
UML & OBJECT ORIENTED ANALYSIS
AND DESIGN
Mehra Borazjany – Summer 2023
mehra@utdallas.edu

2

qPart 1: Introduction
qPart 2: Analysis
qPart 3: Design
qPart 4: Example

OBJECT ORIENTED ANALYSIS AND
DESIGN
PART1: Introduction

SOFTWARE ENGINEERING AND
COMPUTER SCIENCE

Computer Science
• Pursue optimal solutions
• $$$ is not an important

consideration
• Programming in the small
• Technical issues
• Dealing with tame problems

• Foundations of software
engineering

Software Engineering
• Good enough is enough
• $$$ is an important factor (PQCT)
• Programming in the large
• All issues and aspects
• Dealing with wicked problems
• Building on top of computer science

and other disciplines

Tame vs wicked problems: http://www.open.ac.uk/cpdtasters/gb052/index.htm

44

EXAMPLES OF TAME PROBLEM

Chess playing Math problems
Operations

research

Query
optimization

Compiler
construction

Operating
systems

Many computer science problems

AI problems

Why are these tame
problems?

5

EXAMPLES OF WICKED PROBLEM

Urban planning National policy making

Economic reforms Application software
development

Why are these
wicked problems?

6

CLASS DISCUSSION

• What are the focuses of computer science and software
engineering, respectively?

• Some authors say that software engineering is “programming in
the large.”What does this mean?

• What is the relationship between software engineering and
computer science? Can you have one without the other?

7

WHAT IS SOFTWARE ENGINEERING?

Software engineering as a discipline is focused on

• research, education, and application of engineering processes and
methods

• to significantly increase software productivity (P) and software quality (Q)
while reducing software costs (C) and time to market (T) – software
PQCT.

8

WHY SOFTWARE ENGINEERING?
To work together, the software engineers must overcome three

challenges, among others:

Communication CoordinationConceptualization
Solution:
• Processes and methodologies for analysis and design
• UML for communication and coordination
• Tools that automate or support methodology steps.

9

SOFTWARE LIFE CYCLE ACTIVITIES

Software processes and methodologies consist of life cycle activities:

Cost

Software
Development

Process

Software
Quality

Assurance

Software
Project

Management

Time to
MarketQualityProductivity

10

THE SOFTWARE PROCESS
Software Requirements Gathering

Software Requirements Analysis

Software Design

Coding & Unit Testing

Integration & Integration Testing

Acceptance Testing

Maintenance
11

OBJECT-ORIENTED SOFTWARE
ENGINEERING

• Object-oriented software engineering (OOSE) is a
specialization of software engineering.

• The object-oriented paradigm views the world and systems as
consisting of objects that relate and interact with each other.

• OOSE encompasses:
• OO processes
• OO methodologies
• OO modeling languages
• OO tools

12

SOFTWARE PARADIGM
• A software paradigm is a style of software development that

constitutes a way of viewing the reality.
• Examples:

• procedural paradigm
• OO paradigm, and
• data-oriented paradigm

13

PARADIGM AND METHODOLOGY

Structured Design

Object-Oriented AnalysisStructured Analysis

Object-Oriented Design

Data-Oriented Analysis

Procedural Paradigm OO Paradigm

Structured Programming Object-Oriented Programming

Data-Oriented Paradigm

Data-Oriented Design

Programming in
4GL (e.g., SQL)

Process
Orders

Books

Customers

orders

invoices

(w/books) credit status

Customer

Top Manager

BE

B E

A

CF

Top Decider

DG

GC F D

H

Class - 1
attrib 1
attrib 2

Class - 2
attrib 1
attrib 2

Class - 3
attrib x

Domain model

Student

Student

enroll

sn

sname

cn

cname

Obj : class b : Bclass

m1 () m2 () m3 ()

m4 ()m5 ()info

m6 () m7 () m8 ()

m9 ()m10 ()

Sequence diagram

14

CLASS DISCUSSION

• What are the benefits of OOSE?
• Will OOSE replace the conventional approaches, and why?

15

OBJECT ORIENTED ANALYSIS AND
DESIGN
PART2: Analysis

OBJECTS
• From Merriam-Webster:

“something material that may be perceived by the senses”
• Look around this room, and imagine having to explain to someone who has never taken a

class what happens here …
You would explain the activity that occurs, and you would identify specific objects that play a
role in that activity (Chairs, tables, projectors, students, professor, white board, etc.) to
someone who has never seen these things …
Each of these objects is well defined, and plays a separate role in the story. There may be
multiple copies of chairs, but a chair is very different from a projector – they have different
responsibilities
You would not describe the action by saying “The classroom allows students to sit, and the
classroom allows the professor to display slides, … “ etc. This would make the “classroom”
too complex – almost magical
You would define the various objects in this domain, and use them to tell the story and
describe the action

34

OOA/OOD

Analyze the system Model the system Design the software

35

ANALYSIS AND DESIGN:
Analysis is the investigation of the problem - what are we trying to do?

Here is where use cases are created and requirements analysis are done
Design is a conceptual solution that meets the requirements – how can we solve the
problem

Note: Design is not implementation
UML diagrams are not code (although some modeling software does allow code generation)

Object-oriented analysis: Investigate the problem, identify and describe the objects (or
concepts) in the problem domain

Also, define the domain!
Object-oriented design: Considering the results of the analysis, define the software
classes and how they relate to each other
Not every object in the problem domain corresponds to a class in the design model,
and viceversa
Where do we assign responsibilities to the objects? Probably a little in both parts

36

DOMAIN
MODELS

DOMAIN MODEL - INTRODUCTION
Very important model in OOA …
Illustrates the important concepts in the Domain, and will
inspire the design of some software objects
Also provides input to other artifacts

• Glossary
• Design Model (Sequence Diagrams)

38

UML
• “The Unified Modeling Language is a visual language for specifying, constructing,

and documenting the artifacts of systems.” - OMG, 2003
• The current version of the Unified Modeling Language™ is UML 2.5, released in

June 2015 [UML 2.5 Specification]. (https://www.uml-diagrams.org/)
• UML® specification (standard) is updated and managed by the Object Management

Group (OMG™) OMG UML.
• The first versions of UML were created by "Three Amigos”.

- Grady Booch (creator of Booch method)
- Ivar Jacobson (Object-Oriented Software Engineering, OOSE)
- Jim Rumbaugh (Object-Modeling Technique, OMT).

• UML is not a technique, it is a combination of several object-oriented notations:
+ Object-Oriented Design
+ Object Modeling Technique
+ Object-Oriented Software Engineering.

• UML uses the strengths of these three approaches to present a more consistent methodology
that's easier to use.

• Standard for diagramming notation.
• We will use UML to sketch out our systems
• UML can be used (by modeling packages) to auto-generate code directly from the

model diagrams

39

https://www.uml-diagrams.org/
https://www.uml-diagrams.org/references.html
https://www.uml-diagrams.org/

UML
• Different perspectives:

• Conceptual Perspective – defining the problem domain: Raw class diagrams, maybe mention
some attributes (Domain Model)

• Specification Perspective – defining the software classes: Design Class diagram, which shows the
actual software classes and their methods, attributes

• We will explore the details of UML diagramming
• For now, understand that UML is a language – it is used to communicate information
• We will use UML to describe the problem domain, describe the activities that occur,

and eventually describe the software classes
• Since it is a language, UML has specific rules, and we will see these later in the course
• You need to be able to read UML diagrams, as well as create them
• Here are some examples (we will learn more about how to create these diagrams later

…)

40

https://www.uml-diagrams.org/
https://www.uml-diagrams.org/class-diagrams-overview.html
https://www.uml-diagrams.org/class-diagrams-overview.html

UML- DOMAIN MODEL

Video

ID
Stocks4

Rents4

Rents-from 4

1
1..*

1 *1*

VideoStore

address
name
phoneNumber

Customer

address
name
phoneNumber

41

https://www.uml-diagrams.org/class-diagrams-overview.html#domain-model-diagram

https://www.uml-diagrams.org/class-diagrams-overview.html
https://www.uml-diagrams.org/class-diagrams-overview.html

UML ASSOCIATION

VideoVideoStore Stocks 4
*1

association name multiplicity

-"direction reading arrow"
-it has no meaning except to indicate direction of
 reading the association label
-optional

42

https://www.uml-diagrams.org/association.html??context=class-diagrams

UML MULTIPLICITY
zero or more;
"many"

one or more

one to forty

exactly five

T

T

T

T

*

1..*

1..40

5

T
3, 5, 8 exactly three,

five or eight

Customer

Video

Rents 6

*

One instance of a
Customer may be
renting zero or more
Videos.

One instance of a Video
may be being rented by
zero or one Customers.

0..1

43

https://www.uml-diagrams.org/multiplicity.html

UML DOMAIN MODEL
Video

...Rents4

Influenced-by 4

1

1..*

1 Loan Policy

...

Customer

...

Important association.
Need to remember.

Low value association.
Possible, but so what?

44

UML – CLASS AND FEATURES OF A CLASS

Payment

date : Date
time : Time
amount : Money

attributes

45

https://www.uml-diagrams.org/class.html

Catalog

VideoDescription

title
subjectCategory

VideoRental

dueDate
returnDate
returnTime

CashPayment

amount : Money

Video

ID
Stocks4

Rents4

Rents-from 4

Pays-for 4

Initiates 4

Owns-a 4

 Described-by 6

Membership

ID
startDate

1
1

1..*

1

1

1

1..*

1

1

*

1

1

1

*
1*

Pays-for-overdue-charges 4

RentalTransaction

date

LoanPolicy

perDayRentalCharge
perDayLateCharge

 Determines-rental-charge 4

1

Defines3

1..*

*

1..*

1

1

* *

VideoStore

address
name
phoneNumber

Customer

address
name
phoneNumber

1

1

1..*

Records-rental-of 6

0..1

1

Has 6 Maintains6

*

1

1

46

47

Register

Item

Store

address
name

Sale

date
time

Payment

amount

Sales
LineItem

quantity

Stocked-in

*

Houses

1..*

Contained-in

1..*

Records-sale-of

0..1

Paid-by

1

1

1

1

1

1

0..1

1

Captured-on 4

concept
or domain
object

association

attributes

This diagram shows an
example of a an early
Domain Model for the
Point Of Sale system.

DOMAIN MODEL: DEFINITION
The Domain Model can be thought of as a visual representation of
conceptual classes or real-situation objects in the domain (i.e. the real
world).
In UP, the term Domain Model means a representation of real-situation
conceptual classes, not software objects. The term does not mean a set
of diagrams describing software classes, the domain layer of the software
architecture, or software objects with responsibilities
Think of as a visual dictionary describing the domain: important
abstractions, domain vocabulary, and information content

48

49

Payment

amount

Sale

date
time

Pays-for

Payment

amount: Money

getBalance(): Money

Sale

date: Date
startTime: Time

getTotal(): Money
. . .

Pays-for

UP Domain Model
Stakeholder's view of the noteworthy concepts in the domain.

UP Design Model
The object-oriented developer has taken inspiration from the real world domain
in creating software classes.

Therefore, the representational gap between how stakeholders conceive the
domain, and its representation in software, has been lowered.

1 1

1 1

A Payment in the Domain Model
is a concept, but a Payment in
the Design Model is a software
class. They are not the same
thing, but the former inspired the
naming and definition of the
latter.

This reduces the representational
gap.

This is one of the big ideas in
object technology.

inspires
objects

and
names in

The difference between
domain model and
design model – UML
used in two different
ways.

CREATING DOMAIN MODELS

This is dependent upon which iteration cycle you are in, but in general there
are three steps:
1. Find the conceptual classes
2. Draw the classes as UML diagrams (conceptual level)
3. Add associations and attributes
Finding Conceptual Classes

Use or modify existing models – we will see some of these later
Use a category list
Identify noun phrases in the use cases

50

CATEGORY LISTS
• This is a list of common conceptual class categories,

generalized to apply to many situations
• Can be used as a starting point; look for these conceptual

classes in your domain
• Book has good list …
• Business transactions, transaction line items, where is the transaction recorded,

physical objects, catalogs, other collaborating systems, ..

• You can make a list of categories (or use a pre-existing list),
and after reviewing use cases and requirements, list all
conceptual classes you find that relate to a particular category

51

NOUN PHRASE IDENTIFICATION

• Look at a textual description of the domain, and identify all the
nouns and noun phrases
• Try not to do this mechanically – not all nouns are conceptual

classes!
• Good place to start is the fully dressed use case

• Go through the main success scenario, identify all important
nouns, use these to name conceptual classes

52

EXAMPLE: POS USE CASE
Main Success Scenario (cash only):
1. Customer arrives at POS checkout with goods and/or

services to purchases
2. Cashier starts new sale and enters item identifier
3. System records sale line item and presents item

description, price, and running total
(repeat 2-3 until no more items)

53

EXAMPLE: POS USE CASE
(IDENTIFY KEY NOUNS)

Main Success Scenario (cash only):
1. Customer arrives at POS checkout with goods and/or

services to purchases
2. Cashier starts new sale
3. Cashier enters item identifier
4. System records sale line item and presents item description,

price, and running total
(repeat 2-3 until no more items)

54

EXAMPLE – INITIAL DRAFT OF
DOMAIN MODEL FOR POS

StoreRegister SaleItem

Cash
Payment

Sales
LineItem Cashier Customer

Product
Catalog

Product
Description

Ledger

55

OBSERVATIONS

• This model will evolve as the project goes through iterations
• But aside from that, why save this model? Once it has served its

purpose, it can be discarded
• Once the more detailed class diagrams are created, there may not be a

need for this model
• It can be maintained in a UML CASE tool (there are many

available) such as starUML, draw.io,…

56

ATTRIBUTES AND CONCEPTUAL CLASSES

• Be careful not to turn conceptual classes into attributes
• If X cannot be thought of as a number or text, it is probably a conceptual

class
• For example, in the POS case study, the Store is not a number or

some text, so it should be modeled as a conceptual class (and
not an attribute of Sale, for example)

57

DESCRIPTOR CLASS – STORE ITEM
Item

description
price
serial number
itemID

ProductDescription

description
price
itemID

Item

serial number
Describes Better

Worse

1 *

58

DESCRIPTOR CLASS – AIRLINE
FLIGHT

Worse

Flight

date
time

FlightDescription

number

Airport

name

Describes-flights-to

Described-by

Flight

date
number
time

Airport

name
Flies-to

Better

1*

1*

1

*

59

ASSOCIATIONS

• An association is a relationship between classes that indicates a
meaningful and interesting connection.

• When to add an association between conceptual classes to the domain
model?
Ask “do we require some memory of the relationship between these classes?”
The knowledge of the relationship needs to be preserved for some duration
For example, we need to know that a SalesLineItem is associated with a Sale,
because otherwise we would not be able to do much with the Sale (like
compute the total amount, print receipt, etc.)
For the Monopoly example, the Square would not need to know the value of
the Dice roll that landed a piece on that square – these classes are probably
not associated

60

https://www.uml-diagrams.org/association.html?context=class-diagrams

ASSOCIATIONS
• Avoid adding too many associations

• A graph with n nodes can have (n x (n – 1)/2) associations, so 20 classes can
generate 190 associations!

• Realize that there may not be a direct association between software
classes in the class definition model just because there is an association
between conceptual classes in the domain model
• Associations in the domain model show that the relationship is meaningful in a

conceptual way
• But many of these relationships do become paths of navigation in the software

• Naming: Use ClassName – VerbPhrase – ClassName format
• Can add a small arrow to help explain the diagram to the reader

61

ASSOCIATIONS

SaleRegister Records-current 4
0..11

association name multiplicity

-"reading direction arrow"
-it has no meaning except to indicate direction of
 reading the association label
-often excluded

62

Register

ItemStore

Sale

CashPayment

Sales
LineItem

CashierCustomer

Product
Catalog

Product
Description

Stocks

*

Houses
1..*

Used-by
*

Contains
1..*

Describes

*

Captured-on

Contained-in
1..*

Records-sale-of

0..1

Paid-by Is-for

Logs-
completed

*

3 Works-on

1
1

1

1 1..*

1

1

1

1

1

1

1

0..1 1

1

Ledger

Records-
accounts-

for

1

1

NextGen POS – Domain Model with associations

63

DOMAIN MODELS: ADDING
ATTRIBUTES

Useful to add attributes to conceptual classes to satisfy an information requirement in a
scenario. Note that in this case the attribute is a logical data value of an object
Attributes are added to the bottom of the conceptual class box
Notation: visibility name : type multiplicity = default value {property-string}

Sale

- dateTime : Date
- / total : Money

Private visibility
attributes

Math

+ pi : Real = 3.14 {readOnly}

Public visibility readonly
attribute with initialization

Person

firstName
middleName : [0..1]
lastName

Optional value

64

DOMAIN MODELS: ADDING ATTRIBUTES

• Usually assume that the attribute is private, unless otherwise
noted

• Be careful about placing attribute requirements in the
Domain Model
• The Domain Model is generally used as a tool to understand the

system under development, and often any requirements that are
captured there may be overlooked

• Best to capture attribute requirements in a Glossary
• Can also use UML tools that can integrate a data dictionary

• Note in the previous example we use the symbol “/” to
indicate that an attribute is derived, i.e. computed.

65

DERIVED ATTRIBUTE: EXAMPLE
In this case, multiple instances of an item can be added to a SaleLineItem one at a time or as a
group. The quantity attribute can be computed directly from the multiplicity of the Items:

SalesLineItem ItemRecords-sale-of 10..1

SalesLineItem ItemRecords-sale-of 0..1 1..*

Each line item records a
separate item sale.
For example, 1 tofu package.

Each line item can record a
group of the same kind of items.
For example, 6 tofu packages.

SalesLineItem

/quantity

ItemRecords-sale-of 0..1 1..*

derived attribute from
the multiplicity value

66

ATTRIBUTES VERSUS CLASSES
Often attributes are primitive data types

Boolean, Date, Number, Char, String, Time, …
Do not make a complex domain concept an attribute – this should be a separate class.

Data types are things which can be compared by value; conceptual classes are usually
compared by identity
Person class versus name string

Flight

Flight

destination
Worse

Better
Flies-to Airport1 1

destination is a complex
concept

67

DATA TYPE CLASSES
• It is also possible to have more complex data types as attributes in the

Domain Model, and these are often modeled as classes
• For example, in the NextGen POS example, we may have an itemID

for each item; it is probably contained in the Item or
ProductDescription classes. It could be a number or a string, but it may
have more parts too

• In general, your analysis of the system will tell if the attributes are
simple or need more complexity
• For example, upon examining the detail of the itemID, we may discover that it is

made up of multiple parts, including a unique UPC, a manufacturer ID, a country
code, etc. This would be a good candidate for a separate class.

68

https://www.uml-diagrams.org/data-type.html

DATA TYPE CLASS: EXAMPLE

In the bottom example, itemID and address would need to be
described in the Glossary or someplace else in the Domain Model

OK

OK

Product
Description

Product
Description

itemId : ItemID

1 Store

Store

address : Address

11 1
ItemID

id
manufacturerCode
countryCode

Address

street1
street2
cityName
...

69

GUIDELINES FOR CREATING DATA
TYPE CLASS

• If the data type is composed of multiple sections, like name, phone
number, etc.

• There are operations associated with the data type, like parsing
• There are other attributes that are associated with it

• A promotionalPrice may have a startDate and an endDate.

• It represents a quantity with a unit, e.g. currency
• It is an abstraction with one or more types of the above
• Do not use a “foreign key” to associate two classes – use UML

associations, not attributes
• A simple attribute that is used to relate two classes – see next slide for an example

70

NO FOREIGN KEYS

Cashier

name
currentRegisterNumber

Cashier

name

Register

number
Works-on

Worse

Better

a "simple" attribute, but being
used as a foreign key to relate to
another object

1 1

71

Note: Classes do not represent tables in a relational database

https://www.ibm.com/docs/en/ida/9.1.1?topic=entities-primary-foreign-keys

DOMAIN MODEL REFINEMENT:
GENERALIZATION

Even though these are not software classes, this type of
modeling can lead to better software design later (inheritance,
etc.)
UML notation uses an open arrow to denote subclasses of a
conceptual class

73

Cash
Payment

Credit
Payment

Check
Payment

Payment

Cash
Payment

Credit
Payment

Check
Payment

Payment

https://www.uml-diagrams.org/generalization.html?context=class-diagrams

REFINING DOMAIN MODELS:
SUPER AND SUB CLASSES

Can think of the “sub-class as being a kind of super-class”
A Credit Payment is a kind of Payment
Often shortened to: A Credit Payment is a Payment

We can identify sub-classes by these two rules
The 100% - all the super-class definition applies to the sub-class
The “is a” rule – the sub-class is a kind of super-class

Any sub-class of a super-class must obey these rules

74

SUPER- AND SUB-CLASSES:
WHEN TO CREATE

75

Bad example:

Male
Customer

Female
Customer

Customer Correct subclasses.

But useful?

When would this make sense?
Market research model, where there are behaviors of male and female shoppers that are

different
Medical research, since men and women are different biologically

EXAMPLE: PAYMENT SUB-CLASSES

76

Cash
Payment

Credit
Payment

Check
Payment

Payment

amount : Money

Check

Identifies-credit-with Paid-with
*

each payment subclass is
handled differently

additional associations

superclass justified by common
attributes and associations

Sale
Pays-for

CreditCard

1

1

1 1

ASSOCIATION CLASSES
Often, the association between conceptual classes contains information
that needs to be captured in the model, but does not belong in either
class as an attribute

A salary may be an attribute of Employment, but it does not belong as an
attribute of the Person or Company classes

General rule: If class C can simultaneously have many values of attribute
A, then A should not be placed in C.
Could create a new conceptual class and associate it with the existing
classes, but this can add complexity to the model
Better way: Create a special class that represents the attributes of the
association

77

https://www.uml-diagrams.org/association.html?context=class-diagrams

ASSOCIATION CLASSES
In UML, an association may be considered a class, with attributes,
operations, and other features
Include this when the association itself has attributes associated with it

78

salary
startDate

Employment

EmploysCompany Person**

a person may have
employment with several
companies

class Company {
Set<Employment> employments;

}
class Employment{

Company company ;
Person person;
Date startDate;
Money Salary;

}
class Person{

Set<Employment> employments;
}

79

public Set<Person> getPersonnels () {
Set<Person> result = new HashSet<Person>();
for (Employment e: employments) {

result.add(e.getPerson());
}
return result;

}

providing a method in Company that returns all its personnels

AGGREGATION AND COMPOSITION
These are software class concepts that will be important later
Aggregation implies a container or collection of classes

In this case, if the container class is destroyed, the individual parts are not
Denoted in UML as an open diamond

Composition also implies a collection of classes, but with a stronger life
dependency

If the container class is destroyed, the individual component instances are
also destroyed
Denoted by a filled in diamond in UML

80

https://www.uml-diagrams.org/association.html

EXAMPLES: AGGREGATION AND
COMPOSITION

81

AGGREGATION AND
COMPOSITION

Usually not critical for domain models, but may be used to …
Clarify constraints in the Domain Model (e.g. existence of a class
depends on another class)
Help model situations when create/delete operations apply to many sub-
parts

82

EXAMPLES: COMPOSITION IN
NEXTGEN POS

83

SalesLineItemSale
1..*

Product
Description

Product
Catalog 1..*

1

1

ASSOCIATION ROLE NAMES
Occasionally a role name is
added to an association; this
name describes the role the
object plays in the association
Not required, often included if
there role is not clear
Should model the role as a
separate class if there are
unique attributes, associations,
etc. related to the role

84

Flight CityFlies-to* destination

role name

describes the role of a city in the
Flies-to association

Person

*
parent

Creates 4

2
child

1

“Reflexive
Association

”

OBJECT ORIENTED ANALYSIS AND
DESIGN
PART3: DESIGN

UML DESIGN
INTERACTION
DIAGRAMS
DESIGN- DYNAMIC VIEW

WHAT WILL WE LEARN?

UML Interaction Diagrams – What are they, how to create them

88

UML INTERACTION DIAGRAMS

• There are two types: Sequence and Communication diagrams
• We will first look at the notation used to represent these, and then later look

at important principles in OO design
• We’ll look at various examples here to learn how to create the diagrams

89

https://www.uml-diagrams.org/uml-25-diagrams.html
https://www.uml-diagrams.org/sequence-diagrams.html
https://www.uml-diagrams.org/communication-diagrams.html

UML SEQUENCE DIAGRAMS

• They often represent a series of method calls between objects in a system
• The sequence is represented in what is called “fence format”, and each new

object in the sequence is added to the right in the diagram
• Interactions between objects are usually method calls, but may also be

object creation/deletion
• Especially useful for message flow diagrams, with request-reply pairs
• https://sequencediagram.org/

90

https://www.uml-diagrams.org/sequence-diagrams.html

EXAMPLE: SEQUENCE DIAGRAM

91

: A myB : B

doTwo

doOne

doThree

public class A
{

private B myB = new B();

Public void doOne()
{

myB.doTwo();
myB.doThree();

}
}

READING A SEQUENCE DIAGRAM

• We would say “The message makePayment is sent to an instance of Register. The
Register instance sends the makePayment message to the Sale instance. The Sale
instance creates an instance of a Payment.” Here, “message” is a method call.

92

: Register : Sale

makePayment(cashTendered)

makePayment(cashTendered)

: Paymentcreate(cashTendered)

INTERACTION DIAGRAMS ARE
IMPORTANT

• Often left out in favor of class definition diagrams, but these diagrams are
important and should be done early

• They describe how the objects interact, and may give clues to the operations
and attributes needed in the class diagrams

• These diagrams are part of the Design Model artifact, and are started in the
Elaboration phase in Agile UP

93

SEQUENCE DIAGRAMS: LIFELINE
BOX NOTATION

94

• Basic notation for the entities that make up the sequence diagram –
they are called lifeline boxes and represent the participants in the
particular sequence being modeled

• Note that a participant does not need to be a software class, but it
usually is for our purposes

• The standard format for messages between participants is:
return = message(parameter: paramerType) : returnType

Type information is usually omitted, as are parameters

95

sales:
ArrayList<Sale>

:Sale s1 : Sale

lifeline box representing an
instance of an ArrayList class,
parameterized (templatized) to
hold Sale objects

lifeline box representing an
unnamed instance of class Sale

lifeline box representing a
named instance

sales[i] : Sale

lifeline box representing
one instance of class Sale,
selected from the sales
ArrayList <Sale> collection

x : List

«metaclass»
Font

lifeline box representing the class
Font, or more precisely, that Font is
an instance of class Class œ an
instance of a metaclass

related
example

List is an interface

in UML 1.x we could not use an
interface here, but in UML 2, this (or
an abstract class) is legal

SEQUENCE DIAGRAMS:
MESSAGES

96

• Messages are notated as solid arrows with filled in arrowheads
between lifelines
The lifelines are the dotted lines that extend below each participant box, and literally
show the lifespan of the participant

• The first message may come from an unspecified participant, and is
called a “found message”. It is indicated with a ball at the source

• Messages can be synchronous (sender waits until receiver as finished
processing the message, and then continues – blocking call) or
asynchronous (sender does not wait, more rare in OO designs)

• Dashed arrow is used to indicate return of control, e.g. after receipt of
synchronous message. May contain a value.

97

: Register : Sale

doA

doB

doX

doC

doD

typical sychronous message
shown with a filled-arrow line

a found message
whose sender will not
be specified

execution specification
bar indicates focus of
control

SEQUENCE DIAGRAMS:
SPECIFICS

98

• The execution specification bar or activation bar indicates that the
operation is on the call stack

• Usually replies to messages are indicated with a value or a dotted line
(see next slide)

• It is possible to have a message to “self” (or “this”)
• Sequence diagrams can also indicate instance creation (see later slide)
• Likewise, instances can be destroyed (indicated by “X” at the end of

lifeline)

99

: Register : Sale

d1 = getDate

getDate

doX

aDate

: Register

doX
clear

100

: Register : Sale

makePayment(cashTendered)
: Paymentcreate(cashTendered)

authorize

note that newly created
objects are placed at their
creation "height"

: Sale

: Paymentcreate(cashTendered)

...
the «destroy» stereotyped
message, with the large
X and short lifeline
indicates explicit object
destruction

«destroy» X

SEQUENCE DIAGRAMS:
SPECIFICS

101

Diagram frames may be used in sequence diagrams to show:
• Loops
• Conditional (optional) messages
• Nesting (a conditional loop)
• Relationships between diagrams

See next slides for examples

102

enterItem(itemID, quantity)

: B

endSale

a UML loop
frame, with a
boolean guard
expression description, total

makeNewSale

[more items]loop

: A

calculate

: Bar

yy

xx

[color = red]opt

: Foo

103

st = getSubtotal

lineItems[i] :
SalesLineItem

t = getTotal

[i < lineItems.size]loop

: Sale This lifeline box represents one
instance from a collection of many
SalesLineItem objects.

lineItems[i] is the expression to
select one element from the
collection of many
SalesLineItems; the ”i“ value
refers to the same —i“ in the guard
in the LOOP frame

an action box may contain arbitrary language
statements (in this case, incrementing ”i‘)

it is placed over the lifeline to which it applies

i++

104

calculate

: Bar

xx

[color = red]opt

: Foo

loop(n)

105

interaction occurrence

note it covers a set of lifelines

note that the sd frame it relates to
has the same lifelines: B and C

doA

: A : B : C

doB

sd AuthenticateUser

ref AuthenticateUserauthenticate(id)

doX
doM1

: B : C

authenticate(id)

doM2

ref DoFoo sd DoFoo

doX

: B : C

doY

doZ

106

:Register

authorize
doX

:Payment {abstract}

polymorphic message object in role of abstract
superclass

:DebitPayment

doA
authorize

:Foo

stop at this point œ don‘t show any
further details for this message

doB

:CreditPayment

doX
authorize

:Bar

Payment {abstract}

authorize() {abstract}
...

CreditPayment

authorize()
...

DebitPayment

authorize()
...

Payment is an abstract
superclass, with concrete
subclasses that implement the
polymorphic authorize operation

separate diagrams for each polymorphic concrete case

UML DESIGN
CLASS
DIAGRAMS
DESIGN- STATIC VIEW

108

java.awt::Font
or

java.awt.Font

plain : Int = 0 { readOnly }
bold : Int = 1 { readOnly }
name : String
style : Int = 0
...

getFont(name : String) : Font
getName() : String
...

«interface»
Runnable

run()

- ellipsis —…“ means there may be elements, but not shown
- a blank compartment officially means —unknown“ but as a
convention will be used to mean —no members“

SubclassFoo

...

run()
...

SuperclassFoo
or

SuperClassFoo { abstract }

- classOrStaticAttribute : Int
+ publicAttribute : String
- privateAttribute
assumedPrivateAttribute
isInitializedAttribute : Bool = true
aCollection : VeggieBurger [*]
attributeMayLegallyBeNull : String [0..1]
finalConstantAttribute : Int = 5 { readOnly }
/derivedAttribute

+ classOrStaticMethod()
+ publicMethod()
assumedPublicMethod()
- privateMethod()
protectedMethod()
~ packageVisibleMethod()
«constructor» SuperclassFoo(Long)
methodWithParms(parm1 : String, parm2 : Float)
methodReturnsSomething() : VeggieBurger
methodThrowsException() {exception IOException}
abstractMethod()
abstractMethod2() { abstract } // alternate
finalMethod() { leaf } // no override in subclass
synchronizedMethod() { guarded }

3 common
compartments

1. classifier name

2. attributes

3. operations

interface
implementation
and
subclassing

Fruit

...

...

PurchaseOrder

...

...

1

association with
multiplicities

dependency

officially in UML, the top format is
used to distinguish the package
name from the class name

unofficially, the second alternative
is common

order

an interface
shown with a
keyword

EXAMPLE:
LIBRARY INFORMATION SYSTEM
(LIS)
PART4: Example

LIS REQUIREMENTS AND USE
CASES

• R1. The LIS must allow a patron to check out documents.
• R2. The LIS must allow a patron to return documents.

• UC1. Checkout Document (Actor: Patron, System: LIS)
• UC2. Return Document (Actor : Patron, System: LIS)
• How about Allow a Patron? Is it a use case? Who is the actor? What is

the goal or business task for the actor? Does it start and end with an
actor?

110

111

DOMAIN MODEL

User

Document

Loan
uid : String

callNum : String
available : boolean

dueDate : Date

112

msg := verify (uid:String, password: Password) : String<<uid, pass-
word>>

LOGIN USE CASE

:LoginGui

User

:LoginController

<<msg>>

function callreturn value return typeparameter & type

LIS UC.1 CHECKOUT DOCUMENT
UC1 : Checkout Document
Precondition: Patron is already logged in
Actor: Patron System: LIS

0. The LIS displays the main menu.
1. Patron clicks the checkout Document
button on the main menu.

2.The system displays the checkout menu.

3. The Patron enters the call numbers of
documents to be checked out and clicks
the Submit button.

4. The system displays the document details
for confirmation.

5. The patron click the OK button to confirm
the checkout.

6. The system displays a confirmation
message to patron.

7. The patron clicks OK button on the
confirmation dialog.

113

114

IDENTIFY CLASSES USED IN SEQUENCE
DIAGRAMS

<<singleton>>
classes used.

:Checkout
GUI

<<uid,
cnList>>

:DBMgr

u:=get
User(uid):User

d:=get
Document(cn)

l:Loan

[a]create(u,d)
[a]save(l)

d:Document

[a]setAvailable(false)
[a]save(d)

:Checkout
Controller

msg:=check-
out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop
(for each cn in
cnList)

Identify objects that send or
receive messages, passed as
parameters or return type.

11-115

CLASSES IDENTIFIED

User

Document

Loan

CheckoutGUI

DBMgr

CheckoutController

116

IDENTIFY METHODS
:Checkout

GUI

<<uid,
cnList>>

:DBMgr

u:=get
User(uid):User

d:=get
Document(cn)

l:Loan

[a]create(u,d)
[a]save(l)

d:Document

[a]setAvailable(false)
[a]save(d)

:Checkout
Controller

msg:=check-
out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop
(for each cn in
cnList)methods of

CheckoutController

methods of
Document

117

FILL IN IDENTIFIED METHODS
User

Document

Loan

CheckoutGUI

DBMgr

getUser(uid)
getDocument(callNo)
saveLoan(loan)
saveDocument(book)

isAvailable() : boolean
setAvailable(a:boolean)

<<singleton>>

CheckoutController
checkout(uid,cnList)
process(cn:String[])

create(u:User, d:Document)

118

:Checkout
GUI

<<uid,
cnList>>

:DBMgr

u:=get
User(uid):User

d:=get
Document(cn)

l:Loan

[a]create(u,d)
[a]save(l)

d:Document

[a]setAvailable(false)
[a]save(d)

:Checkout
Controller

msg:=check-
out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop
(for each cn in
cnList)

IDENTIFY ATTRIBUTES

attribute of User

attribute value

attributes of
Document

119

FILL IN ATTRIBUTES

display(msg:String)
User

Document

Loan

CheckoutGUI

DBMgr

getUser(uid)
getDocument(callNo)
saveLoan(loan)
saveDocument(book)

isAvailable() : boolean
setAvailable(a:boolean)

<<singleton>>

CheckoutController
checkout(uid,cnList)
process(cn:String)

create(u:User, d:Document)

uid : String

callNum : String
isAvailable : boolean

dueDate : Date

from domain
model

120

IDENTIFY RELATIONSHIPS
:Checkout

GUI

<<uid,
cnList>>

:DBMgr

u:=get
User(uid):User

d:=get
Document(cn)

l:Loan

[a]create(u,d)
[a]save(l)

d:Document

[a]setAvailable(false)
[a]save(d)

:Checkout
Controller

msg:=check-
out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop
(for each cn in
cnList)

call relationship

association w/ an
association class.

CheckoutController and
DBMgr use User.

121

FILL IN RELATIONSHIPS

display(msg:String)

User

Document

Loan

CheckoutGUI

DBMgr

getUser(uid)
getDocument(callNo)
saveLoan(loan)
saveDocument(book)

isAvailable() : boolean
setAvailable(a:boolean)

<<singleton>>

CheckoutController
checkout(uid,cnList)
process(cn:String)

create(u:User, d:Document)

uid : String

callNum : String
available : boolean

dueDate : Date

The dashed arrow lines denote uses or
dependence relationships.

<<create>>

122

FROM SEQUENCE DIAGRAM TO
IMPLEMENTATION

:Checkout
GUI

<<uid,
cnList>>

:DBMgr

u:=get
User(uid):User

d:=get
Document(cn)

l:Loan

[a]create(u,d)
[a]save(l)

d:Document

[a]setAvailable(false)
[a]save(d)

:Checkout
Controller

msg:=check-
out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop
(for each cn in
cnList)

call relationship

association w/ an
association class.

CheckoutController and
DBMgr use User.

public class CheckoutController {
DBMgr dbm=new DBMgr ();
public void process(String[] cnList) {

for(int i=0; i<cnList.length; i++) {
Document

d=dbm.getDocument(cnList[i]);
if (d.isAvailable()) {

Loan l=new Loan(u, d);
dbm.saveLoan(l);

d.setAvailable(false);
dbm.saveDocument(d);

}
}

TEXTBOOK

• “Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development”, Craig Larman,
ISBN: 013 148 9062, Prentice-Hall, 2005

• “Object-Oriented Software Engineering: An Agile Unified
Methodology”, Kung D., ISBN: 978-0073376257, McGraw Hill,
2013

• And more..

123

