Cyber-Physical Systems Security

Alvaro A. Cárdenas Department of Computer Science University of Texas at Dallas

Modernization of our Physical Infrastructures

Physical Systems are Being Modernized with New Technologies

Standards: Wireless HART (IEC), ISA SP 100.11a, IETF 6LoWPAN, ROLL, CoRE, Eman, LWIP, IRTF IoT, W3C EIX, IEEE 802.15.4 (g), 802.15.5, etc.

Typical Example: Smart Grid

First Success Story of Sensor Networks

- SCADA systems:
 - Improve monitoring
 - Situational awareness
- Cost-effective solution

Cyber-Physical Systems

- By embedding instrumentation in buildings, vehicles, factories, power grid, we are creating Cyber-Physical Systems (CPS):
 - Smart sensing + actuation
 - CPS systems are IT systems that interact with the physical world

Cyber-physical systems

- Control
- Computation
- Communication
- Interdisciplinary Research!

Why is Security Important Now? New Vulnerabilities & Threats

- Controllers are computers (from Relays to MCUs)
 - Can be programmed to do anything!
- Networked
 - Sensors and actuators can be accessed remotely
- Commodity IT solutions
 - Well known generic vulnerabilities are widely available
 - Some technologies are even insecure by design!
- New functionalities
 - New vulnerabilities (e.g. privacy problems with fine-grained monitoring)
- More devices (IoT)
 - Easier to find a vulnerable device
- Highly skilled IT global workforce
 - Creating exploits (and using them) is now easier than ever!

Vulnerabilities can be Exploited

2000 Maroochy Shire sewage

control system.

2011 HVAC

2012 Smart Meters

FBI: Smart Meter Hacks Likely to Spread

39

A series of hacks perpetrated against so-called "smart meter" installations over the past several years may have cost a single U.S. electric utility hundreds of millions of dollars annually, the **FBI** said in a cyber intelligence bulletin obtained by

Cyberattack on German steel factory causes 'massive damage'

By Loek Essers IDG News Service | December 19, 2014

MORE GOOD READS

First Stuxnet victims were five Irar

A German steel factory suffered massive damage after hackers managed to access production networks, allowing them to tamper with the controls of a blast furnace, the government said in its annual IT security report.

Due to these failures, one of the plant's blast furnaces could not be shut down in a controlled manner, which resulted in "massive damage to plant," the BSI said, describing the technical skills of the attacker as "very advanced."

Stuxnet

- First PLC trojan
- Stolen certificates
- False commands to centrifuges
- False commands to supervisory network
- Uranium enrichment in Natanz plant in Iran

INSIDE THE CUNNING, UNPRECEDENTED HACK OF UKRAINE'S POWER GRID

SCADA Hijacking Techniques

The attackers develop two SCADA Hijack approaches (one custom and one agnostic) and successfully used them across different types of SCADA/DMS implementations at three companies

Intrusion Detection for IoT

Network Intrusion Detection

Deep-Packet Inspection for Industrial Control Protocols

Scapy parser for Modbus

Large Variety of Industrial Control Protocols-Few Parsers, Semantic Info, Closed

 Modbus/TCP DNP3 BACnet

• S7

- Profinet

- EtherNet/IP
 EtherCAT
 WirelessHART
 - ISA 100

We Need to Monitor Field Networks

It is easier to deploy monitors in the Supervisory Network:

-highly structured info (easier to understand)

-mirror ports

BUT

Compromised PLC can send malicious data to the field and report that everything is normal to supervisory network

Developing Monitors at the Field Level (SWaT Testbed in SUTD)

We Need to Monitor the Physics of The System

- Protocol specification/patterns correct but false info
- Physical systems follow immutable laws of nature
 - Fluid dynamics (water systems) or Electrodynamics (power grid) used to create time-series models
- These models can be used to check
 - If control commands were executed correctly
 - Sensor values are consistent with expected behavior

LDS Model for Raw Water Tank

$$\frac{dV_i}{dt} = A_i \frac{dh_i}{dt} = Q_{i,in} - Q_{i,out}$$
$$h_{k+1} = h_k + \frac{Q_{i,k} - Q_{o,k}}{A}$$

20

Implementing the Attack and the

Problem: We Can Always Create Attacks That Are Detected

Undetected Attacks to Water Testbed

