An Introduction to Software
Architecture and Design 11

Dr Mark C. Paulk
Mark.Paulk@utdallas.edu, Mark.Paulk@ieee.org

Jonsson School of Engineering and Computer Science

Some More Architectural Questions

How do we document architectures?

The agile methods have deprecated design... or at least
design documentation.
* If using agile, do we need to worry about architecture?
 What level of architectural documentation is needed /
appropriate?

If architecture should be viewed from the system’s
goals, how do we get those goals?
 How can we select architecture tradeoffs in light of
business goals?

What is the future of architecture?
2

An Example Architecture

See wiki.sei.cmu.edu/sad/ for an example of a
software architecture.
 Adventure Builder — Software Architecture
Document

Includes

e use cases (4)
 module views (5)

« C&C views (3)

- allocation views (2)

Example software architecture done for Documenting
Software Architectures, Views and Beyond, Second Edition

(2010) by P. Clements, et al.
3

Problem Source

Adventure Builder Reference Application
- Adventure Builder is a fictitious company that
sells adventure packages for vacationers over
the Internet.

An adapted version of the Adventure Builder

Reference application.

- developed in the context of the Java BluePrints
program at Sun Microsystems

- functionality is easy to understand

- source code, documentation, and other artifacts are
publicly available for download.

- Singh book on Web services (2004) explains the
design and implementation of the application

4

Use Cases (UC1)

The user can visit the Adventure Builder Web site

and browse the catalog of travel packages. Includes
- flights to specific destinations
- lodging options
- activities that can be purchased in advance

Activities include
- mountain biking
- fishing
- surfing classes
- hot air balloon tours
- scuba diving

The user can select transportation, accommodation,
and various activities to build his/her own adventure
trip.

5

Use Cases (UC2)

The user can place an order for a vacation
package.

To process this order, the system has to interact
with several external entities.

A bank will approve the customer payment.

Airline companies will provide the flights.

Lodging providers will book the hotel rooms.
Businesses that provide vacation activities will
schedule the activities selected by the customer.

Use Cases (UC3)

After an order is placed, the user can return to

check the status of his/her order.
- This is necessary because some interactions with
external entities are processed in the background
and may take hours or days to complete.

Use Cases (UC4)

The internal system periodically interacts with its

business partners
- transportation
- lodging
- activity providers
to update the catalog with the most recent

offerings.

Use Cases (A Use Case Context Diagram)

Adventure Builder %
1
Browse
catalog Bank

Order travel
package

Update
catalog

=

Activity Provider

Quality Attribute Scenario
Mod:ifiability

A new business partner (airline, lodging, or

activity provider) that uses its own web services
interface is added to the system in no more than
10 person-days of effort for the implementation.

The business goal is easy integration with new
business partners.

10

Quality Attribute Scenario
Performance

A user places an order for an adventure travel
package to the Consumer Web site.

The user is notified on screen that the order has

been successfully submitted and is being
processed in less than five seconds.

11

Quality Attribute Scenario
Performance

Up to 500 users click to see the catalog of
adventure packages following a random
distribution over 1 minute
* the system is under normal operating
conditions
- the maximal latency to serve the first page of
content is under 5 seconds
- average latency for same is less than 2
seconds

12

Quality Attribute Scenario
Reliability

The Consumer Web site sent a purchase order
request to the order processing center (OPC).

The OPC processed that request but didn’t reply
to Consumer Web site within five seconds

* the Consumer Web site resends the request to
the OPC

The OPC receives the duplicate request
- the consumer is not double-charged
- data remains in a consistent state
* the Consumer Web site is notified that the
original request was successful

one hundred percent of the time
13

Quality Attribute Scenario
Security

Credit approval and payment processing are
requested for a new order.

In one hundred percent of the cases
 the transaction is completed securely
« cannot be repudiated by either party

The business goals are to provide customers
and business partners confidence in security
and to meet contractual, legal, and regulatory
obligations for secure credit transactions.

14

Quality Attribute Scenario
Security

The OPC experiences a flood of calls through the
Web Service Broker endpoint that do not
correspond to any current orders.

In one hundred percent of the times, the system
 detects the abnormal level of activity
* notifies the system administrator

» continues to service requests in a degraded
mode

15

Quality Attribute Scenario
Avatlability

The Consumer Web site is available to the user
24x7.

If an instance of OPC application fails, the fault is

detected

* the system administrator is notified in 30
seconds

» the system continues taking order requests

« another OPC instance is created

« data remains in consistent state

16

Views Template

Primary presentation (graphic)
Element catalog

Context diagram

Variability guide

Rationale

Related views

17

Top Level Module Uses View (1)

. A
<<use wsdl>> <o sa>>

— o
Bank Consumer
credit card Website
service .
A .
I \\ \\ .
Airline o <<u‘se wsdl>> 3
booking T e \
service - <<use wsdlr:i- L \
o S ~ - B - I ﬂ
_l <<yse wsdl.i) OpCApp
Lodging |<.. T
- e >
booking <usewsdi>>..____ ~
SSVC [T <<yse wsdl>>.___ - >
|
Activity |- ----<<use wsdl>>==-=""
booking
service [.__.. <<yse wsdl>>---=2

18

1
"~ waf
1
| util
— —
dao logger
<<yse>>
N

servicelocator

AN

Key: UML

In gray: external
elements.
<<yse wsdi>>
indicates that a
module uses Wsdl
interfaces defined
in the other module.

Consumer Website

The web-based user interface of the Adventure Builder is
implemented in this module

* lets the user browse the catalog of travel packages

* place a new purchase order

* track the status of existing orders

 creates purchase orders based on user input and

passes them to OpcApp for processing
* uses an implementation of the Model View Controller

pattern called the Web Application Framework (waf)
- model implemented using Entity beans

- controller implemented using servlets

- view is a collection of JSPs and static HTML pages

» part of the client-facing code is implemented using the
GWT framework

19

Order Processing Center Application
OpcApp

The business logic of the Adventure Builder is

implemented in this module.

- Accepting purchase order requests from the
ConsumerWebsite for processing by hosting the
Purchase Order Web Service.

- Provide a mechanism for the Consumer Website to
query the current status of a purchase order by
hosting the Order Tracking Web Service.

- Communicate with external suppliers to process and
maintain the status of a purchase order.

- Upon completion of processing a purchase order,
send an email to the customer of its success or
failure.

20

OPC Module Decomposition View (2)

|
OpcApp
|]
opc processmanager

1 1 1

))) |
crm.ejb financial powebservice .
ejb

| |]

invoice utils otwebservice |
manager.ejb
1 — 1 1
mailer orderfiller orderreceiver
]
workflowmanager I
webservicebroker
1
requestor
1
purchaseorder 1
provider Key: UML
Color for
readability only
|

Rationale

The choice of EJBs in the implementation,
including session beans, message-driven beans
and entity beans is based on:
* Developers are familiar with EJB development
and component-based development.
* These highly modular EJB components
promote reuse.

22

OPC Module Uses View (3)

[] [1
: Consumer
servicelocator A
Website
?\“
':R h‘ \‘<<use>> ,:' \\.\
' b T <<yse wsdl>> .
<<yse>> ~ .
«US‘BT:' s Sao H <<yse wsdl>>
: \lL Sso | ,' Y
] ‘\ Sso ’ “\
OpcApp | \
.: A I - LY) Y
])) . pcOl
opc i i OpcPurchese I $racki:;éervice
. OrderService DS — | |
: 5 — e L
— Y otwebservice S processmanager
* . | powebservice ; <<use>>
orderreceiver X . 1 rd T
% ! / <<yse>>
‘?\ \‘ i .,I ”'
. ‘\‘ \ <<yse>> 1 £
.\‘ s\‘ <<jms srend:» ”, . crm.ejb |-
<<yse>> " L 7 -~ <<use>>
ﬁ N ! ¢ ’ i
“ _n_l \:U "/l <<jms send>> mailer
A financial | S e B
yd “z<yse>> 1 4 _ootsuse>> }----7
<<use Ws’d’|>> “~~J workflowman ager -7 . <<use>> """
l &’ ," g a. o"‘
Bank] ff use>> ’/' . <<use>>
i -~ P <<jms send>>] e
credk card invoice | <<jms send>> .] e-”
service Y utils
— A SR . All other modules
P) within opc can use
<<jms sen???__ orderfiller — these modides
webservicebroker -7 pr
- purchaseorder
l" ’/I' E\ “‘-. ~‘~‘~
;” T ' \\\ "\“‘ ‘\\‘
Pl) \ " Tag ey,
P ” b1 A ~ Say
<<yuse wsdl>> ’ <<use wsdl>> ™ <<use wsdl>> .
v p v << wsdl>> -
L <<usewsdl>> gy ©e :5? s <<us~e‘wsdl>> Key: UML
V3 v, Y Color for readability only
. . . . 3z . <<use wsdl>> indicates that a module uses
Alr'lne bOOkIng LOdglng bOOklng AClIVIly bOOklng Wsdl interfaces defined in the other module
service service service <<jms send>> indicates that a module sends
a message o the other module via JMS

orkflowmanager Module Uses View

1
powebservice
1
servicelocator
- PoEndPoint
. Bean ..
<<yse>>
® '\“..\ use\\]
\‘ “ \\ ‘\
N <<use>> Say <<jms send>>
A ~ ~
Y . ~e Y
<cyse>> N ‘.l‘ *
\ | workflowmanager AN ‘? Message
\ . S Listener]
] \ .
- E mailer
crm.ejb N WorkFlow P
ManagerBean <<use>>
\ . ,” ’
Message b “\ . . pe y | I—
Listener) . / \ L /
CrmBean O N N,/ \ o <<use>>
DGR ! \\b <xyge>> <<use>> ,r'l /
s, “<<jms sapd>> I~ i o K
‘\‘ TN “ ‘\\ ‘|‘ ’l’ E I
g ~ 7 o . '
. e ! ™ N J/ invoice
» . Sk N 0 s/
™. |handlers Yl N J
<<jms send>> ", ' A IR | ' i
\.L\ b |4 ”,l ,’,I <<USG>>__,.-"? Invoice
[Invoice | __|-----T
1 POHandler Handler
4 Meo “N ..
‘I ”al" ‘\‘ ‘\‘ -“x“‘ - .o <‘<‘Use>> _I
financial ot X % RN I
0 < . w3 processmanager
<<yse>> \ ‘-.\ S
. ~l \ 5 <<yse>>
CreditCard |-~ — % -~
Verifier | SgmeamEr N A
o N <<yse>>
Y N
'Y .
—1 \\- ‘\\ l
Y .
orderfillor 5 ', | orderReceiver
Message \
.)
Koy: UML AN Listener 1
Color for readability only. POReceiver
<<jms send>> indicates that a module OrderFiller
sends a message lo the other module via Bean
JMS.
Three dots (“. . .') indicate that there are
other elements in the package not shown. . & d

Data Model (5)

Transportation » Lodging L-
\ Category
/ H
7 / X /
I Package
\ LodgingOrder L b
Airli 5’\0 d 5 9 ivi
irineJraer : / ActivitylnPackage
"\ \ /
A Yy o
OrderStatusHistory \ Purchase Order Aty
H b
Notation:
T Information
Engineering
\
L
1 / 3
[Document] UserAccount _(AN o) ActivityPurchaseOrder

25

Top Level SOA View (C&C 1)

Informal Notation

|
|
' I
: Consumer jdbc | Adventure :
| Web) Website Catalog |
|
: browser 2.3 |
| — :
' I
TTTTTTTT T I Ord |
| OpcPurchase O ?r‘::kln;éervice |
| OrderService |
email Ne — — — -IL _____ jobe Ag;%ngxée :
client } : OPC :
' L =
| . |
CreditCard | o e oyie |
Seniice | Service registry I
| Broker |
| |
/U [Ny T e |
Bank
T AclivityPO
o Service
gg'r';‘;zo A LodgingPO N
Service Activity
Airline . Provider
Provider Lodging
Provider

Key:

client-side
application

Java EE
application

External web
service provider

Web services
endpoint

data
repository

—e Nitp/htips
—= SOAP call

dala access
- — g SMTP

[— = — 71 Scope of the
“A | application (not
e - - a component)

Top Level SOA View (C&C 1)
UML

Adventure Builder

Web 3| <<JavaEE app>> jdbe <<mP°5"°‘Y>>E
ﬂL@._ Consumer —'©— Adventure
browser - Catal DB
Website atalog
<<web service>> <<web service>>
OpcPurchase OpcOrder
SMTP OrderService T T Trgikingszioe
>~ g]) <<f9P°Sh°'Y>>$:|
\ @— Adventure
-~ <<JavaEE app>> OPC DB
D OPC
<<web service>>
(S:;ed_itcard \TB(PO— <<repository>>
L / \ service registry
<<webservice>> "/ a \\ Key: UML
Webservice <<web service>> <<web service>> <<web service>>
Broker AirlinePO LodgingPO ActivityPO
Service Service Service

Top Level SOA View (C&C 1)

soapatterns.org Notation

Credit
I

Lodging (/J

provider R_
Activity
provider

Airline
provider

Consumer Website Multi- Tzer Vzew (C&C 2)

! maggings.xml

—

-\

j:::“

\

|
|
|

—

/

/
=
e

B

|| N

, : 1N

: | : L Mgmt Adventure

| | T Facade , '] Catalog

| | L |

Iy «{' I DB

| | 1 | |

| | 1 | |

I | 1 | |

| | 1 | |

| | 1 | |

, : I | :

1 | -

X)\ EJB tier) | backend
e = O e
Key:

Odienl-side Java -Servlet :g;:fs data G file Java EE O context
application ﬁlter Baon store application listener
)
Java file SOAP Web services :
W pe— . . |
—=hitp/hilps > ol JOBC == o T cal sadioid ‘ 'oomalnef

OPC View (C&C 3) UML

<<web service>>

<<web service>>

OpcPurchase OpcOrder
OrderService iTrackingServioe
<<JavaEE app>> g
OPC
<<SLSB>> g
PoEndpoint <<SLSB>>&]
§] Bean OtEndpoint
Sk Bean
CRMBean [&_)/
)__[<<JMS>> << JMS>>
SMTP N g1
<<MDB>> <<SLSB>>Q
WorkFlow Process
ManagerBean ManagerBean
<<entlly>g_—]
Manager
O— Bean \"
<<web service>> << JMS>>
CreditCard / <<entity>>& | >
Service Purchase <<enti(y>>€| /
<<MDB>> £] OrderBean ——O— , ...
; ActivityBean
OrderFiller
Bean
<< JMS>> <<entity>> g
<<JMS’;> O— Transportation
Bean
/ <<SLSB>> &]
BrokerService <<entity>>g | [
data
access <<Mpg>> £] Bean O— Lodging
to registry BrokerRequestor Bean
Bean
<<entity>>§ |
O~ CreditCard
Bean
:I: ! Key: UML N\
<<MDB>> is message-dniven bean
<<web service>> . ob corvice>> <<web service>> <<webservice>> <<SLSB>> is statless session bean
AirlinePO LodgingPO ActivityPO Webservice <<entity>> is entity bean
Service Service Service Broker <<JMS>> indicates that the connector uses a JMS queue.

JDBC

Deployment View (Allocation 1)

Informal Notation

end user
: machines
bank srv-web1 srv-web2 srv-db2
server -

=
DB r

Adventure Builder
local network

Internet)

firewall

airline lodging activity OpcGF Adventure D
provider provider provider OPC DB srv-mailer
server server server
machine machine machine admin user
| | Srv-opc | srv-dbopc mankine |

Key:

server Glassfish data E user local
machine instance store J machine network

Deployment View (Allocation 1) UML

end user
machine

admin user
machine

Key: UML |

srv-dbopc

v

srv-web1
srv-db1
1 <<execution
hit environment>>
P web1a
<<execution srv-db2
1 environment>>
http web1b
srv-web2
htt
R <<gxecution SOAP Srv-opc
\ environment>>
web2a <<egxecution
SOAP environment>>
http\ <<gxecution OpcGF
environment>> 1
web2b 1 1
SOAP
S
*
* *
bank airline lodging
SeN(.EI' pro\"der prOVider
machine server server
machine machine

—————— srv-mailer

SOAP

*

activity
provider

server
machine

Install View (Allocation 2)

<<artifact>> D
<<artifact> >D consumerwebsite.ear
waf-web jar — -
= <<manifest>> <<manifest>> <<manifest>>
. -~ K T
<<yse>> “ D N D 3
. <<artifact>> <<artifact>> <<arlifact>> D
adventure.war application.xml consumerwebsite-ejb.jar
7 -'
-] ‘ . << t>> [EJB N
H <<manifest>> J SP"_' cn:"h;"g,"ésgrr' manlfe;;t deployment
H l i'./ 3. K descriptor filos
! Y Vv i
<
\
\ /
cciters> & || ceservien£ <cserviets> &) \ wsise-l|
: SignOnFilter || MainServiet || TemplateServiet| 9, OrderFacade |. ¢ .
H <<context Iistenepg <<8rﬁfSCl>=D <<artifact>> 0 <<SLSB>> £l
SignOnNotifier web.xml || sign-on-config.xml CatalogFacade
<<arli1'acl>>D <<artifact>> G <<artifact>> o <<SLSB>> &]
index.jsp mappings.xml || screendefinitions.xml UserMgmtFacade
Key: UML
0 color used for readability
- <<artifact>> <<MDB>> is message-driven bean
<<manifest>> opc.ear <<SLSB>> s stalless session bean
<<enlity>> is entity bean
P K . e <<Filter>> is a Java EE Filter

H <<manifest>>"" ccmanifest>> <<manifests> .
| LT / N <<manifest>>
Y o ¥ S Ty
<<artifact>> 0 <<antifact>> 0 <<artifact>> 0 <<artifact>> Do
servicelocator.jar opc-ejbjar application.xml processmanager-ejb.jar
<<manilf\esl>> <<m£nifesl>>
] N *
13
<<entity>> 8 | <<MDB>>$_] <<MDB>>¥ | <<atifact>> [l|| <<arnitact=>0)
Purchase OrderFiller WorkFlow OpcPurchase WebService <<SLSB>>8]
OrderBean Bean ManagerBean || OrderService.wsdl | | Broker.wsdl Process
ManagerBean
<<enti >>$] <<enlily>=$:] <<emily‘>3€] <<artifact>> D <<artifact>> D
A :e.r; g CreditCard Lodging LodgingPurchase || ActivityPurchase <<entiy>£]
Clivitybean Bean Bean OrderService.wsd| || OrderService.wsd| Y
Manager
<<MDB>>$:I <<SLSB>> £] <<sLsB>>$] || <<anifact->0) <<artifac>> [} Boen
CRME PoEndpoint OtEndpaint CreditCard AirlinePurchase = 0o
ean Bean Bean Service.wsdl || OrderService.wsdl ?
1
<<entity>> & | <<SLSB>>§ | <<MDB>> &] <<artifac>> L) m
Transportation || BrokerService Broker OpcOrderTracking [., , EJB deployment
Bean Bean RequestorBean Service.wsd| @ descriplor and other
configuration files

What Is An “Agile Method™?

A software engineering “methodology” that
follows the Agile Manifesto?

A method that supports responding rapidly to
changing requirements?
- Mark Paulk

Does an agile method necessarily imply

- Evolutionary / iterative / incremental
development?

« Empowerment / participation of the
development team?

 Active collaboration with the customer?

34

Agile Manifesto

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items
on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas

Martin Fowler Brian Marick
35

Architecture in an Agile Context

The best teams may be self-organizing, but the
best architectures still require technical skKkill,
deep experience, and deep knowledge.

A focus on early and continuous release of
software, where “working” is measured in terms
of customer-facing features, leaves little time for
addressing the kinds of cross-cutting concerns
and infrastructure critical to a high-quality large-
scale system.

The issue is not agile vs architecture but how to
best blend agile and architecture...

36

Building the Foundation

Effort

100

80

60 -

40

20 -

/

Architecture & Infrastructure
-—¢=—Business Value

—

Sprint

37

Documentation and YAGNI

Expect the greatest agile friction from evaluation and
documentation.

Technical documentation principle: write for the

reader.
* No reader - no documentation

The Views and Beyond approach (Clements 2002)
- uses the architectural view as the “unit” of documentation
- prescribes producing a view if and only if it addresses
substantial concerns of an important stakeholder

community

- the view selection method prescribes producing the
documentation in prioritized stages to satisfy the needs of
the stakeholders who need it now

38

Guidelines for Agile Architecture
(Booch)

All good software-intensive architectures are agile.
- a successful architecture is resilient and loosely coupled
- composed of a core set of well-reasoned design decisions
- contains some “wiggle room” that allows modifications to be made
and refactorings to be done

An effective agile process will allow the architecture to grow

incrementally as the system is developed and matures.
- decomposability
- separation of concerns
- near-independence of the parts

The architecture should be visible and self-evident in the code
- make the design patterns, cross-cutting concerns, and other important
decisions obvious, well communicated, and defended
- may, in turn, require documentation
- ‘“socialize” the architecture

39

Tradeoff Advice

Large and complex system with relatively stable
and well-understood requirements
- do a large amount of architecture work up
front

Big projects with vague or unstable requirements

« quickly design a complete candidate
architecture

« Cockburn’s Crystal Clear “walking skeleton”

Smaller projects with uncertain requirements,
* try to get agreement on the central patterns

40

Documenting Software Architectures

If it is not written down, it does not exist.
* Philippe Kruchten

If you don’t have it in writing, | didn’t make a

commitment.
- mcp

(A lack of planning on your part does not constitute

a crisis on my part.)
- mcp

Architecture has to be communicated in a way to let
its stakeholders use it properly to do their jobs.

41

Uses of Architecture Documentation

As a means of education
* introducing people to the system

As a primary vehicle for communication among
stakeholders
* including the architect in the project’s future

As the basis for system analysis and
construction

42

Notations

Informal notations
- general-purpose diagramming and editing tools and visual

conventions

Semiformal notations
- a standardized notation that prescribes graphical elements

and rules of construction, e.g., UML

Formal notations
- has a precise (usually mathematically based) semantics

- formal analysis of both syntax and semantics is possible
- generally referred to as architecture description languages

- the use of such notations is rare

43

Module Views

A module is an implementation unit that provides
a coherent set of responsibilities.

The relations that modules have to one another
include is part of, depends on, and is a.

It is unlikely that the documentation of any
software architecture can be complete without at
least one module view.

44

Component-and-Connector Views

Show elements that have some runtime presence
- processes, objects, clients, servers, and data stores

Include as elements the pathways of interaction
- communication links and protocols, information
flows, and access to shared storage

Components have interfaces called ports.
Connectors have roles, which are its interfaces,

defining the ways in which the connector may be
used by components to carry out interaction.

45

Allocation Views

Describe the mapping of software units to elements
of an environment in which the software is developed
or in which it executes.

The relation in an allocation view is allocated to.

The usual goal of an allocation view is to compare
 the properties required by the software element
with
 the properties provided by the environmental

elements
to determine whether the allocation will be successful

or not.

46

Architectures Are Abstractions
Cannot be seen in the low-level implementation
details
Tools aggregate abstractions

* not a panacea
* no programming language construct for layer

or connector or...

Architecture reconstruction is an interpretive,
interactive, iterative process

Workbench — open, integration framework

47

UML

The Unified Modeling Language (UML) is a visual
language for specifying, constructing, and

documenting the artifacts of systems.
- Object Management Group (OMG)
- UML 2.0 Infrastructure Specification

A model is a set of UML diagrams that represent
various aspects of the software product.
« UML is the tool that we use to represent
(model) the target software product

UML profiles
» specialized subsets of the notation for

common subject areas

- EJB profile for Enterprise JavaBeans
48

UML Dwagrams

Diagram

i

Structure Behaviour
Diagram Diagram
A Fa)

Class Componen Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile CSothc):?girtee Deployment | Package Interaction Msatgﬁﬁ] o
Diagram Diagram Diagram Diagram Diagram Diagram

FaY
Sequence ||communication|| Interaction Timing
. : . Qverview .
Notation: umﬁ Diagram Diagram Diagram Diagram

49

Applying UML

UML as sketch

 informal and incomplete diagrams (often hand
drawn on whiteboards) created to explore
difficult parts of the problem or solution space

 emphasized in agile modeling

UML as blueprint
* relatively detailed design diagrams used for
reverse engineering or code generation

UML as programming language
« complete executable specification of a

software system in UML

50

Monopoly Case Study (Larman)

Use cases aren’t always best for behavior requirements...

51

Initial Monopoly Domain Model

;
Plaqﬂ -
ffet.{

1

-—MQHO(‘) bls(‘)ﬂwrﬁ.

Die __G_" acd Sivm:

l

If someone wants the model maintained... redraw using a CASE tool.
Who is going to use the updated model and why?
52

Monopoly Partial Domain Model
‘ P’t‘fﬂ"‘f’}k Plawed-on

l % Tl | S
m’“?'\f“‘; Boq 4

ILDic

3 P uQV*J we

53

Static and Dynamic UML Diagrams

54

SSD for a PlayMonopolyGame Scenario

% Exl

Qb seever
|

o

WAVTIRAY uno‘F \
at \'bg(h ?\\%v_/,_;l -

—?l&%gﬁm - >

!
\
|
)

| ‘“f) E\a u’snhef]
I

Q- ._‘_‘_Eﬁ‘ﬂ‘_}*ﬁ_)_‘)lkzg,'s_%xa_gc__ o

/

|

!
)
)
)

55

Documenting an Architecture

Case study of ~200KSLOC open source product
Very little architectural documentation

Team reverse-engineered the architecture (2-3
person weeks of effort) and provided the

architecture to the developers
- system could be characterized as poor quality
architectural design (my opinion)

R. Kazman, D. Goldenson, I. Monarch, W. Nichols, and G. Valetto,
“Evaluating the Effects of Architectural Documentation: A Case
Study of a Large Scale Open Source Project,” IEEE Transactions
on Software Engineering, March 2016.

56

Reverse-Engineered Module
Relationships in HDF'S (Kazman 2016)

datanode
///K\ i delegation
g metrics \"l\\\
namenode

57

Documented Module Relationships
in HDF'S (Kazman 2016)

client

58

Value of Architecture Documentation

“Committers” did not need or value the

architecture documentation.
- system was small enough to keep architectural details
in their heads

“Outsiders” were promoted to “committers” more

quickly using the architecture documentation.

- decentralization occurred
- developers looked at the documentation rather than
asking one of the committers about the architecture

Committers were unwilling to maintain the

architecture documentation.
- need to use tools to automatically extract and maintain
architectural information

59

Architecturally Significant
Requirements (ASRs)

Requirements documents

* most of what is in a requirements specification
does not affect the architecture

 much of what is useful to an architect is not in
even the best requirements document

 ASRs often derive from business goals in the
development organization

- excavation and archaeology is required to dig
ASRs from requirements documents

60

Design Decision Category

Look for Requirements Addressing. ..

Allocation of Responsibilities

Coordination Model

Data Model

Management of Resources

Mapping among Architectural
Elements

Binding Time Decisions

Choice of Technology

Planned evolution of responsibilities, user roles,
system modes, major processing steps, commercial
packages

Properties of the coordination (timeliness, currency,
completeness, correctness, and consistency)

Names of external elements, protocols, sensors
or actuators (devices), middleware, network
configurations (including their security properties)

Evolution requirements on the list above

Processing steps, information flows, major domain
entities, access rights, persistence, evolution
requirements

Time, concurrency, memory footprint, scheduling,
multiple users, multiple activities, devices, energy
usage, soft resources (buffers, queues, etc.)

Scalability requirements on the list above

Plans for teaming, processors, families of
processors, evolution of processors, network
configurations

Extension of or flexibility of functionality, regional
distinctions, language distinctions, portability,
calibrations, configurations

Named technologies, changes to technologies
(planned and unplanned)

Interviewing Stakeholders

Architects often have good ideas what quality
attributes are exhibited by similar systems and
are reasonable.

Stakeholders often have no idea what quality
attributes they want in a system.

Results of stakeholder interviews

« a list of architectural drivers

 a set of quality attribute scenarios that the
stakeholders (as a group) prioritized

62

Quality Attribute Workshop

1) QAW Presentation and Introductions
2) Business/Mission Presentation

3) Architectural Plan Presentation

4) ldentification of Architectural Drivers
5) Scenario Brainstorming

6) Scenario Consolidation

7) Scenario Prioritization

8) Scenario Refinement

63

Gathering ASRs by
Understanding the Business Goals

Business goals are the reason for building a

system.
- often the precursor of requirements that may or may
not be captured in a requirements specification

Business goals often lead to quality attribute

requirements.
- every quality attribute requirement should originate
from some higher purpose that can be described in
terms of added value

Business goals may directly affect the
architecture without precipitating a quality
attribute requirement at all.

64

Pedigreed Attribute eLicitation Method
(PALM)

Day and a half workshop attended by architects

and stakeholders who can speak to the business

goals of the organizations involved

1) PALM overview presentation

2) Business drivers presentation

3) Architecture drivers presentation

4) Business goals elicitation

5) Identification of potential quality attributes
from business goals

6) Assignment of pedigree to existing quality
attribute drivers

7) Exercise conclusion

65

Utility Tree

Begins with the word “utility” as the root node.

List the major quality attributes that the system

Is required to exhibit.

- under each quality attribute, record a specific
refinement of that QA

* under each refinement, record the appropriate
ASRs (usually expressed as QA scenarios)

Evaluate against two criteria
* the business value of the candidate ASR

 the architectural impact of including it
- must-have, important, nice-to-have

66

Tying the Methods Together

If you have a requirements process that gathers,
identifies, and prioritizes ASRs, consider yourself
lucky...

If nobody has captured the business goals behind
the system you’re building, then a PALM exercise.

If you feel that important stakeholders have been
overlooked, capture their concerns through
interviews.

* Quality Attribute Workshop

Building a utility tree is a good way to capture ASRs
along with their prioritization.

67

Designing an Architecture

The building blocks for designing a software
architecture:
 locating architecturally significant
requirements
 capturing quality attribute requirements
* choosing, generating, tailoring, and analyzing
design decisions for achieving those
requirements

Now to pull the pieces together...

68

Attribute-Driven Design (ADD) Method

Produce a workable architecture quickly

Before beginning a design process, the
requirements should (ideally) be known...

Requirements (changes) are continually
arriving...

ADD can begin when a set of architecturally
significant requirements is known.

69

Breadth vs Depth First

Personnel availability may dictate a refinement strategy.
Risk mitigation may dictate a refinement strategy.

Deferral of some functionality or quality attribute
concerns may dictate a mixed approach.

All else being equal, a breadth-first refinement strategy
is preferred because
* it allows you to apportion the most work to the most
teams soonest
+ allows for consideration of the interaction among the
elements at the same level

70

Generate a Design Solution

Sources of design candidates— patterns, tactics,
and checklists
» initial candidate design will likely be inspired
by a pattern
» possibly augmented by one or more tactics
 consider the design checklists for the quality
attributes

To the extent that the system you’re building is
similar to others, it is likely that the solutions you
choose will solve a collection of ASRs
simultaneously...

71

Verify and Refine Requirements

Your design solution may not satisfy all the
ASRs.

Backtrack — reconsider the design.

Unsatisfied ASRs may relate to

« A quality attribute requirement allocated to the
parent element

A functional responsibility of the parent
element

* One or more constraints on the parent element

72

What Requirements Are Left?

Requirements assigned to element are
satisfied...

Delegate to one of the children
Distribute among the children
Cannot be satisfied with the current design

* backtrack
* push back on the requirement

73

Done?

Terminate with a sketch of the architecture...
* flesh out the architecture consistent with the
overall design approaches laid out
Satisfy (contractual) specifications...
Exhaust design budget...
Terminating ADD and releasing the architecture

are different decisions.
- early architectural views can be usable

74

Architecture and Business

Perhaps the most important job of an architect is
to be a fulcrum where business and technical
decisions meet and interact...

What are the economic implications of an
architectural decision?

75

Utility Response Curuves

Each scenario’s stimulus-response pair provides
some utility (value) to stakeholders

The utility of different possible values for the
response can be compared

Absolute numbers are not necessary to compare
alternatives...
 human beings are better at comparative
estimation

76

100

Utility

(a)

100

Utility

(c)

100

Utility

(e)

a

Quality attribute response

b

a

Quality attribute response

b

a

Quality attribute response

b

C

100

Utility

(b)

100

Utility

(d)

1

a

b

Quality attribute response

|
|
|
|
|

a
Quality attribute response

b

Some Sample

Utility-Response
Curves

Best and Worst Cases

Best-case quality attribute level — that above
which the stakeholders foresee no further utility

Worst-case quality attribute level — the minimum
threshold above which a system must perform,
otherwise it is of no value to the stakeholders
Current quality attribute level

Desired quality attribute level

Anchor the utility levels on a scale of 0-100 with
the worst and best cases

78

Questions and Answers

79

