
UML & OBJECT ORIENTED ANALYSIS
AND DESIGN
Mehra Borazjany – Summer 2023
mehra@utdallas.edu

mailto:mehra@utdallas.edu

Part 1: Introduction

Part 2: Analysis

Part 3: Design

Part 4: Example

2

OBJECT ORIENTED ANALYSIS AND
DESIGN
PART1: Introduction

SOFTWARE ENGINEERING AND
COMPUTER SCIENCE

4

Computer Science

• Pursue optimal solutions

• $$$ is not an important
consideration

• Programming in the small

• Technical issues

• Dealing with tame problems

• Foundations of software
engineering

Software Engineering

• Good enough is enough

• $$$ is an important factor (PQCT)

• Programming in the large

• All issues and aspects

• Dealing with wicked problems

• Building on top of computer science
and other disciplines

Tame vs wicked problems: http://www.open.ac.uk/cpdtasters/gb052/index.htm

http://www.open.ac.uk/cpdtasters/gb052/index.htm

EXAMPLES OF TAME PROBLEM

Chess playing Math problems
Operations

research

optimization

Compiler
construction

Operating
systems

Many computer science problems

Query

AI problems

Why are these tame

problems?

5

EXAMPLES OF WICKED PROBLEM

Urban planning
National policy making

Economic reforms
Application software

development

Why are these

wicked problems?

6

CLASS DISCUSSION

7

• What are the focuses of computer science and software
engineering, respectively?

• Some authors say that software engineering is “programming in
the large.” What does this mean?

• What is the relationship between software engineering and
computer science? Can you have one without the other?

WHAT IS SOFTWARE ENGINEERING?

8

Software engineering as a discipline is focused on

• research, education, and application of engineering processes and
methods

• to significantly increase software productivity (P) and software quality (Q)
while reducing software costs (C) and time to market (T) – software
PQCT.

WHY SOFTWARE ENGINEERING?

To work together, the software engineers must overcome three
challenges, among others:

Communication CoordinationConceptualization

Solution:

9

• Processes and methodologies for analysis and design

• UML for communication and coordination

• Tools that automate or support methodology steps.

SOFTWARE LIFE CYCLE ACTIVITIES

Software processes and methodologies consist of life cycle activities:

Software

Development

Process

Software

Quality

Assurance

Software

Project

Management

Time to
Market

10

Productivity Quality Cost

THE SOFTWARE PROCESS
Software Requirements Gathering

Software Requirements Analysis

Software Design

Coding & Unit Testing

Integration & Integration Testing

Acceptance Testing

Maintenance
11

OBJECT-ORIENTED SOFTWARE
ENGINEERING

12

• Object-oriented software engineering (OOSE) is a
specialization of software engineering.

• The object-oriented paradigm views the world and systems as
consisting of objects that relate and interact with each other.

• OOSE encompasses:
• OO processes

• OO methodologies

• OO modeling languages

• OO tools

SOFTWARE PARADIGM

13

• A software paradigm is a style of software development that
constitutes a way of viewing the reality.

• Examples:
• procedural paradigm

• OO paradigm, and

• data-oriented paradigm

PARADIGM AND METHODOLOGY

Structured Design

Structured Analysis Data-Oriented Analysis

Procedural Paradigm OO Paradigm

Structured Programming
Object-Oriented Programming

Data-Oriented Paradigm

Data-Oriented Design

Programming in

4GL (e.g., SQL)

Books

Customers

orders

invoices

(w/books)

Process

Orders

credit status

Customer

Top Manager

BE

B E

A

CF

Top Decider

DG

GC F D

H

Class - 1

attrib 1

attrib 2

Class - 2

attrib 1

attrib 2

Class - 3

attrib x

Domain model

Object-Oriented Analysis

Student

Student

enroll

sn

sname

cn

cname

Obj : class b : Bclass

m1 () m2 ()

14

m3 ()

m4 ()m5 ()info

m6 () m7 () m8 ()

m10 () m9 ()

Sequence diagram

Object-Oriented Design

CLASS DISCUSSION

15

• What are the benefits of OOSE?

• Will OOSE replace the conventional approaches, and why?

OBJECT ORIENTED ANALYSIS AND
DESIGN
PART2: Analysis

OBJECTS

34

• From Merriam-Webster:
“something material that may be perceived by the senses”

• Look around this room, and imagine having to explain to someone who has never taken a
class what happens here …

You would explain the activity that occurs, and you would identify specific objects that play a
role in that activity (Chairs, tables, projectors, students, professor, white board, etc.) to
someone who has never seen these things …

Each of these objects is well defined, and plays a separate role in the story. There may be
multiple copies of chairs, but a chair is very different from a projector – they have different
responsibilities

You would not describe the action by saying “The classroom allows students to sit, and the
classroom allows the professor to display slides, … “ etc. This would make the “classroom”
too complex – almost magical

You would define the various objects in this domain, and use them to tell the story and
describe the action

OOA/OOD

Analyze the system

35

Model the system Design the software

ANALYSIS AND DESIGN:

36

Analysis is the investigation of the problem - what are we trying to do?

Here is where use cases are created and requirements analysis are done

Design is a conceptual solution that meets the requirements – how can we solve the
problem

Note: Design is not implementation

UML diagrams are not code (although some modeling software does allow code generation)

Object-oriented analysis: Investigate the problem, identify and describe the objects (or
concepts) in the problem domain

Also, define the domain!

Object-oriented design: Considering the results of the analysis, define the software
classes and how they relate to each other

Not every object in the problem domain corresponds to a class in the design model,
and viceversa

Where do we assign responsibilities to the objects? Probably a little in both parts

DOMAIN
MODELS

DOMAIN MODEL - INTRODUCTION

38

Very important model in OOA …

Illustrates the important concepts in the Domain, and will
inspire the design of some software objects

Also provides input to other artifacts
• Glossary

• Design Model (Sequence Diagrams)

UML

39

• “The Unified Modeling Language is a visual language for specifying, constructing,
and documenting the artifacts of systems.” - OMG, 2003

• The current version of the Unified Modeling Language™ is UML 2.5, released in
June 2015 [UML 2.5 Specification]. (https://www.uml-diagrams.org/)

• UML® specification (standard) is updated and managed by the Object Management
Group (OMG™) OMG UML.

• The first versions of UML were created by "Three Amigos”.

- Grady Booch (creator of Booch method)

- Ivar Jacobson (Object-Oriented Software Engineering, OOSE)
- Jim Rumbaugh (Object-Modeling Technique, OMT).

• UML is not a technique, it is a combination of several object-oriented notations:
+ Object-Oriented Design

+ Object Modeling Technique

+ Object-Oriented Software Engineering.

• UML uses the strengths of these three approaches to present a more consistent methodology
that's easier to use.

• Standard for diagramming notation.
• We will use UML to sketch out our systems
• UML can be used (by modeling packages) to auto-generate code directly from the

model diagrams

http://www.uml-diagrams.org/)

UML

40

• Different perspectives:

• Conceptual Perspective – defining the problem domain: Raw class diagrams, maybe mention
some attributes (Domain Model)

• Specification Perspective – defining the software classes: Design Class diagram, which shows the
actual software classes and their methods, attributes

• We will explore the details of UML diagramming

• For now, understand that UML is a language – it is used to communicate information

• We will use UML to describe the problem domain, describe the activities that occur,
and eventually describe the software classes

• Since it is a language, UML has specific rules, and we will see these later in the course

• You need to be able to read UML diagrams, as well as create them

• Here are some examples (we will learn more about how to create these diagrams later
…)

UML- DOMAIN MODEL

Video

ID

Stocks►

Rents►

Rents-from ►

1
1..*

1 *1*

VideoStore

address

name
phoneNumber

Customer

41

address

name
phoneNumber

https://www.uml-diagrams.org/class-diagrams-overview.html#domain-model-diagram

http://www.uml-diagrams.org/class-diagrams-overview.html#domain-model-diagram

UML ASSOCIATION

VideoStore
Stocks ►

Video
1 *

association name multiplicity

-"direction reading arrow"

-it has no meaning except to indicate direction of

reading the association label

-optional

42

UML MULTIPLICITY

zero or more;

"many"

one or more

one to forty

exactly five

T

T

T

T

*

1..*

1..40

5

T
3, 5, 8 exactly three,

five or eight

R

Customer

ents ...,

0..1

*

Video

One instance of a

Customer may be

renting zero or more

Videos.

One instance of a Video

may be being rented by

zero or one Customers.

43

UML DOMAIN MODEL

Video

...Rents►

Influenced-by ►

1

1..*

1 Loan Policy

...

Customer

...

Important association.

Need to remember.

Low value association.

Possible, but so what?

44

UML – CLASS AND FEATURES OF A CLASS

Payment

date : Date

time : Time

amount : Money

attributes

45

Catalog

VideoDescription

title

subjectCategory

VideoRental

dueDate

returnDate

returnTime

CashPayment

amount : Money

Video

ID

Stocks►

Rents►

Rents-from ►

Pays-for ►

Initiates ►

Described-by ...,

Membership

ID

startDate

1

1

1..*1

1 1

1..*

1

1

Owns-a ►

*

1

1

1

*
1*

Pays-for-overdue-charges ►

RentalTransaction

date

LoanPolicy

perDayRentalCharge

perDayLateCharge

Determines-rental-charge ►

1

Defines◄

1..*

*

1..*

1

1

* *

VideoStore

address

name

phoneNumber

Customer

address

name

phoneNumber

1

1

1..*

Records-rental-of ...,

0..1

1

Has ...,

46

Maintains...,

*

1

1

Register

Item

Store

address

name

Sale

date

time

Payment

amount

Sales

LineItem

quantity

Stocked-in

*

1..*

Contained-in

1..*

Records-sale-of

0..1

1

Houses

Paid-by

1

1

1

1

1

0..1

1

Captured-on ►

concept

or domain

object

association

attributes

47

This diagram shows an

example of a an early

Domain Model for the

Point Of Sale system.

DOMAIN MODEL: DEFINITION

The Domain Model can be thought of as a visual representation of
conceptual classes or real-situation objects in the domain (i.e. the real
world).

In UP, the term Domain Model means a representation of real-situation
conceptual classes, not software objects. The term does not mean a set

48

of diagrams describing software classes, the domain layer of the software
architecture, or software objects with responsibilities

Think of as a visual dictionary describing the domain: important
abstractions, domain vocabulary, and information content

Payment

amount

Sale

date

time

Pays-for

Payment

amount: Money

getBalance(): Money

Sale

date: Date

startTime: Time

getTotal(): Money

. . .

Pays-for

UP Domain Model

Stakeholder's view of the noteworthy concepts in the domain.

UP Design Model

The object-oriented developer has taken inspiration from the real world domain

in creating software classes.

Therefore, the representational gap between how stakeholders conceive the

domain, and its representation in software, has been lowered.

1 1

1 1

A Payment in the Domain Model

is a concept, but a Payment in

the Design Model is a software

class. They are not the same

thing, but the former inspired the

naming and definition of the

latter.

This reduces the representational

gap.

This is one of the big ideas in

object technology.

inspires

objects

and

names in

The difference between

domain model and

design model – UML

used in two different

ways.

49

CREATING DOMAIN MODELS

50

This is dependent upon which iteration cycle you are in, but in general there
are three steps:

1. Find the conceptual classes

2. Draw the classes as UML diagrams (conceptual level)

3. Add associations and attributes

Finding Conceptual Classes

Use or modify existing models – we will see some of these later

Use a category list

Identify noun phrases in the use cases

CATEGORY LISTS

51

• This is a list of common conceptual class categories,
generalized to apply to many situations

• Can be used as a starting point; look for these conceptual
classes in your domain

• Book has good list …

• Business transactions, transaction line items, where is the transaction recorded,
physical objects, catalogs, other collaborating systems, ..

• You can make a list of categories (or use a pre-existing list),
and after reviewing use cases and requirements, list all
conceptual classes you find that relate to a particular category

NOUN PHRASE IDENTIFICATION

52

• Look at a textual description of the domain, and identify all the
nouns and noun phrases

• Try not to do this mechanically – not all nouns are conceptual
classes!

• Good place to start is the fully dressed use case

• Go through the main success scenario, identify all important
nouns, use these to name conceptual classes

EXAMPLE: POS USE CASE

53

Main Success Scenario (cash only):

1. Customer arrives at POS checkout with goods and/or
services to purchases

2. Cashier starts new sale and enters item identifier

3. System records sale line item and presents item
description, price, and running total

(repeat 2-3 until no more items)

EXAMPLE: POS USE CASE
(IDENTIFY KEY NOUNS)

54

Main Success Scenario (cash only):

1. Customer arrives at POS checkout with goods and/or
services to purchases

2. Cashier starts new sale

3. Cashier enters item identifier

4. System records sale line item and presents item description,
price, and running total

(repeat 2-3 until no more items)

EXAMPLE – INITIAL DRAFT OF
DOMAIN MODEL FOR POS

55

StoreRegister SaleItem

Cash

Payment

Sales

LineItem
Cashier Customer

Product

Catalog

Product

Description

Ledger

OBSERVATIONS

56

• This model will evolve as the project goes through iterations

• But aside from that, why save this model? Once it has served its
purpose, it can be discarded
• Once the more detailed class diagrams are created, there may not be a

need for this model

• It can be maintained in a UML CASE tool (there are many
available) such as starUML, draw.io,…

ATTRIBUTES AND CONCEPTUAL CLASSES

57

• Be careful not to turn conceptual classes into attributes
• If X cannot be thought of as a number or text, it is probably a conceptual

class

• For example, in the POS case study, the Store is not a number or
some text, so it should be modeled as a conceptual class (and
not an attribute of Sale, for example)

DESCRIPTOR CLASS – STORE ITEM

58

Item

description

price

serial number

itemID

ProductDescription

Describes
Item

description

price

itemID

1 * serial number
Better

Worse

DESCRIPTOR CLASS – AIRLINE
FLIGHT

Worse

Flight

date

time

FlightDescription

number

Airport

name

Described-by

59

Describes-flights-to

1

Flight

Flies-to
Airport

date

number

time * 1 name

Better

1*

*

ASSOCIATIONS

60

• An association is a relationship between classes that indicates a
meaningful and interesting connection.

• When to add an association between conceptual classes to the domain
model?

Ask “do we require some memory of the relationship between these classes?”

The knowledge of the relationship needs to be preserved for some duration

For example, we need to know that a SalesLineItem is associated with a Sale,

because otherwise we would not be able to do much with the Sale (like
compute the total amount, print receipt, etc.)

For the Monopoly example, the Square would not need to know the value of
the Dice roll that landed a piece on that square – these classes are probably
not associated

ASSOCIATIONS

61

• Avoid adding too many associations

• A graph with n nodes can have (n x (n – 1)/2) associations, so 20 classes can
generate 190 associations!

• Realize that there may not be a direct association between software
classes in the class definition model just because there is an association
between conceptual classes in the domain model
• Associations in the domain model show that the relationship is meaningful in a

conceptual way

• But many of these relationships do become paths of navigation in the software

• Naming: Use ClassName – VerbPhrase – ClassName format
• Can add a small arrow to help explain the diagram to the reader

ASSOCIATIONS

Register
Records-current ►

Sale
1 0..1

association name multiplicity

-"reading direction arrow"

-it has no meaning except to indicate direction of

reading the association label
-often excluded

62

Register

Item
Store

Sale

CashPayment

Sales

LineItem

CashierCustomer

Product

Catalog

Product

Description

Stocks

*

Used-by

*

Contains

1..*

Describes

*

Captured-on

Contained-in

1..*

Records-sale-of

0..1

Paid-by Is-for

Logs-

completed

*

◄ Works-on

1

1

1
Houses

1..*

1 1..*

1

1

1

1

1

1

1

0..1 1

1

Ledger

Records-

accounts-

63

for

1

1

NextGen POS – Domain Model with associations

DOMAIN MODELS: ADDING
ATTRIBUTES

Useful to add attributes to conceptual classes to satisfy an information requirement in a
scenario. Note that in this case the attribute is a logical data value of an object

Attributes are added to the bottom of the conceptual class box

Notation: visibility name : type multiplicity = default value {property-string}

Sale

- dateTime : Date

- / total : Money

Private visibility

attributes

Math

+ pi : Real = 3.14 {readOnly}

Public visibility readonly

attribute with initialization

Person

firstName

middleName : [0..1]

lastName

Optional value

64

DOMAIN MODELS: ADDING ATTRIBUTES

65

• Usually assume that the attribute is private, unless otherwise
noted

• Be careful about placing attribute requirements in the
Domain Model
• The Domain Model is generally used as a tool to understand the

system under development, and often any requirements that are
captured there may be overlooked

• Best to capture attribute requirements in a Glossary
• Can also use UML tools that can integrate a data dictionary

• Note in the previous example we use the symbol “/” to
indicate that an attribute is derived, i.e. computed.

DERIVED ATTRIBUTE: EXAMPLE
In this case, multiple instances of an item can be added to a SaleLineItem one at a time or as a
group. The quantity attribute can be computed directly from the multiplicity of the Items:

SalesLineItem
0..1 Records-sale-of 1

Item

SalesLineItem 0..1 Records-sale-of 1..* Item

Each line item records a

separate item sale.

For example, 1 tofu package.

Each line item can record a

group of the same kind of items.

For example, 6 tofu packages.

SalesLineItem 0..1 Records-sale-of 1..* Item

/quantity

derived attribute from

the multiplicity value

66

ATTRIBUTES VERSUS CLASSES
Often attributes are primitive data types

Boolean, Date, Number, Char, String, Time, …

Do not make a complex domain concept an attribute – this should be a separate class.
Data types are things which can be compared by value; conceptual classes are usually
compared by identity
Person class versus name string

Flight 1 Flies-to 1 Airport

Flight

destination

Worse

Better

destination is a complex

concept

67

DATA TYPE CLASSES

68

• It is also possible to have more complex data types as attributes in the
Domain Model, and these are often modeled as classes

• For example, in the NextGen POS example, we may have an itemID
for each item; it is probably contained in the Item or
ProductDescription classes. It could be a number or a string, but it may
have more parts too

• In general, your analysis of the system will tell if the attributes are
simple or need more complexity
• For example, upon examining the detail of the itemID, we may discover that it is

made up of multiple parts, including a unique UPC, a manufacturer ID, a country
code, etc. This would be a good candidate for a separate class.

DATA TYPE CLASS: EXAMPLE

In the bottom example, itemID and address would need to be
described in the Glossary or someplace else in the Domain Model

OK

OK

ItemID

Product

Description

1 1
id

manufacturerCode

countryCode

Product

Description

itemId : ItemID

Store

Store

address : Address

11

69

Address

street1

street2

cityName

...

GUIDELINES FOR CREATING DATA
TYPE CLASS

70

• If the data type is composed of multiple sections, like name, phone
number, etc.

• There are operations associated with the data type, like parsing

• There are other attributes that are associated with it
• A promotionalPrice may have a startDate and an endDate.

• It represents a quantity with a unit, e.g. currency

• It is an abstraction with one or more types of the above

• Do not use a “foreign key” to associate two classes – use UML
associations, not attributes
• A simple attribute that is used to relate two classes – see next slide for an example

NO FOREIGN KEYS

Cashier

name

currentRegisterNumber

Cashier
1 Works-on 1

Register

name number

Worse

Better

a "simple" attribute, but being

used as a foreign key to relate to

another object

Note: Classes do not represent tables in a relational database

71

DOMAIN MODEL REFINEMENT:
GENERALIZATION

Even though these are not software classes, this type of
modeling can lead to better software design later (inheritance,
etc.)

UML notation uses an open arrow to denote subclasses of a
conceptual class

Cash

Payment

Credit

Payment

Check

Payment

Payment

Cash

Payment

Credit

Payment

Check

Payment

Payment

73

REFINING DOMAIN MODELS:
SUPER AND SUB CLASSES

74

Can think of the “sub-class as being a kind of super-class”
A Credit Payment is a kind of Payment

Often shortened to: A Credit Payment is a Payment

We can identify sub-classes by these two rules
The 100% - all the super-class definition applies to the sub-class

The “is a” rule – the sub-class is a kind of super-class

Any sub-class of a super-class must obey these rules

SUPER- AND SUB-CLASSES:
WHEN TO CREATE

Bad example:

Male

Customer

Female

Customer

Customer Correct subclasses.

But useful?

When would this make sense?

75

Market research model, where there are behaviors of male and female shoppers that are
different
Medical research, since men and women are different biologically

EXAMPLE: PAYMENT SUB-CLASSES

Cash

Payment

Credit

Payment

Check

Payment

Payment

amount : Money

Check

Identifies-credit-with Paid-with
*

each payment subclass is

handled differently

additional associations

superclass justified by common

attributes and associations

Sale
Pays-for

76

CreditCard

1

1

1 1

ASSOCIATION CLASSES

77

Often, the association between conceptual classes contains information
that needs to be captured in the model, but does not belong in either
class as an attribute

A salary may be an attribute of Employment, but it does not belong as an
attribute of the Person or Company classes

General rule: If class C can simultaneously have many values of attribute
A, then A should not be placed in C.

Could create a new conceptual class and associate it with the existing
classes, but this can add complexity to the model

Better way: Create a special class that represents the attributes of the
association

ASSOCIATION CLASSES

In UML, an association may be considered a class, with attributes,
operations, and other features

Include this when the association itself has attributes associated with it

salary

startDate

Employment

Employs
Company Person* *

a person may have

employment with several

companies

78

class Company {

Set<Employment> employments;

}

class Employment{

Company company ;

Person person;

Date startDate;

Money Salary;

}

class Person{

Set<Employment> employments;

}

79

providing a method in Company that returns all its personnels

public Set<Person> getPersonnels () {

Set<Person> result = new HashSet<Person>();

for (Employment e: employments) {
result.add(e.getPerson());

}
return result;

}

AGGREGATION AND COMPOSITION

80

These are software class concepts that will be important later

Aggregation implies a container or collection of classes

In this case, if the container class is destroyed, the individual parts are not

Denoted in UML as an open diamond

Composition also implies a collection of classes, but with a stronger life
dependency

If the container class is destroyed, the individual component instances are
also destroyed

Denoted by a filled in diamond in UML

EXAMPLES: AGGREGATION AND
COMPOSITION

81

AGGREGATION AND
COMPOSITION

82

Usually not critical for domain models, but may be used to …

Clarify constraints in the Domain Model (e.g. existence of a class
depends on another class)

Help model situations when create/delete operations apply to many sub-
parts

EXAMPLES: COMPOSITION IN
NEXTGEN POS

SalesLineItemSale
1..*

Product

Description

Product

Catalog 1..*

83

1

1

ASSOCIATION ROLE NAMES

Occasionally a role name is
added to an association; this
name describes the role the
object plays in the association

Not required, often included if
there role is not clear

Should model the role as a
separate class if there are
unique attributes, associations,
etc. related to the role

Flight * Flies-to 1
City

destination

role name

describes the role of a city in the

Flies-to association

Person

*
parent

Creates ►

2

child

“Reflexive
Association

”

84

OBJECT ORIENTED ANALYSIS AND
DESIGN
PART3: DESIGN

UML DESIGN
INTERACTION
DIAGRAMS
DESIGN- DYNAMIC VIEW

WHAT WILL WE LEARN?

88

UML Interaction Diagrams – What are they, how to create them

UML INTERACTION DIAGRAMS

89

• There are two types: Sequence and Communication diagrams

• We will first look at the notation used to represent these, and then later look
at important principles in OO design

• We’ll look at various examples here to learn how to create the diagrams

UML SEQUENCE DIAGRAMS

90

• They often represent a series of method calls between objects in a system

• The sequence is represented in what is called “fence format”, and each new
object in the sequence is added to the right in the diagram

• Interactions between objects are usually method calls, but may also be
object creation/deletion

• Especially useful for message flow diagrams, with request-reply pairs

• https://sequencediagram.org/

EXAMPLE: SEQUENCE DIAGRAM

: A myB : B

doTwo

doOne

doThree

public class A

91

{

private B myB = new B();

Public void doOne()
{

myB.doTwo();

myB.doThree();
}

}

READING A SEQUENCE DIAGRAM

• We would say “The message makePayment is sent to an instance of Register. The
Register instance sends the makePayment message to the Sale instance. The Sale
instance creates an instance of a Payment.” Here, “message” is a method call.

: Register : Sale

makePayment(cashTendered)

makePayment(cashTendered)

: Payment
create(cashTendered)

92

INTERACTION DIAGRAMS ARE
IMPORTANT

93

• Often left out in favor of class definition diagrams, but these diagrams are
important and should be done early

• They describe how the objects interact, and may give clues to the operations
and attributes needed in the class diagrams

• These diagrams are part of the Design Model artifact, and are started in the
Elaboration phase in Agile UP

SEQUENCE DIAGRAMS: LIFELINE
BOX NOTATION

94

• Basic notation for the entities that make up the sequence diagram –
they are called lifeline boxes and represent the participants in the
particular sequence being modeled

• Note that a participant does not need to be a software class, but it
usually is for our purposes

• The standard format for messages between participants is:
return = message(parameter: paramerType) : returnType

Type information is usually omitted, as are parameters

sales:

ArrayList<Sale>

:Sale s1 : Sale

lifeline box representing an

instance of an ArrayList class,

parameterized (templatized) to

hold Sale objects

lifeline box representing an

unnamed instance of class Sale

lifeline box representing a

named instance

sales[i] : Sale

lifeline box representing

one instance of class Sale,

selected from the sales

ArrayList <Sale> collection

x : List

«metaclass»

Font

lifeline box representing the class

Font, or more precisely, that Font is

an instance of class Class œan

instance of a metaclass

related

example

List is an interface

in UML 1.x we could not use an

interface here, but in UML 2, this (or

an abstract class) is legal

95

SEQUENCE DIAGRAMS:
MESSAGES

96

• Messages are notated as solid arrows with filled in arrowheads
between lifelines
The lifelines are the dotted lines that extend below each participant box, and literally
show the lifespan of the participant

• The first message may come from an unspecified participant, and is
called a “found message”. It is indicated with a ball at the source

• Messages can be synchronous (sender waits until receiver as finished
processing the message, and then continues – blocking call) or
asynchronous (sender does not wait, more rare in OO designs)

• Dashed arrow is used to indicate return of control, e.g. after receipt of
synchronous message. May contain a value.

: Register : Sale

doA

doB

doX

doC

doD

typical sychronous message

shown with a filled-arrow line

a found message

whose sender will not

be specified

execution specification

bar indicates focus of

control

97

SEQUENCE DIAGRAMS:
SPECIFICS

98

• The execution specification bar or activation bar indicates that the
operation is on the call stack

• Usually replies to messages are indicated with a value or a dotted line
(see next slide)

• It is possible to have a message to “self” (or “this”)

• Sequence diagrams can also indicate instance creation (see later slide)

• Likewise, instances can be destroyed (indicated by “X” at the end of
lifeline)

: Register : Sale

d1 = getDate

getDate

doX

aDate

: Register

doX

clear

99

: Register : Sale

makePayment(cashTendered)

: Payment
create(cashTendered)

authorize

note that newly created

objects are placed at their

creation "height"

: Sale

: Payment
create(cashTendered)

...
the «destroy» stereotyped

message, with the large

X and short lifeline

indicates explicit object

destruction
«destroy»

X

100

SEQUENCE DIAGRAMS:

101

SPECIFICS
Diagram frames may be used in sequence diagrams to show:

• Loops

• Conditional (optional) messages

• Nesting (a conditional loop)

• Relationships between diagrams

See next slides for examples

enterItem(itemID, quantity)

: B

endSale

a UML loop

frame, with a

boolean guard

expression
description, total

makeNewSale

[more items]loop

: A

calculate

: Bar

yy

xx

[color = red]opt

102

: Foo

st = getSubtotal

lineItems[i] :

SalesLineItem

t = getTotal

[i < lineItems.size]loop

: Sale This lifeline box represents one

instance from a collection of many

SalesLineItem objects.

lineItems[i] is the expression to

select one element from the

collection of many

SalesLineItems; the ”i“ value

refers to the same —i“ in the guard

in the LOOP frame

an action box may contain arbitrary language

statements (in this case, incrementing ”i‘)

it is placed over the lifeline to which it applies

i++

103

: Bar

xx

[color = red]opt

: Foo

loop(n)

calculate

104

interaction occurrence

note it covers a set of lifelines

note that the sd frame it relates to

has the same lifelines: B and C

doA

: A : B : C

doB

ref
AuthenticateUser

authenticate(id)

doX

: B : C

sd AuthenticateUser

authenticate(id)

doM1

doM2

ref
DoFoo

: B : C

sd DoFoo

doX

doY

doZ

105

:Register

authorize

doX

:Payment {abstract}

polymorphic message
object in role of abstract

superclass

:DebitPayment

doA

authorize

:Foo

stop at this point œdon‘t show any

further details for this message

doB

:CreditPayment

doX

authorize

:Bar

Payment {abstract}

authorize() {abstract}

...

CreditPayment

authorize()

...

DebitPayment

authorize()

...

Payment is an abstract

superclass, with concrete

subclasses that implement the

polymorphic authorize operation

separate diagrams for each polymorphic concrete case

106

UML DESIGN
CLASS
DIAGRAMS
DESIGN- STATIC VIEW

java.awt::Font

or

java.awt.Font

plain : Int = 0 { readOnly }

bold : Int = 1 { readOnly }

name : String

style : Int = 0

...

getFont(name : String) : Font

getName() : String

...

«interface»

Runnable

run()

- ellipsis —…“ means there may be elements, but not shown
- a blank compartment officially means —unknown“ but as a

convention will be used to mean —no members“

SubclassFoo

...

run()

...

SuperclassFoo
or

SuperClassFoo { abstract }

- classOrStaticAttribute : Int

+ publicAttribute : String
- privateAttribute

assumedPrivateAttribute

isInitializedAttribute : Bool = true

aCollection : VeggieBurger [*]

attributeMayLegallyBeNull : String [0..1]

finalConstantAttribute : Int = 5 { readOnly }

/derivedAttribute

+ classOrStaticMethod()
+ publicMethod()

assumedPublicMethod()

- privateMethod()

protectedMethod()

~ packageVisibleMethod()
«constructor» SuperclassFoo(Long)

methodWithParms(parm1 : String, parm2 : Float)

methodReturnsSomething() : VeggieBurger

methodThrowsException() {exception IOException}

abstractMethod()

abstractMethod2() { abstract } // alternate

finalMethod() { leaf } // no override in subclass

synchronizedMethod() { guarded }

3 common

compartments

1. classifier name

2. attributes

3. operations

interface

implementation

and

subclassing

Fruit

...

...

PurchaseOrder

...

...

1

association with

multiplicities

dependency

officially in UML, the top format is

used to distinguish the package

name from the class name

unofficially, the second alternative

is common

order

an interface

shown with a

keyword

108

EXAMPLE:
LIBRARY INFORMATION SYSTEM
(LIS)
PART4: Example

LIS REQUIREMENTS AND USE
CASES

110

• R1. The LIS must allow a patron to check out documents.

• R2. The LIS must allow a patron to return documents.

• UC1. Checkout Document (Actor: Patron, System: LIS)

• UC2. Return Document (Actor : Patron, System: LIS)

• How about Allow a Patron? Is it a use case? Who is the actor? What is
the goal or business task for the actor? Does it start and end with an
actor?

DOMAIN MODEL

111

User

uid : String
Loan

dueDate : Date

Document

callNum : String

available : boolean

msg := verify (uid:String, password: Password) : String<<uid, pass-
word>>

LOGIN USE CASE

:LoginGui

User

:LoginController

<<msg>>

function callreturn value return typeparameter & type

112

LIS UC.1 CHECKOUT DOCUMENT

UC1 : Checkout Document

Precondition: Patron is already logged in

Actor: Patron System: LIS

0. The LIS displays the main menu.

1. Patron clicks the checkout Document
button on the main menu.

2.The system displays the checkout menu.

3. The Patron enters the call numbers of

documents to be checked out and clicks

the Submit button.

4. The system displays the document details
for confirmation.

5. The patron click the OK button to confirm
the checkout.

6. The system displays a confirmation
message to patron.

7. The patron clicks OK button on the
confirmation dialog.

113

IDENTIFY CLASSES USED IN SEQUENCE
DIAGRAMS

<<singleton>>
classes used.

:Checkout
GUI

<<uid,
cnList>>

:DBMgr

u:=get
User(uid):User

d:=get
Document(cn)

l:Loan d:Document
:Checkout
Controller

msg:=check-

out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

[a]create(u,d)

[a]save(l)

[a]setAvailable(false)

[a]save(d)

<<msg>>

114

Loop

(for each cn in
cnList)

Identify objects that send or
receive messages, passed as

parameters or return type.

11-115

CLASSES IDENTIFIED

User

Document

Loan

CheckoutGUI

DBMgr

CheckoutController

IDENTIFY METHODS

:Checkout
GUI

<<uid,
cnList>>

:DBMgr

u:=get
User(uid):User

d:=get
Document(cn)

l:Loan d:Document

[a]create(u,d)

[a]save(l)

[a]setAvailable(false)

[a]save(d)

:Checkout
Controller

msg:=check-

out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop
(for each cn in
cnList)methods of

CheckoutController

methods of
Document

116

FILL IN IDENTIFIED METHODS

117

User

Document

isAvailable() : boolean

setAvailable(a:boolean)

Loan

create(u:User, d:Document)

CheckoutGUI

<<singleton>>
DBMgr

getUser(uid)
getDocument(callNo)
saveLoan(loan)
saveDocument(book)

CheckoutController

checkout(uid,cnList)
process(cn:String[])

:Checkout
GUI

<<uid,
cnList>>

:DBMgr

u:=get
User(uid):User

d:=get
Document(cn)

l:Loan d:Document

[a]create(u,d)

[a]save(l)

[a]setAvailable(false)

[a]save(d)

:Checkout
Controller

msg:=check-

out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop

(for each cn in
cnList)

IDENTIFY ATTRIBUTES

attribute of User

attribute value

attributes of
Document

118

FILL IN ATTRIBUTES

CheckoutGUI

display(msg:String)

User
uid : String

Document

callNum : String
isAvailable : boolean

isAvailable() : boolean
setAvailable(a:boolean)

Loan

dueDate : Date

create(u:User, d:Document)

<<singleton>>

DBMgr

getUser(uid)
getDocument(callNo)
saveLoan(loan)
saveDocument(book)

CheckoutController

checkout(uid,cnList)
process(cn:String)

from domain
model

119

IDENTIFY RELATIONSHIPS
:Checkout

GUI

<<uid,
cnList>>

:DBMgr

u:=get
User(uid):User

d:=get
Document(cn)

l:Loan

[a]create(u,d)

d:Document

[a]save(l)

[a]setAvailable(false)

[a]save(d)

:Checkout
Controller

msg:=check-

out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop

(for each cn in
cnList)

call relationship

association w/ an
association class.

CheckoutController and
DBMgr use User.

120

User
Loan

CheckoutGUI

display(msg:String)

<<singleton>>

DBMgr

getUser(uid)
getDocument(callNo)
saveLoan(loan)
saveDocument(book)

CheckoutController

checkout(uid,cnList)
process(cn:String) uid : String

Document

callNum : String

available : boolean

isAvailable() : boolean
setAvailable(a:boolean)

dueDate : Date

create(u:User, d:Document)

121

FILL IN RELATIONSHIPS
The dashed arrow lines denote uses or
dependence relationships.

<<create>>

FROM SEQUENCE DIAGRAM TO
IMPLEMENTATION

:Checkout
GUI

<<uid,
cnList>>

u:=get
User(uid):User

d:=get
Document(cn)

:DBMgr l:Loan

[a]create(u,d)

[a]save(l)

d:Document

[a]save(d)

:Checkout
Controller

msg:=check-

out(uid, cnList)

[u!=null]
process(cnList)

<<msg>>

Loop

(for each cn in
cnList)

call relationship

CheckoutController and
DBMgr use User.

Available()

association w/ an
association class.

public class CheckoutController {

122

DBMgr dbm=new DBMgr ();

public void process(String[] cnList) {
for(int i=0; i<cnList.length; i++) {

Document

a:=is d=dbm.getDocument(cnList[i]);
if (d.isAvailable()) {

Loan l=new Loan(u, d);
dbm.saveLoan(l);

d.setAvailable(false);

[a]setAvailable(falsed)bm.saveDocument(d);
}

}

TEXTBOOK

• “Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development”, Craig Larman,
ISBN: 013 148 9062, Prentice-Hall, 2005

• “Object-Oriented Software Engineering: An Agile Unified
Methodology”, Kung D., ISBN: 978-0073376257, McGraw Hill,
2013

• And more..

123

	Slide 1
	Slide 2
	Slide 3: OBJECT ORIENTED ANALYSIS AND DESIGN PART1: Introduction
	Slide 4: SOFTWARE ENGINEERING AND COMPUTER SCIENCE
	Slide 5: EXAMPLES OF TAME PROBLEM
	Slide 6: EXAMPLES OF WICKED PROBLEM
	Slide 7: CLASS DISCUSSION
	Slide 8: WHAT IS SOFTWARE ENGINEERING?
	Slide 9: WHY SOFTWARE ENGINEERING?
	Slide 10: SOFTWARE LIFE CYCLE ACTIVITIES
	Slide 11: THE SOFTWARE PROCESS
	Slide 12: OBJECT-ORIENTED SOFTWARE ENGINEERING
	Slide 13: SOFTWARE PARADIGM
	Slide 14: PARADIGM AND METHODOLOGY
	Slide 15: CLASS DISCUSSION
	Slide 16: OBJECT ORIENTED ANALYSIS AND DESIGN PART2: Analysis
	Slide 17: OBJECTS
	Slide 18: OOA/OOD
	Slide 19: ANALYSIS AND DESIGN:
	Slide 20: DOMAIN MODELS
	Slide 21: DOMAIN MODEL - INTRODUCTION
	Slide 22: UML
	Slide 23: UML
	Slide 24: UML- DOMAIN MODEL
	Slide 25: UML ASSOCIATION
	Slide 26: UML MULTIPLICITY
	Slide 27: UML DOMAIN MODEL
	Slide 28: UML – CLASS AND FEATURES OF A CLASS
	Slide 29
	Slide 30
	Slide 31: DOMAIN MODEL: DEFINITION
	Slide 32
	Slide 33: CREATING DOMAIN MODELS
	Slide 34: CATEGORY LISTS
	Slide 35: NOUN PHRASE IDENTIFICATION
	Slide 36: EXAMPLE: POS USE CASE
	Slide 37: EXAMPLE: POS USE CASE (IDENTIFY KEY NOUNS)
	Slide 38: EXAMPLE – INITIAL DRAFT OF DOMAIN MODEL FOR POS
	Slide 39: OBSERVATIONS
	Slide 40: ATTRIBUTES AND CONCEPTUAL CLASSES
	Slide 41: DESCRIPTOR CLASS – STORE ITEM
	Slide 42: DESCRIPTOR CLASS – AIRLINE FLIGHT
	Slide 43: ASSOCIATIONS
	Slide 44: ASSOCIATIONS
	Slide 45: ASSOCIATIONS
	Slide 46
	Slide 47: DOMAIN MODELS: ADDING ATTRIBUTES
	Slide 48: DOMAIN MODELS: ADDING ATTRIBUTES
	Slide 49: DERIVED ATTRIBUTE: EXAMPLE
	Slide 50: ATTRIBUTES VERSUS CLASSES
	Slide 51: DATA TYPE CLASSES
	Slide 52: DATA TYPE CLASS: EXAMPLE
	Slide 53: GUIDELINES FOR CREATING DATA TYPE CLASS
	Slide 54: NO FOREIGN KEYS
	Slide 55: DOMAIN MODEL REFINEMENT: GENERALIZATION
	Slide 56: REFINING DOMAIN MODELS: SUPER AND SUB CLASSES
	Slide 57: SUPER- AND SUB-CLASSES: WHEN TO CREATE
	Slide 58: EXAMPLE: PAYMENT SUB-CLASSES
	Slide 59: ASSOCIATION CLASSES
	Slide 60: ASSOCIATION CLASSES
	Slide 61
	Slide 62: AGGREGATION AND COMPOSITION
	Slide 63: EXAMPLES: AGGREGATION AND COMPOSITION
	Slide 64: AGGREGATION AND COMPOSITION
	Slide 65: EXAMPLES: COMPOSITION IN NEXTGEN POS
	Slide 66: ASSOCIATION ROLE NAMES
	Slide 67: OBJECT ORIENTED ANALYSIS AND DESIGN PART3: DESIGN
	Slide 68: UML DESIGN INTERACTION DIAGRAMS DESIGN- DYNAMIC VIEW
	Slide 69: WHAT WILL WE LEARN?
	Slide 70: UML INTERACTION DIAGRAMS
	Slide 71: UML SEQUENCE DIAGRAMS
	Slide 72: EXAMPLE: SEQUENCE DIAGRAM
	Slide 73: READING A SEQUENCE DIAGRAM
	Slide 74: INTERACTION DIAGRAMS ARE IMPORTANT
	Slide 75: SEQUENCE DIAGRAMS: LIFELINE BOX NOTATION
	Slide 76
	Slide 77: SEQUENCE DIAGRAMS: MESSAGES
	Slide 78
	Slide 79: SEQUENCE DIAGRAMS: SPECIFICS
	Slide 80: : Register
	Slide 81
	Slide 82: SEQUENCE DIAGRAMS:
	Slide 83
	Slide 84
	Slide 85: : Bar
	Slide 86
	Slide 87
	Slide 88: UML DESIGN CLASS DIAGRAMS DESIGN- STATIC VIEW
	Slide 89
	Slide 90
	Slide 91: LIS REQUIREMENTS AND USE CASES
	Slide 92: DOMAIN MODEL
	Slide 93: LOGIN USE CASE
	Slide 94: LIS UC.1 CHECKOUT DOCUMENT
	Slide 95: IDENTIFY CLASSES USED IN SEQUENCE
	Slide 96: CLASSES IDENTIFIED
	Slide 97: IDENTIFY METHODS
	Slide 98: FILL IN IDENTIFIED METHODS
	Slide 99: IDENTIFY ATTRIBUTES
	Slide 100: FILL IN ATTRIBUTES
	Slide 101: IDENTIFY RELATIONSHIPS
	Slide 102: FILL IN RELATIONSHIPS The dashed arrow lines denote uses or dependence relationships.
	Slide 103: FROM SEQUENCE DIAGRAM TO IMPLEMENTATION
	Slide 104: TEXTBOOK

