
Object-Oriented Analysis and Design
PART2: DESIGN

1

UML class diagrams

2

3

java.awt::Font

or

java.awt.Font

plain : Int = 0 { readOnly }

bold : Int = 1 { readOnly }

name : String

style : Int = 0

...

getFont(name : String) : Font

getName() : String

...

玦nterface?

Runnable

run()

- ellipsis 搮 ?means there may be elements, but not shown

- a blank compartment officially means 搖nknown?but as a

convention will be used to mean 搉o members?

SubclassFoo

...

run()

...

SuperclassFoo

or

SuperClassFoo { abstract }

- classOrStaticAttribute : Int

+ publicAttribute : String

- privateAttribute

assumedPrivateAttribute

isInitializedAttribute : Bool = true

aCollection : VeggieBurger [*]

attributeMayLegallyBeNull : String [0..1]

finalConstantAttribute : Int = 5 { readOnly }

/derivedAttribute

+ classOrStaticMethod()

+ publicMethod()

assumedPublicMethod()

- privateMethod()

protectedMethod()

~ packageVisibleMethod()

玞onstructor? SuperclassFoo(Long)

methodWithParms(parm1 : String, parm2 : Float)

methodReturnsSomething() : VeggieBurger

methodThrowsException() {exception IOException}

abstractMethod()

abstractMethod2() { abstract } // alternate

finalMethod() { leaf } // no override in subclass

synchronizedMethod() { guarded }

3 common

compartments

1. classifier name

2. attributes

3. operations

interface

implementation

and

subclassing

Fruit

...

...

PurchaseOrder

...

...

1

association with

multiplicities

dependency

officially in UML, the top format is

used to distinguish the package

name from the class name

unofficially, the second alternative

is common

order

an interface

shown with a

keyword

UML: Notating Attributes

4

Register

...

...

Sale

...

...

1

Register

currentSale : Sale

...

Sale

...

...

using the attribute

text notation to

indicate Register has

a reference to one

Sale instance

using the association notation to indicate

Register has a reference to one Sale instance

OBSERVE: this style

visually emphasizes

the connection

between these classes
currentSale

Register

currentSale : Sale

...

Sale

...

...

1
thorough and

unambiguous, but some

people dislike the

possible redundancy
currentSale

Attributes As Associations
Notice that there are subtle differences between the conceptual perspective
(Domain Model) and software perspective (Design Model) for attributes that are
defined as associations

For DCDs, there is usually
A navigability arrow

A multiplicity at the target end, but not the source

A role name

No association name

5

UML: Attributes as Associations

6

the association name, common when drawing a

domain model, is often excluded (though still legal)

when using class diagrams for a software

perspective in a DCD

Register

id: Int

...

Sale

time: DateTime

...

1

currentSale

Register

id : Int

Sale

time : DateTime

Captures-current-sale1 1UP Domain Model

conceptual perspective

UP Design Model

DCD

software perspective

Attributes: Text versus Associations
We explored the idea of data type objects earlier (Domain Models)

Data types referred to objects for which individual identity is not important

Recall a Person object versus a Name data type

One guideline is to use the text for data types (basically primitive types) and
associations for more complicated classes

Note that this is a diagram preference – does not matter in the final code

7

UML: Attributes as Associations

8

Register

id: Int

...

Sale

time: DateTime

...

1
applying the guideline

to show attributes as

attribute text versus as

association lines

Store

address: Address

phone: PhoneNumber

...

1

Register has THREE attributes:

1. id

2. currentSale

3. location

currentSale

location

Attributes: Lists
How do we notate a list of attributes, e.g. an ArrayList in Java?

9

notice that an association end can optionally also

have a property string such as {ordered, List}

Sale

time: DateTime

...

SalesLineItem

...

...

1..*

lineItems

{ordered, List}

Sale

time: DateTime

lineItems : SalesLineItem [1..*]

 or

lineItems : SalesLineItem [1..*] {ordered}

...

SalesLineItem

...

...

Two ways to show a

collection attribute

Operations and Methods
Operations are usually displayed in the class box with the notation:

visibility name (parameter-list) {property-string}

Sometime a return-type is value is added

Assume public if no visibility is shown

An operation is a declaration (name, parameters, return type, exceptions list)

A method is an implementation of an operation
in sequence diagrams, may show the details and sequence of messages

In class diagram, usually include some pseudo-code in a note with the <<method>> tag

10

Method Notation in UML

11

Register

...

endSale()

enterItem(id, qty)

makeNewSale()

makePayment(cashTendered)

玬 ethod?

// pseudo-code or a specific language is OK

public void enterItem(id, qty)

{

 ProductDescription desc = catalog.getProductDescription(id);

 sale.makeLineItem(desc, qty);

}

Often times constructors (if included) are notated with the <<constructor>> tag

Usually, getters and setters are ignored in class diagrams
They are assumed to exist, or are added to the code on an as-needed basis

Keywords
Keywords are textual adornments used to categorize a model element – they
provide some additional information about the element.

Usually notated <<keyword>>, and sometimes {keyword}

Some examples:
<<actor>> - this entity is an actor

<<interface>> - this entity is an interface

{abstract} – this is an abstract element, it can’t be instantiated

{ordered} – this set of objects is ordered, e.g. the ArrayList example shown earlier

12

Abstract Classes
As we saw earlier in Domain Models, UML has the ability to denote generalization

Solid line with open, fat arrow; can also notate {abstract} in super-class

It represents a relationship between more general classifier and more specific
classifier. The specific classifier indirectly has the features of the more general classifier

13

Dependency in UML
In UML, dependency lines can be used in any diagram, but they are especially common in class
and package diagrams.

In UML, a general dependency relationship indicates that a client element (class, package, use
case, etc.) has knowledge of a supplier element and that a change in the supplier could affect the
client

Indicated by a dashed arrow from the client to the supplier

Note that we often associate elements with associations (e.g. super- and sub-classes as we just
saw), so we do not need to add dependency arrows if an association already exists

Often used when a class has an attribute of another class type, or if one class sends a message to
another class

14

Dependency in UML
Guideline: Use dependency in UML to depict global parameter variable, local variable, and static-
method call to another class.

15

SalesLineItem

...

...

ProductDescription

...

...

1..*
lineItems

Sale

...

updatePriceFor(ProductDescription)

...

the Sale has parameter visibility to a

ProductDescription, and thus some kind of

dependency Public class Sale
{
Public void updatePrice(ProductDescription description)
{

Money basePrice = description.getPrice();
….

}
….

}

Dependency in UML

16

Public class Foo
{
Public void doX()
{

system.runFinalization();
….

}
….

}

System

...

runFinalization()

...

Foo

...

doX()

...

the doX method invokes the runFinalization

static method, and thus has a dependency on

the System class

Dependency Labels

17

玞all?
Window

a dependency on calling on operations of

the operations of a Clock

Clock

getTime()

...

玞reate?A

a dependency that A objects create B objects

B

...

Composition and Aggregation
We saw this earlier in Domain Models …

Composition is a whole-part relationship between model entities, such that
an instance of the part belongs to only one instance of the composite

a part must belong to a composite

the composite is responsible for creating/deleting the parts. (So if the composite is destroyed, the parts
are destroyed or become attached to another composite.)

Aggregation is a weaker form of composition, where the above requirements are not necessarily
true

Aggregation does not imply ownership of the parts

Composition involves instantiating objects, aggregation involves pointers to other objects

18

Composition: Example

19

Finger
0..7

Hand

composition

1

Square
40

Board
1

SalesLineItem
1..*

Sale
1

composition means

-a part instance (Square) can only be part of one

composite (Board) at a time

-the composite has sole responsibility for management of

its parts, especially creation and deletion

Generally look for “has a” associations

Association Classes
In UML, an association may be considered a class, with attributes, operations, and other features

Include this when the association itself has attributes associated with it

20

salary

startDate

Employment

Employs
Company Person**

a person may have

employment with several

companies

class Company {

Set<Employment> employments;

}

class Employment{

Company company ;

Person person;

Date startDate;

Money Salary;

}

class Person{

Set<Employment> employments;

}

21

public Set<Person> getPersonnels () {
Set<Person> result = new HashSet<Person>();
for (Employment e: employments) {

result.add(e.getPerson());
}
return result;

}

providing a method in Company that returns all its personnels

22

UML interaction diagrams

23

What will we learn?
UML Interaction Diagrams – What are they, how to create them

24

UML Interaction Diagrams
There are two types: Sequence and Communication diagrams

We will first look at the notation used to represent these, and then later look at
important principles in OO design

We’ll look at various examples here to learn how to create the diagrams

25

UML Sequence Diagrams
Sequence diagrams are more detailed than communication diagrams

They often represent a series of method calls between objects in a system

The sequence is represented in what is called “fence format”, and each new
object in the sequence is added to the right in the diagram

Interactions between objects are usually method calls, but may also be object
creation/deletion

Especially useful for message flow diagrams, with request-reply pairs

26

Example: Sequence Diagram

27

: A myB : B

doTwo

doOne

doThree

public class A
{

private B myB = new B();

Public void doOne()
{

myB.doTwo();
myB.doThree();

}
}

Reading a Sequence Diagram

We would say “The message makePayment is sent to an instance of Register. The Register
instance sends the makePayment message to the Sale instance. The Sale instance creates an
instance of a Payment.” Here, “message” is a method call.

28

: Register : Sale

makePayment(cashTendered)

makePayment(cashTendered)

: Payment
create(cashTendered)

Interaction Diagrams Are Important
Often left out in favor of class definition diagrams, but these diagrams are
important and should be done early

They describe how the objects interact, and may give clues to the operations
and attributes needed in the class diagrams

These diagrams are part of the Design Model artifact, and are started in the
Elaboration phase in Agile UP

29

Sequence Diagrams: Lifeline Box Notation

30

Basic notation for the entities that make up the sequence diagram – they are
called lifeline boxes and represent the participants in the particular sequence
being modeled

Note that a participant does not need to be a software class, but it usually is for
our purposes

The standard format for messages between participants is:
return = message(parameter: paramerType) : returnType

Type information is usually omitted, as are parameters

31

sales:

ArrayList<Sale>

:Sale s1 : Sale

lifeline box representing an

instance of an ArrayList class,

parameterized (templatized) to

hold Sale objects

lifeline box representing an

unnamed instance of class Sale

lifeline box representing a

named instance

sales[i] : Sale

lifeline box representing

one instance of class Sale,

selected from the sales

ArrayList <Sale> collection

x : List

玬 etaclass?

Font

lifeline box representing the class

Font, or more precisely, that Font is

an instance of class Class – an

instance of a metaclass

related

example

List is an interface

in UML 1.x we could not use an

interface here, but in UML 2, this (or

an abstract class) is legal

Sequence Diagrams: Messages

32

Messages are notated as solid arrows with filled in arrowheads between lifelines
The lifelines are the dotted lines that extend below each participant box, and literally show the lifespan of
the participant

The first message may come from an unspecified participant, and is called a “found message”. It
is indicated with a ball at the source

Messages can be synchronous (sender waits until receiver as finished processing the message,
and then continues – blocking call) or asynchronous (sender does not wait, more rare in OO
designs)

Dashed arrow is used to indicate return of control, e.g. after receipt of synchronous message.
May contain a value.

33

: Register : Sale

doA

doB

doX

doC

doD

typical sychronous message

shown with a filled-arrow line

a found message

whose sender will not

be specified

execution specification

bar indicates focus of

control

Sequence Diagrams: Specifics

34

The execution specification bar or activation bar indicates that the operation is
on the call stack

Usually replies to messages are indicated with a value or a dotted line (see next
slide)

It is possible to have a message to “self” (or “this”)

Sequence diagrams can also indicate instance creation (see later slide)

Likewise, instances can be destroyed (indicated by “X” at the end of lifeline)

35

: Register : Sale

d1 = getDate

getDate

doX

aDate

: Register

doX

clear

36

: Register : Sale

makePayment(cashTendered)

: Payment
create(cashTendered)

authorize

note that newly created

objects are placed at their

creation "height"

: Sale

: Payment
create(cashTendered)

...
the 玠estroy? stereotyped

message, with the large

X and short lifeline

indicates explicit object

destruction
玠estroy?

X

Sequence Diagrams: Specifics

37

Diagram frames may be used in sequence diagrams to show:
Loops

Conditional (optional) messages

Nesting (a conditional loop)

Relationships between diagrams

See next slides for examples

38

enterItem(itemID, quantity)

: B

endSale

a UML loop

frame, with a

boolean guard

expression
description, total

makeNewSale

[more items]loop

: A

calculate

: Bar

yy

xx

[color = red]opt

: Foo

39

st = getSubtotal

lineItems[i] :

SalesLineItem

t = getTotal

[i < lineItems.size]loop

: Sale This lifeline box represents one

instance from a collection of many

SalesLineItem objects.

lineItems[i] is the expression to

select one element from the

collection of many

SalesLineItems; the 慽?value

refers to the same 搃?in the guard

in the LOOP frame

an action box may contain arbitrary language

statements (in this case, incrementing 慽?)

it is placed over the lifeline to which it applies

i++

40

calculate

: Bar

xx

[color = red]opt

: Foo

loop(n)

41

interaction occurrence

note it covers a set of lifelines

note that the sd frame it relates to

has the same lifelines: B and C

doA

: A : B : C

doB

sd AuthenticateUser

ref
AuthenticateUser

authenticate(id)

doX

doM1

: B : C

authenticate(id)

doM2

ref
DoFoo

sd DoFoo

doX

: B : C

doY

doZ

42

:Register

authorize

doX

:Payment {abstract}

polymorphic message
object in role of abstract

superclass

:DebitPayment

doA

authorize

:Foo

stop at this point – don抰 show any

further details for this message

doB

:CreditPayment

doX

authorize

:Bar

Payment {abstract}

authorize() {abstract}

...

CreditPayment

authorize()

...

DebitPayment

authorize()

...

Payment is an abstract

superclass, with concrete

subclasses that implement the

polymorphic authorize operation

separate diagrams for each polymorphic concrete case

Example:
Library Information System (LIS)

43

LIS Requirements and Use cases
R1. The LIS must allow a patron to check out documents.

R2. The LIS must allow a patron to return documents.

UC1. Checkout Document (Actor: Patron, System: LIS)

UC2. Return Document (Actor : Patron, System: LIS)

How about Allow a Patron? Is it a use case? Who is the actor? What is the goal
or business task for the actor? Does it start and end with an actor?

9-44

11-45

Domain Model

User

Document

Loan
uid : String

callNum : String
available : boolean

dueDate : Date

LIS UC.1Text
UC1 : Checkout Document

Actor: Patron System: LIS

0. The LIS displays the main menu.

1. Patron clicks the checkout Document button on
the main menu.

2.The system displays the checkout menu.

3. The Patron enters the call numbers of documents
to be checked out and clicks the Submit button.

4. The system displays the document details for
confirmation.

5. The patron click the OK button to confirm the
checkout.

6. The system displays a confirmation message to
patron.

7. The patron clicks OK button on the confirmation
dialog.

46

9-47

msg := verify (uid:String, password: Password) : String<<uid, pass-
word>>

:LoginGui

User

:LoginController

<<msg>>

function callreturn value return typeparameter & type

11-48

Identify Classes Used in Sequence Diagrams

<<singleton>>
classes used.

:Checkout
GUI

<<uid,
cnList>>

:DBMgr

u:=get
User(uid):User

d:=get
Document(cn)

l:Loan

[a]create(u,d)

[a]save(l)

d:Document

[a]setAvailable(false)

[a]save(d)

:Checkout
Controller

msg:=check-
out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop
(for each cn in
cnList)

Identify objects that send or
receive messages, passed as
parameters or return type.

11-49

Classes Identified

User

Document

Loan

CheckoutGUI

DBMgr

CheckoutController

11-50

Identify Methods
:Checkout

GUI

<<uid,
cnList>>

:DBMgr

u:=get
User(uid):User

d:=get
Document(cn)

l:Loan

[a]create(u,d)

[a]save(l)

d:Document

[a]setAvailable(false)

[a]save(d)

:Checkout
Controller

msg:=check-
out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop
(for each cn in
cnList)methods of

CheckoutController

methods of
Document

11-51

Fill In Identified Methods
User

Document

Loan

CheckoutGUI

DBMgr

getUser(uid)
getDocument(callNo)
saveLoan(loan)
saveDocument(book)

isAvailable() : boolean
setAvailable(a:boolean)

<<singleton>>

CheckoutController
checkout(uid,cnList)
process(cn:String[])

create(u:User, d:Document)

11-52

:Checkout
GUI

<<uid,
cnList>>

:DBMgr

u:=get
User(uid):User

d:=get
Document(cn)

l:Loan

[a]create(u,d)

[a]save(l)

d:Document

[a]setAvailable(false)

[a]save(d)

:Checkout
Controller

msg:=check-
out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop
(for each cn in
cnList)

Identify Attributes

attribute of User

attribute value

attributes of
Document

11-53

Fill In Attributes

display(msg:String)

User

Document

Loan

CheckoutGUI

DBMgr

getUser(uid)
getDocument(callNo)
saveLoan(loan)
saveDocument(book)

isAvailable() : boolean
setAvailable(a:boolean)

<<singleton>>

CheckoutController

checkout(uid,cnList)
process(cn:String)

create(u:User, d:Document)

uid : String

callNum : String
isAvailable : boolean

dueDate : Date

from domain
model

11-54

Identify Relationships
:Checkout

GUI

<<uid,
cnList>>

:DBMgr

u:=get
User(uid):User

d:=get
Document(cn)

l:Loan

[a]create(u,d)

[a]save(l)

d:Document

[a]setAvailable(false)

[a]save(d)

:Checkout
Controller

msg:=check-
out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop
(for each cn in
cnList)

call relationship

association w/ an
association class.

CheckoutController and DBMgr
use User.

11-55

Fill In Relationships

display(msg:String)

User

Document

Loan

CheckoutGUI

DBMgr

getUser(uid)
getDocument(callNo)
saveLoan(loan)
saveDocument(book)

isAvailable() : boolean
setAvailable(a:boolean)

<<singleton>>

CheckoutController

checkout(uid,cnList)
process(cn:String)

create(u:User, d:Document)

uid : String

callNum : String
available : boolean

dueDate : Date

The dashed arrow lines denote uses or
dependence relationships.

<<create>>

11-56

From Sequence Diagram to Implementation
:Checkout

GUI

<<uid,
cnList>>

:DBMgr

u:=get
User(uid):User

d:=get
Document(cn)

l:Loan

[a]create(u,d)

[a]save(l)

d:Document

[a]setAvailable(false)

[a]save(d)

:Checkout
Controller

msg:=check-
out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop
(for each cn in
cnList)

call relationship

association w/ an
association class.

CheckoutController and DBMgr
use User.

public class CheckoutController {
DBMgr dbm=new DBMgr ();
public void process(String[] cnList) {

for(int i=0; i<cnList.length; i++) {
Document d=dbm.getDocument(cnList[i]);
if (d.isAvailable()) {

Loan l=new Loan(u, d); dbm.saveLoan(l);
d.setAvailable(false); dbm.saveDocument(d);

}
}

