
UT Dallas

Introduction to 
Software Safety

Part 1 

Background, Introduction

How Software Contributes to Safety

and why we need to be concerned about it

1Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



▪ This is an introduction to the topic of software safety

▪ It is based on existing government and commercial
standards

▪ It is intended to explain:

– what software safety means,

– how software can contribute to safety problems, and

– what techniques are used to deal with safety-critical software

Software Safety

2Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Part 1 Agenda

3Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

▪ Background, Introduction

▪ How Software Contributes to Safety and 
why we need to be concerned about it.

▪ Exercise 1

▪ The Safety Process

▪ Exercise 2 (homework)

Part 2

▪ What we can Do About Software Safety



Part 1 Agenda

4Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

➢Background, Introduction

▪ How Software Contributes to Safety and why we need to 
be concerned about it.

▪ Exercise 1

▪ The Safety Process

▪ Exercise 2 (homework)



Why Be Concerned about Software Safety?

Can Software Harm Anyone?

Eeek!!!
It’s

Software!

5Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

Software by itself seems
pretty harmless …



So Why are Many Industries and Government 
Organizations Concerned about Software Safety?

▪ Air travel

▪ Military

▪ Power generation (especially nuclear)

▪ Transportation (including modern automobiles)

▪ Dam construction

▪ Medical Devices & Records

▪ …

All deal with potentially dangerous equipment that, more 
and more, requires complex software to function

6Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Software Involvement in Modern Aircraft

▪ About 1/3 of the development cost of a modern 
aircraft is for software

▪ Over 80% of the functions (by count) are performed 
in software

▪ Many cases of “pilot error” involve software
assistance

7Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Errors that Brought Down the Boeing 737 Max

8Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Some Key Findings

9Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

▪ Boeing rushed the 737 Max to market as quickly as possible.

▪ Boeing cut corners.

– Pilots would only need a 2.5-hour iPad training to fly the plane

▪ MCAS is the new software system blamed for the deadly Lion 
Air and Ethiopian Airlines crashes.

– But its failure … was the result of Boeing and the FAA’s reluctance 
to properly inform pilots … or to regulate it for safety.

▪ The FAA has admitted to being incompetent when 
regulating software

– Nowhere in its amended certification of the 737 Max is MCAS
mentioned.

https://www.theverge.com/2019/5/2/18518176/boeing-737- 
max-crash-problems-human-error-mcas-faa

http://www.theverge.com/2019/5/2/18518176/boeing-737-


US Air Force Aircraft Software Dependence

F-4 A-7

F-111

F-15

F-16

B-2

F-22

0

10

20

30

40

60

50

70

80

90

1960 1964 1970 1975 1982 1990 2000
DoD Defense Science Board Task Force on Defense Software, November 

2000

10Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Some Software Functions are 
Very Sophisticated

Appropriate Center of Gravity control in fuel 
system can increase fatigue life of wings

11Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Software Involvement in Modern 
Automobiles

About 25% of the 
capital cost of a new 

car is electronics 
(software, 

microprocessors, 
etc.)

12Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



13Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Software Involvement in Modern 
Medical Equipment

Medical equipment is highly computerized and 
highly dependent on sophisticated software

14Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Robotics in Medicine - Today

15

Computer Aided Surgery is expected to become common 
in many medical facilities due to its:

▪ low invasiveness,

▪ lower hand vibration and

▪ highly accurate positioning

➢Reducing physical burdens on the patient

15Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



da Vinci Surgical System

➢ More than 2700 
installations

➢da Vinci Surgery is used
today for:

✓Cardiac Surgery

✓Colorectal Surgery

✓General Surgery

✓Gynecologic Surgery

✓Head & Neck Surgery

✓Thoracic Surgery

✓Urologic Surgery

6/28/2024

Copyright 2016-2024, Dennis J. Frailey

16

Software Safety – Part I 16



Robotics in Medicine - Future

6/28/2024

Copyright 2016-2024, Dennis J. Frailey

17

Software Safety – Part I 17

Robotics will have a great potential to allow patients, 
elderly, and pregnant to undertake

Tele-[checkup, diagnosis, therapy]

➢beyond hospital, region, country, and even continent

Tele-echography robot, will be applicable to
critical care in long-travel ships and aircraft



Who Develops All of This Software?

Software Engineers!

18Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



What’s Different from
Normal Software Development?

▪ It’s very important for the software to operate correctly

▪ Or, at the very least, in a way that doesn’t result in harm

➢ All the Time!

➢ Under Usual and Unexpected 
Circumstances

➢ Under Conditions of 
Operator Error

➢ Under Conditions of
Hardware Error

19Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



So What’s Different about Safety Critical
Software Development?

Much more rigorous development practices

20Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

https://www.google.com/url?sa=i&rct=j&q&esrc=s&source=images&cd&cad=rja&uact=8&ved=0ahUKEwiZmNCEvf_TAhUO_mMKHUYiBAIQjRwIBw&url=https%3A//www.slideshare.net/kosHorvth2/software-development-for-safety-critical-systems&psig=AFQjCNHg8d9Z_RHP4g8fzdGordQf4-DLlQ&ust=1495404110815430


Characteristics of Safety Critical Projects

21Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

▪ Intense focus on identifying ways the system can fail 
and how to prevent that

▪ Rigorous development process, from requirements
through all phases of product development

▪ Independent audits of each development step to
assure that nothing was done incorrectly

▪ Rigorous safety standards that must be met



But That’s Not Enough

22Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

You Also Need to Think Differently
About What You Are Doing



Thinking at the System Level 
instead of at the module level

23Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Software Often Replaces Hardware 
and People

Many software tasks were once done in hardware.

➢ And some of those were once done by people

In many cases, 
software today 

performs functions 
that are too 

dangerous, too 
quick, or too 

complex for humans 
to perform.

24Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Therac 25 - a radiation therapy machine produced 

by Atomic Energy of Canada Limited (AECL) in 1982

25Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Therac-25 Safety Problems
courtesy of Wikipedia

26Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

[Therac-25] was involved in at least six accidents between 
1985 and 1987

➢ in which patients were given massive overdoses of 
radiation

Because of concurrent programming errors

it sometimes gave its patients 

radiation doses that were

hundreds of times greater than normal,

resulting in death or serious injury



Diagnosis of Therac-25 Failure1

27Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

A commission concluded that the primary reason was the 
bad software design and development practices

➢ and not explicitly to several coding errors that were 
found.

In particular, the software was designed so that it was 
realistically impossible to test it in a clean, automated 

way.

1 Leveson, Nancy, University of Washington (1995). "Medical Devices: The Therac-25 
Accidents" (PDF). Safeware: System Safety, and Computers (Update of the 1993 IEEE

Computer article ed.). Addison-Wesley.



Part 1 Agenda

28Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

▪ Background, Introduction

➢ How Software Contributes to 
Safety and why we need to 
be concerned about it.

▪ Exercise 1

▪ The Safety Process

▪ Exercise 2 (homework)



Ways that Software can Harm Someone

29Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

▪ It can Control the 
Behavior of 
Dangerous Devices

– Robots

– Weapons

– Security Doors at
Building entry

– Medical Devices

– Chemical
Experiments

– Factory
Manufacturing Lines

– …

▪ It can Send Information 
to People who do 
Potentially Dangerous 
Things

– Location of Airplanes for Air 
Traffic Control

– Identification of Intruders

– …

▪ It can Deceive

– Internet scams

▪ And on and on …



What is “Safe” Software?

30Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

Software is “safe” if …

– It has features and procedures that ensure it performs
predictably under normal and abnormal conditions

– The likelihood of an undesirable event occurring in that
software is minimized

– If an undesirable event does occur, the consequences are 
controlled and contained

Per D. Herrman, Software Safety and Reliability



Key Concepts

▪ No software-based, safety critical system is 100% “safe”

– It is not possible to test all possible conditions or prove that it will 
never fail under any circumstances

– Instead, safety experts ask two questions:

▪ “How likely is the software to fail?”

▪ “If it fails, how severe will the consequences be?”

▪ Software safety can only be evaluated within the context 
of the system the software is part of

– Including the people who interact with the system

Goal: very low

31Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Some Existing Software Safety Standards

32Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

Aerospace Systems – SAE AS9006A 

Aircraft – RTCA DO-178C

Automobiles – BS ISO 26262; SAE JA 1002

Information Technology Equipment – IEC 60950-1

Medical Devices - ANSI/AAMI/ISO 14971; ANSI/AAMI/IEC 62366; FDA 21
CFR 820.70; IEC 62304; ISO 13485; MDD (European Council Directive
93/42/EEC)

NASA – STD-8719.13C

Nuclear Power – ANSI/IEEE 7-4.3.2; IEC 60880

Programmable Electronic Systems – IEC 61508; ANSI/UL 1998 

Railway Systems - BS EN 50128

US Military Applications – MIL-STD-882E



What These Standards Typically Specify

33Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

▪ Processes and procedures to be followed when 
developing safety-critical software

– Development Practices

– Documentation

– Verification and Validation

– Etc.

▪ Risk Management processes and procedures

– Including risk control, analysis, mitigation and abatement

– Both top down (functional) and bottom up (code/design)

– Risk classification classes or categories

▪ Processes and procedures for other situations

– Often specific to the application



Coordination Among Standards

▪ There is some coordination among these standards

– But applications differ so much that there are often major differences

– And even within an application domain, there may be many standards 
that are not necessarily well coordinated

he US and Europe

Marioff.com

▪ Sometimes it is difficult to navigate through all the 
applicable standards

– Example: a medical data base for use in t

▪ International safety standards

▪ International medical safety standards

▪ European safety standards

▪ European medical device standards

▪ US safety standards
Incompliancemag.com

34Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Software Safety Starts with System Safety

▪ Software is always part of a system

– A data base

– A network

– A vehicle

– …

▪ If the system can harm someone, then the 
software may be a factor in whether the system 
harms someone

▪ So we have to start by analyzing the safety 
issues of the system

35Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Basic Terminology
(Military; Nuclear Power)

Mil-STD
882E

▪ Hazard – Any real or potential condition that can cause 
injury, illness, or death [to a person] or damage to … or 
loss of … [property or the environment]

▪ Mishap – An unplanned event or series of events
resulting in death, injury, …

➢ Safety – Freedom from … conditions that can cause
injury, illness, …

I.e., get rid of the hazards
so mishaps don’t result in harm

36Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



In Other Words …

37Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

A Hazard is what might 
result in something going 

wrong

A Mishap is an accident 
that might cause it to go 

wrong



A Hazard is an 
accident waiting 

to happen

A Mishap is the accident

38Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

www.boredpanda.com

http://www.boredpanda.com/


Hazards and Mishaps

39Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

Hazard

▪ Parent leaves medicine on 
counter

▪ Shrubbery hides stop sign

▪ Smart phones with texting
capability in a car

▪ Water spilled on floor and 
not cleaned up

Mishap

▪ Child sees medicine and 
ingests it

▪ Car fails to stop and hits
another car

▪ Driver texts and gets into a
serious accident

▪ Someone slips on the water 
and breaks an arm



Notes about Hazards and Mishaps

▪ Nobody intended to cause injury or harm

▪ The mishap was normal behavior under some 
circumstances

➢ The hazard was 
what turned normal 
behavior into a 
harmful event

40Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



More Complex Example

▪ Hazard: the power plant might catch fire because of
unsafe design or operation

▪ Mishap:

➢ an incorrect temperature reading may cause

➢ a heater to go on, resulting in

➢ overheating of a chemical mixture, leading to

➢ a chemical reaction, producing

➢ excessive pressure, causing

➢ an explosion in the fuel storage area, producing

➢ a major fire in the power plant

41Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Basic Terminology
(Aircraft Safety)

42Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

Failure – The inability of a system … to perform a
required function within specified limits.

➢ Catastrophic – … would prevent continued safe flight and
landing

➢ Hazardous - … would reduce the capability of an aircraft or
the ability of the crew to cope with adverse operating
conditions … potentially fatal injuries

➢Major - … significant discomfort or injuries

➢Minor - … inconvenience

DO-178C



Basic Safety Concepts 
NASA

43Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

▪ Process safety requirements

– The way you develop software

– The inspections and evaluations and tests you perform 
along the way

▪ Technical safety requirements

– Specific techniques for software design and development
when the software is safety critical

NASA- 
STD- 

8719.13C



Part 1 Agenda

44Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

▪ Background, Introduction

▪ How Software Contributes to Safety and 
why we need to be concerned about it.

➢Exercise 1

▪ The Safety Process

▪ Exercise 2 (homework)



Exercise 1

45Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

▪ Each student is assigned a scenario

– These scenarios all relate to the Covid-19 virus

▪ Identify up to three ways in which software might 
contribute to a safety hazard. For each, identify:

– The hazard and how software creates that hazard

– A mishap that might cause a safety problem

▪ Report to the group, after the break

Time: 20 minutes (10 for break, 10 for exercise)

(When we resume in 20 minutes, each student will present 
his or her results)



Break / Exercise 1

46Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

20 minutes



Students Present Exercise Results

47Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Part 1 Agenda

48Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

▪ Background, Introduction

▪ How Software Contributes to Safety and
why we need to be concerned about it.

▪ Exercise 1

➢The Safety Process

▪ Exercise 2 (homework)



The Safety Process
(varies somewhat with different standards)

Determine 
System 
Hazards 
(Hazard 

Analysis)

Identify 
Potential 

Mishaps & 
Safety Critical 
Components

Determine 
Probability or 

Level of Control 
(for each 

component)

Take 
Appropriate 
Steps During 
Development 

& Testing

S
y
s
te

m
 

A
n

a
ly

s
is

49Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

C
o
m

p
o
n

e
n

t 
A

n
a
ly

s
is



Basic System Safety Process in 
More Detail

50Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

1. Identify the potential hazards

2. Decompose hazard threads (potential mishaps) 

through subsystem components, including software

3. Link/trace to requirements

4. Generate appropriate mitigation strategy

5. Implement the mitigation

6. Verify that the mitigation is implemented and that it 

functions as expected

7. Document safety artifacts



Hazard Analysis Approaches

Traditional - treat it as a 
reliability issue

▪ Identify the components 
that may fail and contribute 
to a hazard

▪ Use various approaches to 
make the failures less likely 
or less harmful

▪ Much of the analysis occurs 
during or after the design 
step

Emerging - treat it as a 
system control issue

▪ Identify the ways the 
system may fail and 
contribute to a hazard

▪ Create system 
requirements and 
constraints that forbid 
these conditions

▪ The analysis occurs before
the design is started

Safety Engineering requires that we do both!

51Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



The Traditional Approach

52Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

Software is a Component of a System

Make Component Failure Less Likely or Less Harmful

[develop very high quality software]



Determine 
System 
Hazards 
(Hazard 

Analysis)

Identify 
Potential 

Mishaps & 
Safety Critical 
Components

Determine 
Probability or 

Level of Control 
(for each 

component)

Take 
Appropriate 
Steps During 

Development & 
Testing

53Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



System Level Hazard Analysis

54Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

FMEA – Failure Mode and Effects Analysis

– A reliability engineering technique to identify:

▪ Modes of failure

▪ Causes of those failures

▪ Effects of those failures

– Can be focused on:

▪ The functionality of the product

▪ The design of the product

▪ The process used to develop or produce the product

FMECA – Failure Mode, Effects and Criticality Analysis

– Extends FMEA to include criticality analysis (how severe is 
the potential failure)

Determine 
System 
Hazards 
(Hazard 

Analysis)



An FMEA Technique

Fault Tree Concept

Hazard

Potential 
Cause of 
Hazard

Potential 
Cause of 
Hazard

Potential 
Cause of 
Hazard

Contributor 
to Potential 

Cause

Contributor 
to Potential 

Cause

Contributor 
to Potential 

Cause

Contributor 
to Potential 

Cause

Contributor 
to Potential 

Cause

Contributor 
to Potential 

Cause

Contributor 
to Potential 

Cause

Contributor 
to Potential 

Cause

Contributor 
to Potential 

Cause

Keep going down into more detailed causes until you
reach a point where you can do something about it.

55Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Fault Tree Example

Wrong Treatment 
Administered to 

Patient

Vital signs 
reported 

erroneously as 
exceeding 

limits

Vital signs 
exceed limits but 
not corrected in 

time

Computer 
fails to 
raise 
alarm

Nurse 
does not 
respond 
to alarm

Sensor 
Failure

Frequency of 
measurement 

is too low

56Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



An Example of a 
System Level Hazard List

▪ Uncontrolled explosion

▪ Uncontrolled fire

▪ Injury and/or illness

▪ Blockage of ingress/egress
paths

▪ Structural failure

▪ Collision

▪ Uncontrolled activation of 
ordinance

▪ Electromagnetic interference

▪ Hazardous/reactive materials

▪ Electrical energy

▪ Improper engagement control 
(Fratricide)

▪ Surface/air contamination

▪ Corrosion resulting in loss of 
strength or integrity of exposed 
surfaces

▪ Batteries (exposure to toxic
material, explosion)

▪ Radiation (ionizing and non-
ionizing)

▪ Uncontrolled/unsupervised 
robotic operations

Hazard

57Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Determine 
System 
Hazards 
(Hazard 

Analysis)

Identify 
Potential 

Mishaps & 
Safety Critical 
Components

Determine 
Probability or 

Level of Control 
(for each 

component)

Take 
Appropriate 
Steps During 

Development & 
Testing

58Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



A Safety Critical Component is …

… a component that might
contribute to a hazard if it fails

➢ Note that in most hazardous 
systems there are many 
components that can 
contribute to a safety hazard

➢ Some components may be 
software

Identify 
Safety Critical 
Components

59Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Software is often used to replace
mechanical or human controls.

When software controls something
it is often potentially safety critical.

But that’s not the only way
software can be safety critical.

60Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Some Software Functions that 
May be Safety Critical (1 of 2)

▪ Assessment of overall system health, such as:

▪ power-up and run-time monitors,

▪ “heartbeats”,

▪ program memory CRCs,

▪ range checks,

▪ CPU health assessments

▪ Enforcement of critical timing

▪ Exception trapping and handling including, failure /malfunction
detection, isolation, and containment

▪ Functions that execute the system’s response to detected 
failures/malfunctions

Potential 
Cause of 
Hazard

61Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Some Software Functions that May 
be Safety Critical (2 of 2)

▪ Functions that enhance the system’s survivability 
(preservation of core functionality)

▪ Data quarantine/sanitization

▪ Range and reasonableness (sanity) checking

▪ Tamper proofing and cyber-attack proofing

▪ Authentication for lethal actions

▪ Inhibiting functions and interlocks

Potential 
Cause of 
Hazard

62Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Example:
Software Contribution to a Mishap (1/6)

Example SW 
Contribution

Symptom
Example Potential 

Cause

Incorrect
Safety-Critical 
Alerts and 
Warnings.

Safety Critical alerts 
are incorrect, or are 
not triggered by Safety 
Critical Events. Alerts 
fail to warn the user of 
an unsafe condition, 
and or an Unsafe 
System State.

Software fails to alert 
the operator to unsafe 
condition and/or 
state. Alerts can be 
audio, visual, or in 
text format in a log, 
etc..

False Alarm 

or

No Alarm when Needed

63Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Example:
Software Contribution to a Mishap (2/6)

Example SW 
Contribution

Symptom
Example Potential 

Cause

Incorrect 
Data Transfer 
Messages 
(transmit and 
receive).

Data transferred in the 
wrong format and the 
Safety Critical Data are 
interpreted incorrectly.

Failure to validate 
data transfer with the 
appropriate parity, 
check sums to validate 
Safety Critical data.

Tornado
Warning!

To do
Waning

64Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Example:
Software Contribution to a Mishap (3/6)

Example SW 
Contribution

Symptom
Example Potential 

Cause

Data Storage 
Failures 
(Safety 
Critical Data 
corrupted 
and/or lost)

Safety-Critical 
Displays are 
confusing, and/or 
incorrect in 
presenting Safety 
Critical Data.

Safety critical data were 
not properly check- 
summed; data 
overwritten by mistake

65Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Example:
Software Contribution to a Mishap (4/6)

Example SW 
Contribution

Symptom
Example Potential 

Cause

Incorrect 
data transfer 
between 
processors

Incorrect message
received

Failure to perform 
verification checks in both 
processors prior to 
transferring Safety 
Critical data.

Must 
increase 
pressure 
to 200

Must 
increase 
pressure 
to 2000

66Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Example:
Software Contribution to a Mishap (5/6)

Example SW 
Contribution

Description
Example Potential 

Cause

Timing and 
Interrupt 
failures

Interrupts occur at the 
wrong time and 
potentially interrupt a 
Safety Critical process, 
or introduce a potential 
hazard.

Interrupts are out of 
synch with system 
time, and/or 
interrupt a Safety 
Critical Process/Path 
which introduces a 
potential hazard.

67Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Example:
Software Contribution to a Mishap (5/6)

Example SW 
Contribution

Description
Example Potential 

Cause

Incorrect
Modes

Software signals the 
system to fire a weapon 
when it should not.

Switch from training 
to “live” mode is not 
correctly reflected in 
the “mode” variable.

68Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



The Most Common Source of 
Software Safety Problems

69Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

Requirements not stated or 
communicated correctly

(approximately 70% of test failures)

▪ Software is “correct” according to how the 
software developers understood the 
requirements

▪ But the requirements were wrong

▪ Or they were misunderstood

▪ Or they changed



But This is True for Almost All Software!

▪ Getting requirements right is difficult

– It is hard to understand large, complex systems

– Some requirements are derived from design decisions

▪ Requirements tend to change over time

▪ Errors often occur at organizational boundaries

ww.tonex.com

70Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Requirements Flow Across 
Organizational Boundaries

▪ Customer

Requirements in Customer’s Terminology

▪ Systems Analyst or Systems Engineer

Requirements in Systems Terminology

▪ Software Analyst

Requirements in Software Terminology

▪ Software Engineer/Developer/Coder

71Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Why Errors Happen at 
Organizational Boundaries

Different cultures/organizations/vocabularies

➢ Misinterpretations (“it is obvious that …”)

It must 
check the 

water 
level

Once per 
second 

should be 
fine

Obviously I 
mean once 

per 
millisecond

72Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



NASA Study of Requirements Errors

73Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

85% of requirements errors arose at

organizational boundaries

▪ Software engineers often did not understand 
things the system designers thought were obvious

– Physics issues

– Timing issues

– Complex mathematical and statistical issues

▪ Requirements would change

– Without suitable assessment of consequences

– Without communication to software developers



The Second Most Common Sources 
of Software Safety Problems

74Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

Design and coding errors

▪ Usually resulting from poor code structure that makes it
hard to understand

▪ Sometimes resulting from requirements that are hard to 
implement in code

➢ Example: “no single point of failure”

▪ Timing errors, syntax errors, algorithm errors, display 
errors, lack of self-tests, poor error handling, and many 
others can cause safety hazards

▪ Bugs don’t necessarily map to failures

▪ Many bugs have only minor impact or are easily recovered from

▪ Some bugs can have catastrophic impact



Underlying Causes of Many 
Software Safety Problems

75Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

▪ Change control process

– Changes introduce unanticipated errors

– Change control process not followed correctly

▪ Testing process

– Safety-related testing is not performed or not performed
thoroughly

▪ Hardware failures

– Hardware fails due to overheating, logic errors, power
transients, radiation, magnetic fields, etc.

– Hardware not designed to inform software of a failure

– Software not designed to respond properly to hardware
failures



Part 1 Agenda

76Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

▪ Background, Introduction

▪ How Software Contributes to Safety and why we need to 
be concerned about it.

▪ Exercise 1

▪ The Safety Process

➢Exercise 2



Exercise 2 (safety research)

77Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

▪ Each person will be assigned a specific safety topic

▪ Research the topic (web / UTD library)

▪ Prepare a brief, introductory presentation

▪ Give the presentation at the next session (10 minutes)

▪ Goal of presentation: give the other students a good idea 
of some of the software related safety issues associated 
with your specific safety topic



UT Dallas – Software Safety:

Sample Student

Research, Practice and a Path 
Forward

Summer, 2024

Child Safety

E X A M P L E

Your Name

Your Safety Topic

78Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



About Me

My name is Sample Student

I’m from Hill and Dale College
in Muskegon, Michigan

My college major is computer 
science

Here is my family

I’m the one in
the middle

79Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



About Child Safety

80Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

▪ Batteries

▪ Bicycles

▪ Water/Boating

▪ Booster Seats

▪ Burns and Scalds

▪ Car Seats

▪ Carbon Monoxide

▪ Choking and Strangulation

▪ Driveway Safety

▪ Falls Apply Falls filter

▪ Fire Apply Fire filter

▪ Fireworks

▪ Getting Ready to Drive

▪ Guns

▪ Halloween

▪ Heatstroke

▪ Holidays

▪ In and Around Cars

▪ Laundry Packets

▪ Cars

▪ Toys

▪ Furniture tip overs

▪ And many, many more

There are many potential hazards for children



Software in Child Safety

▪ Baby monitors

▪ Carbon monoxide
detectors

▪ Smoke detectors

▪ Car rear view mirrors

▪ Sports equipment (e.g.,
concussion monitors)

▪ Cars

▪ Toys

▪ Televisions

Software may be found in many child care 
and child safety devices, such as:

Although software 
seldom directly 
controls safety 

critical functions, 
it is often used in 

warnings and 
must be designed 
to work correctly, 
even in the event 

of device 
malfunction.

81Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



Some Specific Software Issues 
Encountered in Child Safety Devices

82Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I

▪ Proper response to power failures

▪ Protection from intrusion by network hackers

– For devices connected to the internet such as baby monitors

▪ Detection of hardware damage (for example, child spills 
juice onto an electronic monitor in his or her car seat)

▪ Operator error should be very uncommon

– Devices should be very easy to use and hard to misuse (because 
the users are typically not very knowledgeable about computers)

▪ Do it right the first time

– Parents are unlikely to update software in their baby’s toys,
monitors, etc.



Any Questions?

83Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I



End of 

Part I

84Copyright 2016-2024, Dennis J. Frailey Software Safety – Part I


	Slide 1: UT Dallas
	Slide 2: Software Safety
	Slide 3: Part 1 Agenda
	Slide 4: Part 1 Agenda
	Slide 5: Why Be Concerned about Software Safety?
	Slide 6: So Why are Many Industries and Government Organizations Concerned about Software Safety?
	Slide 7: Software Involvement in Modern Aircraft
	Slide 8: Errors that Brought Down the Boeing 737 Max
	Slide 9: Some Key Findings
	Slide 10: US Air Force Aircraft Software Dependence
	Slide 11
	Slide 12: Software Involvement in Modern Automobiles
	Slide 13
	Slide 14: Software Involvement in Modern Medical Equipment
	Slide 15: Robotics in Medicine - Today
	Slide 16: da Vinci Surgical System
	Slide 17: Robotics in Medicine - Future
	Slide 18: Who Develops All of This Software?
	Slide 19: What’s Different from Normal Software Development?
	Slide 20: So What’s Different about Safety Critical Software Development?
	Slide 21: Characteristics of Safety Critical Projects
	Slide 22: But That’s Not Enough
	Slide 23: Thinking at the System Level instead of at the module level
	Slide 24: Software Often Replaces Hardware and People
	Slide 25: Therac 25 - a radiation therapy machine produced by Atomic Energy of Canada Limited (AECL) in 1982
	Slide 26: Therac-25 Safety Problems courtesy of Wikipedia
	Slide 27: Diagnosis of Therac-25 Failure1
	Slide 28: Part 1 Agenda
	Slide 29: Ways that Software can Harm Someone
	Slide 30: What is “Safe” Software?
	Slide 31: Key Concepts
	Slide 32: Some Existing Software Safety Standards
	Slide 33: What These Standards Typically Specify
	Slide 34: Coordination Among Standards
	Slide 35: Software Safety Starts with System Safety
	Slide 36: Basic Terminology (Military; Nuclear Power)
	Slide 37: In Other Words …
	Slide 38: A Hazard is an accident waiting to happen
	Slide 39: Hazards and Mishaps
	Slide 40: Notes about Hazards and Mishaps
	Slide 41: More Complex Example
	Slide 42: Basic Terminology (Aircraft Safety)
	Slide 43: Basic Safety Concepts NASA
	Slide 44: Part 1 Agenda
	Slide 45: Exercise 1
	Slide 46
	Slide 47: Students Present Exercise Results
	Slide 48: Part 1 Agenda
	Slide 49: The Safety Process (varies somewhat with different standards)
	Slide 50: Basic System Safety Process in More Detail
	Slide 51: Hazard Analysis Approaches
	Slide 52: The Traditional Approach
	Slide 53: Identify Potential Mishaps & Safety Critical Components
	Slide 54: System Level Hazard Analysis
	Slide 55: Fault Tree Concept
	Slide 56: Fault Tree Example
	Slide 57: An Example of a System Level Hazard List
	Slide 58: Identify Potential Mishaps & Safety Critical Components
	Slide 59: A Safety Critical Component is …
	Slide 60
	Slide 61: Some Software Functions that May be Safety Critical (1 of 2)
	Slide 62: Some Software Functions that May be Safety Critical (2 of 2)
	Slide 63: Example: Software Contribution to a Mishap (1/6)
	Slide 64: Example: Software Contribution to a Mishap (2/6)
	Slide 65: Example: Software Contribution to a Mishap (3/6)
	Slide 66: Example: Software Contribution to a Mishap (4/6)
	Slide 67: Example: Software Contribution to a Mishap (5/6)
	Slide 68: Example: Software Contribution to a Mishap (5/6)
	Slide 69: The Most Common Source of Software Safety Problems
	Slide 70: But This is True for Almost All Software!
	Slide 71: Requirements Flow Across Organizational Boundaries
	Slide 72: Why Errors Happen at Organizational Boundaries
	Slide 73: NASA Study of Requirements Errors
	Slide 74: The Second Most Common Sources of Software Safety Problems
	Slide 75: Underlying Causes of Many Software Safety Problems
	Slide 76: Part 1 Agenda
	Slide 77: Exercise 2 (safety research)
	Slide 78: UT Dallas – Software Safety:
	Slide 79: About Me
	Slide 80: About Child Safety
	Slide 81: Software in Child Safety
	Slide 82: Some Specific Software Issues Encountered in Child Safety Devices
	Slide 83: Any Questions?
	Slide 84: End of Part I

