.4. External Verification and Validation

System verification and validation activities should
start in the proposal phase. Verification and validation
are continuous processes that are done throughout the
development life cycle of the system. Therefore,
most of theses activities will be internal to the com-
pany. However, it is also important to have external
verification and validation. This could be done by an
independent division or company. External verifica-
tion and validation should involve system usage by
the customer and end user in the system’s intended
operating environment. This type of external verifi-
cation and validation would not be done throughout
the development cycle. It would not occur until at
least a prototype was available for testing. This is one
of the reasons the software community emphasizes
the importance of developing prototypes early in the
development process.

4. FAMOUS FAILURES

We learn from our mistakes. In this section, we look at
some famous failures and try to surmise the reason for
the failure so that we can ameliorate future mistakes. A
fault is a defect, error, or mistake. One or many faults
may lead to a failure of a system to perform a required
function [www.OneLook.com]. Most well-engineered
systems are robust enough to survive one or even two
faults. It took three or more faults to cause each failure
presented in this paper. System failures are prevented
by competent and robust design, oversight, test, redun-
dancy, and independent analysis. In this paper, we are
not trying to find the root cause of each failure. Rather
we are trying to illustrate mistakes in developing re-
quirements, verifying requirements, validating require-
ments, verifying a system, and validating a system.
Table I shows the failures we will discuss.

HMS Titanic had poor quality control in the manu-
facture of the wrought iron rivets. In the cold water of
April 14, 1912, when the Titanic hit the iceberg, many
rivets failed and whole sheets of the hull became unat-
tached. Therefore, verification was bad, because they
did not build the ship right. An insufficient number of
lifeboats was a requirements development failure.
However, the Titanic satisfied the needs of the ship
owners and passengers (until it sank), so validation was
OK [Titanic, 1997]. These conclusions are in Table II.

The Tacoma Narrows Bridge was a scaleup of an
old design. But the strait where they built it had strong
winds: The bridge became unstable in these crosswinds
and it collapsed. The film of its collapse is available on
the Web: It is well worth watching [Tacoma-1 and
Tacoma-2]. The design engineers reused the require-
ments for an existing bridge, so these requirements
were up to the standards of the day. The bridge was built
well, so verification was OK. But it was the wrong
bridge for that environment, a validation error. [Billah
and Scanlan, 1991].

The Edsel automobile was a fancy Ford with a
distinct vertical grille. The designers were proud of it.
The requirements were good and they were verified.
But the car didn’t sell, because people didn’t want it.
Previous marketing research for the Thunderbird was
successful, but for the Edsel, management ignored mar-
keting. Management produced what management
wanted, not what the customers wanted, and they pro-
duced the wrong car [Edsel].

In Vietnam, our top-level requirement was to con-
tain Communism. This requirement was complete, cor-
rect, and feasible. However, we had no exit criteria, and
individual bombing runs were being planned at a dis-
tance in Washington DC. Our military fought well and
bravely, so we fought the war right. But it was the wrong

4 BAHILL AND HENDERSON

war. We (in Bahill’s opinion) should not have been
there: bad validation.

John F. Kennedy, in a commencement address at
Duke University in 1961, stated the top-level require-
ments for the Apollo Program: (1) Put a man on the
moon (2) and return him safely (3) by the end of the
decade. These and their derived requirements were
right. The Apollo Program served the needs of Ameri-
cans: so, validation was OK. But on Apollo 13, for the
thermostatic switches for the heaters of the oxygen
tanks, they changed the operating voltage from 28 to 65
V, but they did not change the voltage specification or
test the switches. This was a configuration management
failure that should have been detected by verification.
On the other hand, perhaps Apollo 13 was a tremendous
success and not a failure. The lunar module, the astro-
nauts, the backup systems and the backup crew were
robust, so the mission was heroically saved. [Apollo 13,
1995].

The Concorde Supersonic Transport (SST) was de-
signed and built in the 1960s and 1970s by Britain and
France. It flew commercially from 1976 to 2003. The
requirements for the airplane were fine and the airplane
was built well. But we suggest that it fails validation:
because the purpose of a commercial airplane is to
make money, and the Concorde d id not .
[http://www.concordesst.com/]. The Concorde was a

success only as a political statement, not as a business
system. Once again, these conclusions are not black and
white. Indeed one of the reviewers of this paper stated,
The Concorde “established a basis of European techni-
cal self confidence that permitted Airbus to erode much
of the US dominance in this field. Thus, it can reason-
ably be argued that the Concorde was a successful
strategic program.”

The IBM PCjr was a precursor to modern laptop
computers, but it was a financial failure. The keyboard
was too small for normal sized fingers. People did not
like them and they did not buy them. Modern laptops
have normal sized keyboards and PDAs have a stylus.
It seems that there is an unwritten requirement that
things designed for fingers should be big enough to
accommodate fingers. They got the requirements
wrong. They build a nice machine with good verifica-
tion. And the success of present day laptops validates
the concept [Chapman, Bahill, and Wymore, 1992: 13].

In 1986, General Electric Co. (GE) engineers said
they could reduce the part count for their new refrig-
erator by one-third by replacing the reciprocating com-
pressor with a rotary compressor. Furthermore, they
said they could make it easier to machine, and thereby
cut manufacturing costs, if they used powdered-metal
instead of steel and cast iron for two parts. However,
powdered-metal parts had failed in their air condition-

 FAMOUS FAILURES 5

ers a decade earlier [Chapman, Bahill, and Wymore,
1992: 19]

Six hundred compressors were “life tested” by run-
ning them continuously for 2 months under tempera-
tures and pressures that were supposed to simulate 5
years’ actual use. Not a single compressor failed, which
was the good news that was passed up the management
ladder. However, the technicians testing the compres-
sors noticed that many of the motor windings were
discolored from heat, bearing surfaces appeared worn,
and the sealed lubricating oil seemed to be breaking
down. This bad news was not passed up the manage-
ment ladder!

By the end of 1986, GE had produced over 1 million
of the new compressors. Everyone was ecstatic with the
new refrigerators. However, in July of 1987 the first
refrigerator failed; quickly thereafter came an ava-
lanche of failures. The engineers could not fix the
problem. In December of 1987, GE started buying
foreign compressors for the refrigerators. Finally, in the
summer of 1988 the engineers made their report. The
two powdered-metal parts were wearing excessively,
increasing friction, burning up the oil, and causing the
compressors to fail. GE management decided to redes-
ign the compressor without the powdered-metal parts.
In 1989, they voluntarily replaced over 1 million defec-
tive compressors.

The designers who specified the powdered-metal
parts made a mistake, but everyone makes mistakes.

Systems Engineering is supposed to expose such prob-
lems early in the design cycle or at least in the testing
phase. This was a verification failure.

The requirements for the Space Shuttle Challenger
seem to be OK. But the design, manufacturing, testing,
and operation were faulty. Therefore, verification was
bad [Feynman, 1985; Tufte, 1997]. Bahill thinks that
validation was also bad, because putting schoolteachers
and Indian art objects in space does not profit the U.S.
taxpayer. Low temperatures caused the o-rings to leak,
which led to the explosion of Challenger. The air tem-
perature was below the design expectations, and no
shuttle had ever been launched in such cold weather.
The political decision was to launch in an environment
for which the system was not designed, a validation
mistake.

The Chernobyl Nuclear Power Plant was built
according to its design, but it was a bad design: Valida-
tion was wrong. Requirements and verification were
marginally OK, although they had problems such as
poor configuration management evidenced by undocu-
mented crossouts in the operating manual. Human error
contributed to the explosion. Coverup and denial for the
first 36 hours contributed to the disaster. This is our
greatest failure: It killed hundreds of thousands, per-
haps millions, of people. Here are references for the
U.S. Nuclear Regulatory Commission summary [Cher-
nobyl-1], a general web site with lots of other links
[Chernobyl-2], a BBC report [Chernobyl-3], and for

6 BAHILL AND HENDERSON

some photos of what Chernobyl looks like today [Cher-
nobyl-4].

The Marketing Department at the Coca Cola Com-
pany did blind tasting between Coca Cola and Pepsi
Cola. Most of the people preferred Pepsi. So, they
changed Coke to make it taste like Pepsi. This made
Coke more pleasing to the palate, but Coke’s branding
was a much stronger bond. People who liked Coke
would not buy or drink New Coke, and they com-
plained. After 4 months, the company brought back the
original under the name of Classic Coke and finally they
abandoned New Coke altogether. They did the market-
ing survey and found the taste that most people pre-
ferred, so the requirements development was OK. They
manufactured a fine product, so verification was OK.
But they did not make what their customers wanted, a
validation mistake [http://www.snopes.com/cokelore/
newcoke.asp].

The A-12 Avenger was to be a carrier-based stealth
airplane that would replace the A-6 in the 1990s. This
program is a classic example of program mismanage-
ment. Major requirements were inconsistent and were
therefore continually changing. Nothing was ever built,
so we cannot comment on verification. Validation was
bad, because they never figured out what they needed
[Fenster, 1999; Stevenson, 2001].

The Hubble Space Telescope was built at a cost of
around 1 billion dollars. The requirements were right.
Looking at the marvelous images we have been getting,
in retrospect we can say that this was the right system.
But during its development the guidance, navigation,
and control (GNC) system, which was on the cutting
edge of technology, was running out of money. So they
transferred money from Systems Engineering to GNC.
As a result, they never did a total system test. When the
Space Shuttle Challenger blew up, the launch of the
Hubble was delayed for a few years, at a cost of around
1 billion dollars. In that time, no one ever looked
through that telescope. It was never tested. They said
that the individual components all worked, so surely the
total system will work. After they launched it, they
found that the telescope was myopic. Astronauts from
a space shuttle had to install spectacles on it, at a cost
of around 1 billion dollars. [Chapman, Bahill, and
Wymore, 1992: 16]

The SuperConducting SuperCollider started out
as an American Big Science project. Scientists were
sure that this system was needed and would serve their
needs. But it was a high political risk project. Poor
management led to cost overruns and transformed it
into a Texas Big Physics project; consequently, it lost
political support. The physicists developed the require-
ments right and the engineers were building a very fine
system. But the system was not what the American

public, the bill payer, needed. [Moody et al., 1997:
99–100].

The French Ariane 4 missile was successful in
launching satellites. However, the French thought that
they could make more money if they made this missile
larger. So they built the Ariane 5. It blew up on its first
launch, destroying a billion dollars worth of satellites.
The mistakes on the Ariane 5 missile were (1) reuse of
software on a scaled-up design, (2) inadequate testing
of this reused software, (3) allowing the accelerometer
to run for 40 seconds after launch, (4) not flagging as
an error the overflow of the 32-bit horizontal-velocity
storage register, and (5) allowing a CPU to shutdown if
the other CPU was already shutdown. The requirements
for the Ariane 5 were similar to those of the Ariane 4:
So it was easy to get the requirements right. They
needed a missile with a larger payload, and that is what
they got: So, that part of validation was OK. However,
one danger of scaling up an old design for a bigger
system it that you might get a bad design, which is a
validation mistake. Their failure to adequately test the
scaled-up software was a verification mistake [Kunzig,
1997].

The United Nations Protection Force (UNPRO-
FOR) was the UN mission in Bosnia prior to NATO
intervention. They had valid requirements (stopping
fighting in former Yugoslavia is valid) but these require-
ments were incomplete because a peacekeeping force
requires a cease-fire before keeping the peace. This
expanded cease-fire requirement later paved the way for
the success of NATO in the same mission. Moreover,
the UNPROFOR failed to meet its incomplete require-
ments because they were a weak force with limited
capabilities and poor coordination between countries.
UNPROFOR had incomplete requirements, and was
the wrong system at the wrong time. This was a partial
requirements failure, and a failure of verification and
validation [Andreatta, 1997].

The Lewis Spacecraft was an Earth-orbiting satel-
lite that was supposed to measure changes in the Earth’s
land surfaces. But due to a faulty design, it only lasted
3 days in orbit. “The loss of the Lewis Spacecraft was
the direct result of an implementation of a technically
flawed Safe Mode in the Attitude Control System. This
error was made fatal to the spacecraft by the reliance on
that unproven Safe Mode by the on orbit operations
team and by the failure to adequately monitor spacecraft
health and safety during the critical initial mission
phase” [Lewis Spacecraft, 1998].

Judging by the number of people walking and driv-
ing with cellular phones pressed to their ears, at the turn
of the 21st century there was an overwhelming need for
portable phones and the Motorola Iridium System
captured the requirements and satisfied this need. The

 FAMOUS FAILURES 7

Motorola phones had some problems such as being
heavy and having a time delay, but overall they built a
good system, so verification is OK. But their system
was analog and digital technology subsequently proved
to be far superior. They should have built a digital
system. They built the wrong system [http://www.
spaceref.com/news/viewnews.html?id=208].

On the Mars Climate Orbiter, the prime contractor,
Lockheed Martin, used English units for the satellite
thrusters while the operator, JPL, used SI units for the
model of the thrusters. Therefore, there was a mismatch
between the space-based satellite and the ground-based
model. Because the solar arrays were asymmetric, the
thrusters had to fire often, thereby accumulating error
between the satellite and the model. This caused the
calculated orbit altitude at Mars to be wrong. Therefore,
instead of orbiting, it entered the atmosphere and
burned up. But we do not know for sure, because (to
save money) tracking data were not collected and fed
back to earth. Giving the units of measurement is a
fundamental part of requirements development. And
they did not state the measurement units correctly: so
this was a requirements-development mistake. There
was a mismatch between the space-based satellite and
the ground-based model: This is a validation error. They
did not do the tests that would have revealed this mis-
take, which is a verification error.

On the Mars Polar Lander, “spurious signals were
generated when the lander legs were deployed during
descent. The spurious signals gave a false indication
that the lander had landed, resulting in a premature
shutdown of the lander engines and the destruction of
the lander when it crashed into the Mars surface. … It
is not uncommon for sensors … to produce spurious
signals. … During the test of the lander system, the
sensors were incorrectly wired due to a design error. As
a result, the spurious signals were not identified by the
system test, and the system test was not repeated with
properly wired touchdown sensors. While the most
probable direct cause of the failure is premature engine
shutdown, it is important to note that the underlying
cause is inadequate software design and systems test”
[Mars Program, 2000].

The Mars Climate Orbiter and the Mars Polar Lander
had half the budget for project management and sys-
tems engineering of the previously successful Path-
finder. These projects (including Pathfinder) were some
of the first in NASA’s revised “Faster, Better, Cheaper”
philosophy of the early 1990s. It is important to note
that despite early failures, this philosophy has yielded
successes and is an accepted practice at NASA [2000].

Some failures are beyond the control of the designers
and builders, like the failure of the World Trade Tow-
ers in New York after the September 11, 2001 terrorist

attack. However, some people with 20/20 hindsight say
that they (1) missed a fundamental requirement that
each building should be able to withstand the crash of
a fully loaded airliner and (2) that the FBI did or should
have known the dates and details of these terrorist plans.
This reinforces the point that many of our opinions are
debatable. It also points out the importance of perspec-
tive and the problem statement. For example, what
system do we want to discuss—the towers or the attack
on the towers? For purposes of this paper, we will reflect
on the buildings as a system, and assume “they” refers
to the World Trade Center designers. Clearly, the build-
ings conformed to their original design and fulfilled
their intended purpose—maximizing premium office
space in lower Manhattan—so validation and verifica-
tion were OK. However, the building’s requirements
proved incomplete, and failed to include antiterrorism
provisions. This is a requirements failure.

NASA learned from the failure of the Space Shuttle
Challenger; but they seemed to have forgotten the les-
sons they learned, and this allowed the failure of the
Space Shuttle Columbia. At a high level, the Columbia
Study Committee said that NASA had a culture that
prohibited engineers from critiquing administrative de-
cisions. The NASA culture produced arrogance toward
outside advice. After the Challenger failure, they in-
stalled an 800 telephone number so workers could
anonymously report safety concerns, but over the years
that phone number disappeared. At a low level, the
original design requirements for the Shuttle Orbiter
“precluded foam-shedding by the External Tank.”
When earlier missions failed to meet this requirement
but still survived reentry, NASA treated this as an
“in-family [previously observed]” risk and ignored the
requirement. But the system still failed to meet its
requirements—a verification failure [Columbia, 2003;
Deal, 2004]. We deem Columbia a system validation
failure for the same reasons as the Challenger.

The Northeast electric power blackout in August
2003 left millions of people without electricity, in some
cases for several days. Some of the causes of this failure
were an Ohio electric utility’s (1) not trimming trees
near a high-voltage transmission line, (2) using soft-
ware that did not do what it should have done, and (3)
disregarding four voluntary standards. Verification and
validation were fine, because the system was what the
people needed and it worked fine for the 26 years since
the last blackout. The big problem was a lack of indus-
try-wide mandatory standards—a requirements failure
[http://www.2003blackout.info/].

Table II presents a consensus about these failures. It
uses the three CMMI process areas, RD, VER, and
VAL. Table II uses the following code:

8 BAHILL AND HENDERSON

RD: Requirements Development, Did they get the
requirements right?

VER: Requirements Verification, Did they build the
system right?

VAL: System Validation, Did they build the right
system?

“They” refers to the designers and the builders.

Engineers with detailed knowledge about any one of
these failures often disagreed with the consensus of
Table II, because they thought about the systems at a
much more detailed level than was presented in this
paper. Another source of disagreement was caused by
the fuzziness in separating high-level requirements
from system validation. For example, many people said,
“The designers of the Tacoma Narrows Bridge should
have been the world’s first engineers to write a require-
ment for testing a bridge in strong crosswinds.”

The failures described in Tables I and II are of
different types and are from a variety of industries and
disciplines. The following list divides them (and a few
other famous failures) according to the characteristic
that best describes the most pertinent aspect of the
systems:

Hardware intensive: GE rotary compressor refrig-
erator, IBM PCjr, Titanic, Tacoma Narrows
Bridge, and Grand Teton Dam

Software intensive: Ariane 5 missile, some tele-
phone outages, computer virus vulnerability, and
MS Outlook

Project: A-12, SuperConducting SuperCollider,
Space Shuttle Challenger, Space Shuttle Colum-
bia, War in Vietnam, Edsel automobile, Apollo-
13, New Coke, UNPROFOR, Lewis Spacecraft,
Mars Climate Orbiter, Mars Polar Lander, Three
Mile Island, Hubble Space Telescope, Chernobyl
Nuclear Power Plant, and Concorde SST

System: Motorola’s Iridium system, Western Power
Grid 1996, WTT Attacks, and Northeast Power
Grid in 1977 and 2003.

Financial: Enron (2003), WorldCom (2003), and
Tyco (2003).

More famous failures are discussed in Petroski
[1992], Talbott [1993], Dorner [1996], Bar-Yam
[2004], and Hessami [2004].

5. SYSTEM AND REQUIREMENTS
CLASSIFICATION MODEL

As previously mentioned, because System Verification
and Validation are often confused with Requirements
Development, it is worth juxtaposing these concepts in

a unified model. This model helps further clarify termi-
nology and demonstrates how the concepts of System
Verification, System Validation, and Requirements De-
velopment interact in the systems engineering design
process.

Our model first divides the set of all systems into two
subsets: (1) verified and validated systems and (2)
unverified or unvalidated systems. The model next di-
vides the set of all system requirements into four subsets
(1) valid requirements, (2) incomplete, incorrect or
inconsistent requirements, (3) no requirements, and (4)
infeasible requirements.

We now explore the union of all possible systems
with all possible requirement sets. The result, shown in
Table III, is a System and Requirements Classification
Model (SRCM). This model (1) provides a means of
categorizing systems in terms of design conformity and
requirements satisfaction and (2) provides a way to
study requirements not yet satisfied by any system.
Each region of the model is discussed below, in an order
that best facilitates their understanding.

Region A1: This region denotes the set of systems
that have been verified and validated and have valid
requirements. It represents systems that conform to
their designs and fulfill a valid set of requirements. A
properly forged 10 mm wrench designed and used to
tighten a 10 mm hex nut is an example of a system in
this region. Most commercial systems fall into this
category.

Region B1: Region B1 is composed of unverified or
unvalidated systems that have valid requirements.
These systems have perfectly legitimate designs that, if
properly implemented, satisfy a valid set of require-
ments. Most systems will pass through this region dur-
ing development. However, some fielded system will
be in this region because of poor design realization.
Fielded systems in this region are often categorized as
error prone or “having bugs.” A 10 mm wrench that
breaks when tightening a 10 mm hex nut because of
poor metal content is an example of a system in this
region. These systems are potentially dangerous, be-

 FAMOUS FAILURES 9

cause presumptions about legitimate designs can hide
flaws in implementation.

Region A2: This region denotes verified and vali-
dated systems that satisfy an incomplete, incorrect, or
inconsistent set of requirements. These systems fail
because the assigned requirements do not adequately
satisfy the stakeholder needs. Adequate satisfaction
results when a system meets the needs of a majority of
the principal stakeholders (as defined by the chief deci-
sion maker). A system in this region would be a properly
forged 10 mm wrench that is used to tighten a 10 mm
hex bolt, but the bolt fails to tighten because of a
previously unnoticed backing/lock nut. In this case, a
new system design featuring two tools is required.
Another example would be a user’s manual that incor-
rectly instructs a user to apply a properly forged 11 mm
wrench to tighten a 10 mm hex nut. The wrench is
fulfilling its design (it would have worked for 11mm),
adheres to its design (properly forged), but is the wrong
tool for the job. The IBM PCjr was a useful and properly
functioning computer that was not quite what consum-
ers really wanted. The 2003 Northeast Blackout, with
its lack of industry-wide standards, also fits into this
region.

Region A3: This region represents systems that are
verified (adhere to their designs) and validated, but

whose intended designs do not match any significant
requirement. A significant requirement is one that is
shared by the majority of principal stakeholders. These
systems are often described as offering solutions in
search of problems. A strange looking (and properly
forged) wrench designed to tighten a non-existent nut
is an example of a system in this region. Yes, this wrench
might eventually satisfy the needs of a customer in a
completely foreign context, such as use as a paper-
weight. However, it does not meet a requirement within
the context of its original design (a tool for tightening
a nonexistent nut). The weak glue created by 3M stayed
in the A3 region for a long time until someone invented
Post-it® notes. Their scientists studied the glue care-
fully, but 3M certainly did not have a requirement for
weak glue. In the 1940s IBM, Kodak, General Electric,
and RCA were offered the patents for what eventually
became the Xerox photocopy machine, but they de-
clined saying that there was no requirement to replace
carbon paper.

The types B2 and B3 are unverified equivalents of
types A2 and A3, respectively. Not only do these system
designs either address nonexisting, incomplete, or in-
correct requirements, but the systems also fail to adhere
to their designs or fail to satisfy stakeholder needs in

10 BAHILL AND HENDERSON

the process. Exemplifying famous failures are listed in
Table IV.

Our model also features several other regions of
importance. Region C1 represents the set of all valid
requirements that have no satisfying system designs.
This region represents potential and realizable systems
that will satisfy the stakeholder’s needs. An affordable
and efficient electric car—arguably within our techno-
logical grasp—represents one such system. In essence,
the art and science of requirements development is the
process of pairing requirements from this region to
systems in region A1. Entrepreneurship thrives in this
region.

Another important region, C4, denotes infeasible
requirements. Naturally, there are no overlapping sys-
tems here, because technology prevents such systems
from being built. A perpetual motion machine repre-
sents one such system. However, this category is impor-
tant because research and development efforts are
concerned with expanding the verified/unverified sys-
tem boundary into this region. We believe requirements
will logically and sometimes quietly move from this
region into C1 and C2 as technology advances.

Region C2 represent requirements that are incom-
plete/incorrect and do not have an assigned design.
These regions represent systems that could become
troublesome inhabitants of the B2 region in the future.

Although system design is not a serial process, be-
cause there are many iterative loops, the ideal system
design path starts at C3 (or perhaps even C4), goes up
the column and then across the row to A1. Other paths
are also possible. For example, a previously unnoticed
feasible requirement may cause a system to quickly
move from C1 directly across to A1. A prototype design
process might see a system move from C3 up to C2,
then back and forth several times from C2 to A2 until
finally reaching the top row (and eventually A1).

Table IV summarizes some of our famous failures
and categorizes each failure according to one of the
model’s ten regions. Two system generalizations were
added to demonstrate membership in each important
category.

Most of the failures of this report were chosen ran-
domly. They were chosen before this paper was written
and before the SCRM model was formulated. The ex-
ceptions were the systems added in Table IV that were
not in Table II. The systems of this paper do not present
an even distribution of types of failure or types of
system. Furthermore, the distribution was not intended
to reflect real life. Data from the Standish Group [1994]
could be used to infer what real world distributions
might look like. As an example of our discrepancy from
the real world, consider that of our two dozen examples
only one, the A-12 airplane, was canceled before any

airplanes were built. Whereas the Standish Group Re-
port [1994] said that for software projects that were
seriously started, two-thirds were canceled before com-
pletion. Figure 1 shows the number of systems of Table
IV that fit into each region of Table III.

6. WHAT COULD HAVE BEEN DONE
BETTER?

We studied these famous failures and tried to answer
the question, “What could they have done better?” Our
answers are in Table V. Of course, like all generaliza-
tions about complex systems, our answers are not pre-
cise. But, nonetheless, they may be helpful. The
conclusions in Table V are based on documents with
much more detail than was presented in this paper.

7. LESSONS LEARNED

Is it important to develop requirements, verify require-
ments, validate requirements, verify the system, and
validate the system? Yes. This paper has shown exam-
ples where failure to do these tasks has led to system
failures. Is doing these tasks a necessary and sufficient
condition for system success? No. Many systems suc-
ceed just by luck; and success depends on doing more
than just these five tasks. Is it important to understand
the difference between these five tasks? Yes. The CMMI
is a collection of industry best practices, and it says that
differentiating between these tasks is important. If you
can distinguish between these five tasks, you will have
a better chance of collecting data to prove that you do
these five tasks. This paper has also shown some unique
metrics that could be used to prove compliance.

However, there can be controversy about our con-
sensus. Is getting the top-level requirement wrong, a

Figure 1. Number of systems from Table IV that are in each
cell of the SRCM model.

 FAMOUS FAILURES 11

system-validation problem or a requirements-develop-
ment problem? This issue provided the most contention
in discussions about these famous failures. It prompted
questions such as, “Should they have written a require-
ment that the Tacoma Narrows Bridge be stable in cross
winds? Should they have written a requirement that the
Challenger not be launched in cold weather? Should the
Russian designers have told their Communist Party
bosses that there should be a requirement for a safe
design?” For the space shuttles, the top-level require-
ment was to use a recyclable space vehicle to put people
and cargo into orbit. Was this a mistake? If so, what
type?

Can we learn other lessons from this paper that will
help engineers avoid future failures? Probably not. Such
lessons would have to be based on complete detailed
failure analyses for each system. Such analyses are
usually about 100 pages long.

8. CONCLUSION

In this paper, we have sought to elucidate the fre-
quently confused concepts of requirements develop-
ment, requirements verification, requirements
validation, system verification, and systems validation.
After a brief terminology review, we inundated the
reader with a casual review of two dozen famous fail-

ures. These examples were not offered as detailed fail-
ure analyses, but as recognized specimens that demon-
strate how shortcomings in requirements development,
verification and validation can cause failure either indi-
vidually, collectively, or in conjunction with other
faults. To further distinguish these concepts, we in-
cluded the system and requirements classification
model and several summary views of the failures—fail-
ures by discipline, failure generalization, and lessons
learned. We hope our approach will promote under-
standing of terminology and improve understanding
and compliance in these five critical systems engineer-
ing tasks.

ACKNOWLEDGMENTS

This paper was instigated by a question by Harvey
Taipale of Lockheed Martin in Eagan MN in 1997. This
paper was supported by Rob Culver of BAE Systems in
San Diego and by AFOSR/MURI F4962003-1-0377.

REFERENCES

F. Andreatta, The Bosnian War and the New World Order:
Failure and success of international intervention, EU-ISS
Occasional Paper 1, October 1997, http://aei.pitt.edu/
archive/00000667/.

12 BAHILL AND HENDERSON

Apollo 13, Imagine Entertainment and Universal Pictures,
Hollywood, 1995.

A.T. Bahill and F.F. Dean, “Discovering system require-
ments,” Handbook of systems engineering and manage-
ment, A.P. Sage and W.B. Rouse (Editors), Wiley, New
York, 1999, pp. 175–220.

Y. Bar-Yam, When systems engineering fails—toward com-
plex systems engineering, International Conference on
Systems, Man, and Cybernetics, 2 (2003), 2021–2028.

Y. Billah and B. Scanlan, Resonance, Tacoma Narrows bridge
failure, and undergraduate physics textbooks, Am J Phys
59(2) (1991), 118–124, see also http://www.ketchum.org/
wind.html.

W.L. Chapman, A.T. Bahill, and W.A. Wymore, Engineering
modeling and design, CRC Press, Boca Raton FL, 1992.

Chernobyl-1, http://www.nrc.gov/reading-rm/doc-collec-
tions/fact-sheets/fschernobyl.html.

Chernobyl-2, http://www.infoukes.com/history/chor-
nobyl/zuzak/page-07.html.

Chernobyl-3, http://www.chernobyl.co.uk/.
Chernobyl-4, http://www.angelfire.com/extreme4/kiddof-

speed/chapter27.html.
M.B. Chrissis, M. Konrad, and S. Shrum, CMMI: Guidelines

for process integration and product improvement, Pearson
Education, Boston, 2003.

Columbia Accident Investigation Board Report, NASA,
Washington, DC, August 2003, pp. 121–123.

R. Davis and B.G. Buchanan, “Meta-level knowledge,” Rule-
based expert systems, The MYCIN Experiments of the
Stanford Heuristic Programming Project, B.G. Buchanan
and E. Shortliffe (Editors), Addison-Wesley, Reading,
MA, 1984, pp. 507–530.

D.W. Deal, Beyond the widget: Columbia accident lessons
affirmed, Air Space Power J XVIII(2), AFRP10-1, pp.
31-50, 2004.

D. Dorner, The logic of failure: Recognizing and avoiding
errors in complex situations, Peruses Books, Cambridge,
1996.

Edsel, http://www.failuremag.com/arch_history_edsel.html.
H.L. Fenster, The A-12 legacy, It wasn’t an airplane—it was

a train wreck, Navy Inst Proc, February 1999.
R.P. Feynman, Surely you are joking, Mr. Feynman, Norton,

New York, 1985.
A.G. Hessami, A systems framework for safety and security:

the holistic paradigm, Syst Eng 7(2) (2004), 99–112.
R. Kunzig, Europe’s dream, Discover 18 (May 1997), 96–

103.
Lewis Spacecraft Mission Failure Investigation Board, Final

Report, 12, NASA, Washington, DC, February 1998.
Mars Program Independent Assessment Team Summary Re-

port, NASA, Washington, DC, March 14, 2000
J.A. Moody, W.L. Chapman, F.D. Van Voorhees, and A.T.

Bahill, Metrics and case studies for evaluating engineering
designs, Prentice Hall PTR, Upper Saddle River, NJ, 1997.

NASA Faster Better Cheaper Task Final Report, 2, NASA,
Washington, DC, March 2000.

H. Petroski, To engineer is human: The role of failure in
successful design, Random House, New York, 1992.

Standish Group International, The CHAOS Report, 1994.
J.P. Stevenson, The $5 billion misunderstanding: The collapse

of the Navy’s A-12 Stealth Bomber Program, Naval Insti-
tute Press, 2001, Annapolis, MD.

Tacoma1, http://www.enm.bris.ac.uk/research/nonlinear/
tacoma/tacoma.html#file.

Tacoma2, http://washington.pacificnorthwestmovies.com/
TacomaNarrowsBridgeCollapse.

M. Talbott, Why systems fail (viewed from hindsight), Proc
Int Conf Syst Eng (INCOSE), 1993, pp. 721–728.

Titanic, a Lightstorm Entertainment Production, 20th Century
Fox and Paramount, Hollywood, 1997.

E.R. Tufte, Visual explanations: Images and quantities, evi-
dence and narrative, Graphics Press, Cheshire, CT, 1997.

Terry Bahill is a Professor of Systems Engineering at the University of Arizona in Tucson. He received
his Ph.D. in electrical engineering and computer science from the University of California, Berkeley, in
1975. Bahill has worked with BAE SYSTEMS in San Diego, Hughes Missile Systems in Tucson, Sandia
Laboratories in Albuquerque, Lockheed Martin Tactical Defense Systems in Eagan, MN, Boeing Inte-
grated Defense Systems in Kent WA, Idaho National Engineering and Environmental Laboratory in Idaho
Falls, and Raytheon Missile Systems in Tucson. For these companies he presented seminars on Systems
Engineering, worked on system development teams and helped them describe their Systems Engineering
Process. He holds a U.S. patent for the Bat Chooser, a system that computes the Ideal Bat Weight for
individual baseball and softball batters. He is Editor of the CRC Press Series on Systems Engineering. He
is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) and of the International Council
on Systems Engineering (INCOSE). He is the Founding Chair Emeritus of the INCOSE Fellows Selection
Committee. This picture of him is in the Baseball Hall of Fame’s exhibition Baseball as America.

 FAMOUS FAILURES 13

Steven J. Henderson received an M.S. in Systems Engineering from the University of Arizona in 2003.
He is a Captain in the U.S. Army, and is currently serving as an Instructor of Systems Engineering at the
U.S. Military Academy at West Point, New York. He graduated from West Point in 1994 with a B.S. in
Computer Science. He is currently pursuing a Ph.D. in Systems and Industrial Engineering from the
University of Arizona. He is a member of the Phi Kappa Phi honor society, the Institute for Operations
Research and Management Sciences (INFORMS), and the American Society of Engineering Educators
(ASEE). He was a NASA Faculty Fellow in the summer of 2004.

14 BAHILL AND HENDERSON

