
Object-Oriented Analysis and Design
PART1: ANALYSIS

1

Textbook
 Text: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and
Iterative Development, Craig Larman, ISBN: 013 148 9062, Prentice-Hall, 2005

What will we learn?
We will learn the skills needed for good object-oriented analysis and design
We will utilize Unified Modeling Language (UML)

Be careful: Just knowing how to draw UML diagrams or create models does not imply good OOA/OOD!
UML is used mostly in this course as a diagraming method, a common notation

Responsibility-Driven Design
How should responsibilities be assigned to classes of objects?
How should objects collaborate?
What classes should do what?

For many common problems, these questions have been answered
Use existing best-practices, or patterns

3

What will we learn?
We will learn how to apply OOA/OOD to several case studies, which will be
referred to throughout the course
We will learn how to do proper requirements analysis, and write use cases.

The first step in most projects, and the most important!
Not just for understanding the problem, but also to ensure common terminology, etc.

What is the development process? How does OOA/OOD fit in?
We will consider the agile development process, as part of the Unified Process (UP). This is an iterative
development process that is very popular today
The OOA/OOD concepts we will learn can be applied to other development processes as well

We will also learn fundamental principles in object design and responsibility
assignment: GRASP (General Responsibility Assignment Software Patterns)

4

We will:
Apply principles and patterns to create better object designs
Iteratively follow a set of common activities in analysis and design, based on
the agile approach to the UP as an example
Create frequently used diagrams in the UML notation
Be able to skillfully assign responsibilities to software objects

Identify the objects that make up the system, or domain
Assign responsibilities to them – what do they do, how do they interact?

Apply the GRASP principles in OOA/OOD

5

Objects
 From Merriam-Webster:

“something material that may be perceived by the senses”

 Look around this room, and imagine having to explain to someone who has never taken
a class what happens here …

You would explain the activity that occurs, and you would identify specific objects that play a role in that
activity (Chairs, tables, projectors, students, professor, white board, etc.) to someone who has never seen
these things …
Each of these objects is well defined, and plays a separate role in the story. There may be multiple copies
of chairs, but a chair is very different from a projector – they have different responsibilities
You would not describe the action by saying “The classroom allows students to sit, and the classroom
allows the professor to display slides, … “ etc. This would make the “classroom” too complex – almost
magical
You would define the various objects in this domain, and use them to tell the story and describe the
action

6

OOA/OOD

Analyze the system Model the system Design the software

7

Analysis and Design:
Analysis is the investigation of the problem - what are we trying to do?

Here is where use cases are created and requirements analysis are done
Design is a conceptual solution that meets the requirements – how can we solve the problem

Note: Design is not implementation
UML diagrams are not code (although some modeling software does allow code generation)

Object-oriented analysis: Investigate the problem, identify and describe the objects (or
concepts) in the problem domain

Also, define the domain!
Object-oriented design: Considering the results of the analysis, define the software classes and
how they relate to each other
Not every object in the problem domain corresponds to a class in the design model, and
viceversa
Where do we assign responsibilities to the objects? Probably a little in both parts

8

UML
“The Unified Modeling Language is a visual language for specifying,
constructing, and documenting the artifacts of systems.” - OMG, 2003
Standard for diagramming notation
We will use UML to sketch out our systems
UML can be used (by modeling packages) to auto-generate code directly from
the model diagrams
Different perspectives:

Conceptual Perspective – defining the problem domain: Raw class diagrams, maybe mention
some attributes (Domain Model)
Specification Perspective – defining the software classes: Design Class diagram, which shows
the actual software classes and their methods, attributes

9

UML
 We will explore the details of UML diagramming

 For now, understand that UML is a language – it is used to communicate information

 We will use UML to describe the problem domain, describe the activities that occur, and
eventually describe the software classes

 Since it is a language, UML has specific rules, and we will see these later in the course

 You need to be able to read UML diagrams, as well as create them

 Here are some examples (we will learn more about how to create these diagrams later …)

10

UML

Video

ID
Stocks

Rents

Rents-from 

1
1..*

1 *1*

VideoStore

address
name
phoneNumber

Customer

address
name
phoneNumber

11

12

UML

VideoVideoStore Stocks 
*1

association name multiplicity

-"direction reading arrow"
-it has no meaning except to indicate direction of
 reading the association label
-optional

13

UML
zero or more;
"many"

one or more

one to forty

exactly five

T

T

T

T

*

1..*

1..40

5

T
3, 5, 8 exactly three,

five or eight

Customer

Video

Rents 

*

One instance of a
Customer may be
renting zero or more
Videos.

One instance of a Video
may be being rented by
zero or one Customers.

0..1

14

UML
Video

...Rents

Influenced-by 

1

1..*

1 Loan Policy

...

Customer

...

Important association.
Need to remember.

Low value association.
Possible, but so what?

15

UML

Payment

date : Date
time : Time
amount : Money

attributes

16

Catalog

VideoDescription

title
subjectCategory

VideoRental

dueDate
returnDate
returnTime

CashPayment

amount : Money

Video

ID
Stocks

Rents

Rents-from 

Pays-for 

Initiates 

Owns-a 

 Described-by 

Membership

ID
startDate

1
1

1..*

1

1

1

1..*

1

1

*

1

1

1

*
1*

Pays-for-overdue-charges 

RentalTransaction

date

LoanPolicy

perDayRentalCharge
perDayLateCharge

 Determines-rental-charge 

1

Defines

1..*

*

1..*

1

1

* *

VideoStore

address
name
phoneNumber

Customer

address
name
phoneNumber

1

1

1..*

Records-rental-of 

0..1

1

Has  Maintains

*

1

1

17

Example: The Dice Game
We will give an example of OOA/OOD for the following problem: We want to design an program
that simulates a dice game. In the game, the player rolls two dice, and if the sum is seven, the
player wins. Otherwise the player loses.

Step One: Define the Use Case.
 In this case, the use case is very simple, and can be stated as this:

 The Player plays the DiceGame. The DiceGame includes two Dice. The Player requests to roll the Dice. If the total of the two Dice is
seven, the Player wins. Otherwise, the Player loses.

Step two: Define the Domain Model
In this step, we describe the domain of the problem in terms of objects, and try to identify the
associations between those objects
We may add the noteworthy attributes of the objects
Note that this is a conceptual model – not a design class diagram

18

The Dice Game: Domain Model
Player

name

DiceGame

Die

faceValue
Rolls

Plays

Includes

2

2

1

1

1

1

19

The Dice Game: Object Responsibilities and Interactions
Step 3: We begin to define the software classes, and assign responsibilities

We can define “interaction diagrams” for software classes that will represent the
objects we defined in Step 2

Note that at this step, we begin to deal with the real software classes (more
specifically, instances of the real classes).

These will be based upon, but may not exactly match up with, the domain
concepts or objects we identified in Step 2.

For example, there is no class for Player, since this is not part of the app we are
developing

20

The Dice Game: Interaction Diagram
:DiceGame

play()

die1 : Die

fv1 := getFaceValue()

die2 : Die

roll()

roll()

fv2 := getFaceValue()

21

The Dice Game: Design Class Diagrams
Step 4: We are now ready to design the class diagrams

Using the interaction diagrams, we can define the classes, their attributes, and
methods

Note: This is not coding. We do not specify how the methods will work, and we
may not specify every attribute of the class.

We want to define the important methods and attributes that are needed to
make the system work, so that a developer can take this model and build code
from it

22

The Dice Game: Class Design Diagram

2

Die

faceValue : int

getFaceValue() : int
roll()

DiceGame

die1 : Die
die2 : Die

play()

1

23

UML: Conceptual versus Specification Perspective

Conceptual Perspective
(domain model)

Raw UML class diagram
notation used to visualize
real-world concepts.

Specification or
Implementation

Perspective
(design class diagram)

Raw UML class diagram
notation used to visualize
software elements.

2

Die

faceValue : int

getFaceValue() : int
roll()

DiceGame

die1 : Die
die2 : Die

play()

DiceGame Die

faceValue
Includes 21

24

iterative, evolutionary, and agile

25

Iterative Development
 Suppose you were assigned to write a movie script for a company. They know what they want, in
terms of what kind of movie, how long, setting, etc., but they need you to fill in the details. How
would you do it?

 You could spend a lot of time talking to them, getting as much information as possible, and then
write the script and send it to them and hope you nailed it …

Risky: Chances of getting it all right are slim, and if you missed you need to go back and start making
changes and edits, which can be complicated if you want the story line to work

 You could also start with a draft, and send the incomplete version to them for feedback
They would understand that this is not finished, but just a draft.
They provide feedback, you add more details, and the cycle continues
Eventually, you end up with the finished product that is close to what they wanted

 This is how iterative development works

26

Unified Process (UP)
A widely adopted process for building, deploying, and possibly maintaining software

 Flexible and open, can adopt practices from other methods such as Scrum

We will concentrate on Agile UP

Iterative and evolutionary development
 Development is organized into a series of short, fixed length mini-projects called iterations
 Note – emphasizes early programming and testing of partial systems, even before all requirements are
finalized!
 Direct contrast to sequential methods (i.e. Waterfall), where coding is not started until the requirements
phase is finished.

Each iteration enlarges and refines the project, with continual feedback and adaption as
the main drivers

27

Iterative Methodology
Doesn’t this contradict what we learned in Chapter 1 … analysis first, then design?

We will see more on this throughout the course, but for now understand that iterative development does
not simply mean “start coding”. There is analysis and design work first.

Each iteration is fixed length, called timeboxed

Typical iteration: Spend the first day analyzing the current state of the project, defining goals for
the current iteration, and then working on design in small teams

Then teams work on implementing new code, testing, more design discussions, and conducting
daily builds of partial system

 Usually involves demonstrations and evaluations with stakeholders (customers or customer reps)

Also planning for next iteration – each iteration may involve analysis and design work

28

The Iterative Process
Requirements

Design

Implementation &
Test & Integration

& More Design

Final Integration
& System Test

Requirements

Design

3 weeks (for example)
The system grows
incrementally.

Feedback from
iteration N leads to
refinement and
adaptation of the
requirements and
design in iteration
N+1.

Iterations are fixed in
length, or timeboxed.

Time
Implementation &
Test & Integration

& More Design

Final Integration
& System Test

29

Embrace Change
Rather than try to “freeze” the requirements so code can be developed to rigid design, accept
the fact that change will occur and use it in the development process

 Maybe the customer changes mind after seeing early partial system builds

This has become very popular because it reflects the way the real world works
 Also, coding technology has enhanced code generation methods

OOA/OOD is critical to this approach, since having well defined objects makes it easier to add to
or modify the system

Note that this does not mean there are no requirements, or that changes should be encouraged
 Beware of “feature creep” – we will see more later
 This is structured change, not chaos

30

Iteration Convergence
Early iterations are farther from the "true
path" of the system. Via feedback and
adaptation, the system converges towards
the most appropriate requirements and
design.

In late iterations, a significant change in
requirements is rare, but can occur. Such
late changes may give an organization a
competitive business advantage.

one iteration of design,
implement, integrate, and test

31

The Benefits
Early feedback – invaluable!

Better success rate for projects
More likely that the customer will get what they want in the end

If process is properly executed, early mitigation (resolution) of high risks, rather than later

By breaking the project into clearly defined iterations (cycles), the complexity is much more
manageable

Don’t need to solve the entire project first – no paralysis by analysis
Again, natural fit with OOA/OOD

Constant feedback and input from the customer improves the end product

32

Waterfall Lifecycle
Probably an attempt to apply standard product development methods to software

Fully define requirements (and usually design) before coding

Why is Waterfall so prone to fail?
Software development is not mass production – highly unlikely that all requirements are fully understood
up front
Requirement are also not as stable as we would like, especially for large complex projects
Change Request process works, but can be cumbersome and slow
Note it is possible to change requirements later in the project for Waterfall, but it is hard and slow

Try to avoid combining this approach with an iterative approach
Don’t try to identify all use cases or do complete OOA before coding can start
Software design and implementation becomes more complex as understanding of the system increases

33

Example
Before first iteration, work with customer in a Requirements Workshop to identify a few critical
Uses Cases

Highest risk, most important features, use cases
Do a deep functional analysis of these use cases

Plan the iteration, i.e. identify which of the selected use cases will be addressed

Iteration 1:
First couple of days are for OOA/OOD of the assigned tasks
Remainder of the iteration (x number of weeks): Write code, test, integrate
If it appears that the original goals for the iteration cannot be met, “de-scope”
Freeze code for the iteration, demo to customer, get feedback
Near end of iteration, return to use cases, begin to add to requirements/tasks based upon feedback
Plan Iteration 2, and continue

34

Example
For the first 4-5 iterations, there will be much requirements analysis and refinement

This is the elaboration phase – after it is completed, we have maybe 90% of the requirements
identified, but only about 10% of the code written.

This is the time to estimate the time and effort the remainder of the project will take
Should be based upon the actual work done to this point, as so should be accurate

After this, fewer requirements workshops are needed, although the requirements are never
considered “frozen”

This approach is considered risk-driven and client-driven
Goal of the earliest iterations is to identify and drive down highest risks, build features customer cares
most about

35

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

20%
2%

re
qu

ire
m

en
ts

so
ftw

ar
e

30%

5%

re
qu

ire
m

en
ts

so
ftw

ar
e

50%

8%

90% 90%

20%
10%

requirements workshops

Imagine this will
ultimately be a 20-
iteration project.

In evolutionary iterative
development, the
requirements evolve
over a set of the early
iterations, through a
series of requirements
workshops (for
example). Perhaps
after four iterations and
workshops, 90% of the
requirements are
defined and refined.
Nevertheless, only
10% of the software is
built.

1 2 3 4 5 ... 20

week 1

M T W Th F

week 2

M T W Th F

week 3

M T W Th F

kickoff meeting
clarifying iteration
goals with the team.
1 hour

team agile
modeling &
design,
UML
whiteboard
sketching.
5 hours

start
coding &
testing

a 3-week iteration

de-scope
iteration
goals if
too much
work

final check-in
and code-
freeze for the
iteration
baseline

demo and
2-day
requirements
workshop

next
iteration
planning
meeting;
2 hours

Most OOA/D and
applying UML during
this period

Use-case modeling
during the workshop

36

Agile Methods and Attitudes
Stress agility – rapid and flexible response to change

The Agile Manifesto:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

Any iterative process can be applied in the Agile spirit

37

The Agile Principles
Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.

Welcome changing requirements, even late in development. Agile processes harness change for
the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support they need,
and trust them to get the job done.

The most efficient and effective method of conveying information to and within a development
team is face-to-face conversation.

38

The Agile Principles
Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users should
be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity--the art of maximizing the amount of work not done--is essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and adjusts
its behavior accordingly.

39

Agile Modeling
We create models (or UML drawings) to help understand the project

Not just documentation, or a blueprint to be handed to the software developer

Modeling is very important for Agile methods, and is a key tool for communication

Don’t “over-model”
Not every class needs a UML drawing
Some simpler or more obvious parts of the problem can be deferred until coding starts
Apply modeling and UML drawing for the trickier or more complicated parts

Models and diagrams do not need to be complete, or include every detail – they will be
inaccurate, and that is OK

Usually done at a whiteboard, with 2-4 people

40

UP – The Key Practices
Tackle high-risk and high-value issues in early iterations

Continuously engage users for evaluation and feedback, requirements evolution

Build a cohesive, core architecture early on

Continuously verify quality: test early and often, and realistically!

Apply use cases where appropriate

Utilize visual modeling (UML)

Carefully manage requirements

Practice change request and configuration management

41

UP Phases
Inception: approximate the vision, business case, scope, vague estimates

Elaboration: Refined vision, iterative implementation of the core architecture,
resolution of high risks, identification of most requirements and scope, realistic
estimates

Construction: Iterative implementation of the remaining low risk and easier
elements, preparation for deployment

Transition: Beta testing, deployment

42

UP Phases

inc. elaboration construction transition

iteration phase

development cycle

release

A stable executable
subset of the final
product. The end of
each iteration is a
minor release.

increment

The difference
(delta) between the
releases of 2
subsequent
iterations.

final production
release

At this point, the
system is released
for production use.

milestone

An iteration end-
point when some
significant decision
or evaluation
occurs.

43

The UP Disciplines
Disciplines are sets of activities and related artifacts in one subject area

An artifact is any work product, e.g. code, UML model diagram, etc.

We will concentrate on the following disciplines:
Business Modeling: Development of the Domain Model artifact
Requirements: The Use Case Model and Supplementary Specifications artifacts
Design: The Design Model artifact

Also, UP recognizes Implementation, Test, Deployment, Configuration and Change Management,
Project Management, and Environment (setting up the tools and process environment for the
project)

44

Iterations

Sample
UP Disciplines

Business Modeling

Requirements

Design

Implementation

Test

Deployment

Configuration & Change
Management

Project Management

Environment

Focus
of this
book

Note that
although an
iteration includes
work in most
disciplines, the
relative effort and
emphasis change
over time.

This example is
suggestive, not
literal.

A four-week iteration (for example).
A mini-project that includes work in most
disciplines, ending in a stable executable.

45

UP Disciplines and Phases

Sample
UP Disciplines

Business
Modeling

Requirements

Design

Implementation

...

The relative effort in
disciplines shifts
across the phases.

This example is
suggestive, not literal.

incep-
tion elaboration construction transi-

tion

...

46

UP Development Case
Most UP activities and artifacts are considered optional – the methodology is
designed to be flexible, and hence applicable to many different types of projects

But some practices and principles – iterative development, continuous testing – are not
optional

The choice of which artifacts to use and practices to follow for the project may be
captured in a Development Case – this is an artifact in the Environment discipline

This document would capture the expected artifacts to be created, for example

47

More on Agile Methods
There are many, including Extreme Programming (XP), Dynamic Systems
Development Method (DSDM), Feature Driven Development (FDD), Scrum

There has been some criticism:
Not clear how well this applies to large scale development projects (20+ developers)
May be hard to outsource, or for teams that are not co-located
Latest management fad?
Sometimes massive documentation is required by the customer
Cost estimation – not sure how much the project will cost until well into it?

The slides are structured in an iterative manner – we will skip around the
chapters

48

When Do Agile Methods Work Best?
 Particularly useful is the customer is not clear on what they want …

 The iterative approach helps them define the vision/solution as it is built

 Only need a good vision to start with

 Customer is open to regular communication and feedback – they are willing to
be active partners in the design process

 Agile may not be the best way to go if the customer knows exactly what they
want
Example: Revising existing application with a clear set of enhancements
Can still apply the Agile methodology, but the advantage is smaller

49

The Case Studies We Will Work With
 These are example systems that the book and lectures will refer to

 NextGen Point of Sale (POS) System: This is a system that runs in a store and allows cashiers to
check out items for customers. The customers bring a basket of items to the register, the cashier
scans or inputs the item information, and a sale total is calculated and processed

 Monopoly Game Simulation: This is an application that simulates the playing of a game of
Monopoly. The simulation will track the players moves over a set amount of time.

50

The Case Studies
We will mostly concentrate on the application logic layer

51

Case One: The NextGen POS System
Point-of-Sale (POS) system is application used to record sales and secure payment

Checkout line at store

System includes hardware and software – we will concentrate on the software

Has interfaces to various service apps, like tax calculator and inventory control, and the
system should work even if access to these external services is down (i.e., at least allow
checkout with cash if the credit card processing interface goes down)

Needs to support multiple client-side interface types, like thin web-browser,
touchscreen, wireless phone, etc.

We plan to sell this to many types of businesses which may have different business
processing rules – we need flexibility and the ability to customize

52

Case Two: The Monopoly Game
Software version of Monopoly game

This will run as a simulation; the user will configure the game (i.e. indicate the
number of players, etc.), start the simulation, and let the game run to its
conclusion.

A trace log will be created to record each move a player makes

The simulation should include the rules of the game, and keep track of the
amounts each player earns/loses throughout the game

The simulation should allow the user to select various strategies to be employed
by the players in the game

53

inception, requirements, use cases

54

What will we learn?
Inception – what is it?
How to analyze requirements in iterative development

The FURPS+ model, and the UP Requirements artifacts

How to identify and write Use Cases
How to apply tests to identify suitable Use Cases
How to develop Use Cases in iterative development

55

Inception
Inception is the initial short step that is used to establish a common vision and basic scope for
the project

Main questions that are often asked:
 What is the overall vision and business case for the project?
 Is it feasible?
 Buy or build?
 Rough cost estimate (order of magnitude)
 Go, no go

We do not define all of the requirements in Inception!
 Perhaps a couple of example requirements, use cases

We are not creating a project plan at this point

56

Inception
Goal: Envision the project scope, vision, and business case.

Is there a basic agreement among the stakeholders on the vision, and is it worth
investing in a serious investigation?

Note investigation versus development

Inception is brief
Decisions on feasibility and go no go may have already been made

There may be some simple UML diagrams, and even some basic coding for proof-
of-concept prototypes to answer key questions

57

Evolutionary Requirements
This is where Waterfall and UP part ways …

Requirements are capabilities and conditions to which the system – and more broadly, the
project – must conform.

Since UP does not require all requirements to be defined up front, it requires careful
management of requirements

“a systematic approach to finding, documenting, organizing, and tracking the changing requirements of
the system”

Key difference between Waterfall and UP: UP embraces requirements changes

How to find the requirements?
Different methodologies do this in different ways; Requirements Workshops, Use Cases, etc.

58

FURPS+
Functional – features, capabilities, security

Usability – human factors, documentation

Reliability – frequency of failure, recoverability, predictability

Performance – response times, throughput, accuracy, availability, resource usage

Supportability – adaptability, maintainability, internationalization, configurability

Plus …
Implementation, Interfaces, Operations, Packaging, Legal, etc.

Often used: functional (behavioral) versus non-functional (everything else)

Quality Requirements: usability, reliability, performance, and supportability

59

Requirements Organization: UP Artifacts
Use-Case Model: The use cases will primarily capture the functional
requirements, i.e. how the system behaves
Supplementary Specification: Non-functional requirements (e.g. performance)
and any functional features not captured by the Use-Case Model
Glossary: Noteworthy terms, but can include data dictionary (which may include
any requirements on data rules, e.g.)
Vision: May capture high-level requirements
Business Rules (Domain Rules): These usually transcend any one project, and so
may be captured in one place for use by several projects. Think regulatory
requirements.

60

61

Operation:
 enterItem(…)

Post-conditions:
- . . .

Operation Contracts

Sale

date
. . .

Sales
LineItem

quantity

1..*1 . . .

. . .

Domain Model

Use-Case Model

Design Model
: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec = getProductSpec(itemID)

addLineItem(spec, quantity)

: Sale

objects, attributes,
associations

Require-
ments

Business
Modeling

Design

Sample UP Artifact Relationships

: System

enterItem
(id, quantity)

Use Case Text

System Sequence Diagrams

make
NewSale()

system
events

Cashier

Process
Sale

: Cashier

use
case

names

system
operations

Use Case Diagram

Vision

Supplementary
Specification

Glossary

scope, goals,
actors, features

terms, attributes,
validation

non-functional reqs,
quality attributes

requirements

Process Sale

1. Customer
arrives ...
2. Cashier
makes new
sale.
3. ...

This diagram shows the
relationships between
various artifacts in UP
and the main disciplines
we will consider in this
course – Business
Modeling,
Requirements, and
Design

The Use-Case Model Artifact
… is part of the Requirements discipline in UP

… is composed of the use case text documents

… may include UML diagrams of the use cases, which provide context diagrams of
the system

… is essential to OOA/OOD, although OOA/OOD is not used to develop the Use-
Case Model

Use cases are requirements – primarily functional (behavioral)
 Use cases provide an essential understanding of how the end user will use the system, and as
such are critical for proper requirements definition

62

Key Features
Use cases are text, not diagrams

We may construct diagrams from the text cases later

These are created as stories, and functional requirements are derived from them

Actors: something that exhibits behavior in the system (not just a person)

Scenario: A specific sequence of actions and interactions between the actors and the system (use
case instance)

One particular story of using the system

Use Case (informal): A collection of related success and failure scenarios that describe an actor
using a system to achieve a goal.

Use Case (formal, RUP): A set of use-case instances (scenarios), where each instance is a
sequence of actions a system performs that yields an observable result of value to a particular
actor.

63

Key Features
One of the key skills you will need in use case development and
analysis: Identify the nouns (things, objects) in the use case, and
the verbs (actions).

The nouns will eventually give you clues about the objects in the
system

The verbs will give you clues about their behavior, their
responsibilities

For example, suppose we have a use case with the sentence “The
line item is added to the sale.”

We note the nouns line item and sale – these are likely objects in the
system
We note that something must have the responsibility of adding the line
item to the sale … this is something our system must do, it is a
functional requirement.

64

Example: ATM Session Use Case
 A session is started when a customer inserts an ATM card into the card reader slot of the
machine. The ATM pulls the card into the machine and reads it. (If the reader cannot read the
card due to improper insertion or a damaged stripe, the card is ejected, an error screen is
displayed, and the session is aborted.) The customer is asked to enter his/her PIN, and is then
allowed to perform one or more transactions, choosing from a menu of possible types of
transaction in each case. After each transaction, the customer is asked whether he/she would
like to perform another. When the customer is through performing transactions, the card is
ejected from the machine and the session ends. If a transaction is aborted due to too many
invalid PIN entries, the session is also aborted, with the card being retained in the machine.

 The customer may abort the session by pressing the Cancel key when entering a PIN or choosing
a transaction type.

65

Example: ATM Session Use Case
 A session is started when a customer inserts an ATM card into the card reader slot of the
machine. The ATM pulls the card into the machine and reads it. (If the reader cannot read the
card due to improper insertion or a damaged stripe, the card is ejected, an error screen is
displayed, and the session is aborted.) The customer is asked to enter his/her PIN, and is then
allowed to perform one or more transactions, choosing from a menu of possible types of
transaction in each case. After each transaction, the customer is asked whether he/she would
like to perform another. When the customer is through performing transactions, the card is
ejected from the machine and the session ends. If a transaction is aborted due to too many
invalid PIN entries, the session is also aborted, with the card being retained in the machine.

 The customer may abort the session by pressing the Cancel key when entering a PIN or choosing
a transaction type.

66

Example: ATM Session Use Case
 A session is started when a customer inserts an ATM card into the card reader slot of the
machine. The ATM pulls the card into the machine and reads it. (If the reader cannot read the
card due to improper insertion or a damaged stripe, the card is ejected, an error screen is
displayed, and the session is aborted.) The customer is asked to enter his/her PIN, and is then
allowed to perform one or more transactions, choosing from a menu of possible types of
transaction in each case. After each transaction, the customer is asked whether he/she would
like to perform another. When the customer is through performing transactions, the card is
ejected from the machine and the session ends. If a transaction is aborted due to too many
invalid PIN entries, the session is also aborted, with the card being retained in the machine.

 The customer may abort the session by pressing the Cancel key when entering a PIN or choosing
a transaction type.

67

Actors and Use Case Formats
Actors: Anything with behavior, including the system itself

 Primary (has goals fulfilled by the system), Supporting (provides a service), Offstage (interest in
the behavior of the system, but not primary of supporting – like government agency, or a
monitoring system)
These do not define the objects

Use Case types:
 Brief or casual (short text descriptions, either one or a few paragraphs)
 Fully Dressed: Detailed, usually follow a template

68

Use Case Template
Use Case Section Comment

Use Case Name Starts with verb, unique, sometimes number

Scope Identifies the system under design

Level User-goal level, but may be subfunction if these substeps
are used by many use cases

Primary Actor Actor that calls upon the system to fulfill a goal

Stakeholders and Interests List Very important – lists all stakeholders in the scenario, and
what they expect the system to do. Will identify the
behaviors.

Preconditions, Success Guarantees Conditions that are relevant and considered true at the
start of the use case; what must be true upon completion
of the scenario

69

Use Case Template
Use Case Section Comment

Main Success Scenario A record of the steps of a successful scenario, including
interaction between actors, validation (by system), and
state change by system. Steps are usually numbered.

Extensions All other scenarios that may be branched to off the main
success scenario; numbered according to main success
scenario steps, and often this section is larger. May refer to
another use case

Special Requirements Non-functional requirements, quality attributes,
constraints

Technology and Data Variations List Any obvious technology or I/O constraints, data
constraints

Misc Anything else

70

Guidelines (Fully Dressed)
Defer all conditional branches to the Extensions section

Write in “essential style” – leave out user interface specifics, focus on actor intent

Write terse statements

Use “black box” thinking: “System records the sale”, not “System accesses
database and generates SQL INSERT …”

Do not design!

Role play – become the actor, take the actor perspective

71

Example: ATM Withdrawal (Fully Dressed)
 Use Case Name: Withdraw Money From ATM

 Scope: ATM System

 Level: User-goal

 Actors: Customer (Primary), Bank (Supporting), ATM (Supporting)

 Stakeholders:
Customer: Get cash
Bank: Provide cash, properly record transaction

Preconditions: There is an active network connection to the Bank, the ATM has cash

72

Example: ATM Withdrawal
Main Success Flow:

 1. The use case begins when Bank Customer inserts their Bank Card.

 2. Use Case: Validate User is performed.

 3. The ATM displays the different alternatives that are available on this unit. [See Supporting
Requirement SR-xxx for list of alternatives]. In this case the Bank Customer always selects "Withdraw
Cash".

 4. The ATM prompts for an account. See Supporting Requirement SR-yyy for account types that shall
be supported.

 5. The Bank Customer selects an account.

 6. The ATM prompts for an amount.

 7. The Bank Customer enters an amount.

73

Example: ATM Withdrawal
Main Success Flow:

 8. Card ID, PIN, amount and account is sent to Bank as a transaction. The Bank Consortium
replies with a go/no go reply telling if the transaction is ok.

 9. Then money is dispensed.

 10. The Bank Card is returned.

 11. The receipt is printed.

 12. The use case ends successfully.

74

Example: ATM Withdrawal
 Alternate flows (details left out):
 Invalid User

 Wrong account

 Wrong amount
 Amount Exceeds Withdrawal Limit

 Amount Exceeds Daily Withdrawal Limit

 Insufficient Cash
 No Response from Bank

 Money Not Removed

 Quit

75

Example: ATM Withdrawal
 Post-Conditions (Success Guarantee):

 Successful Completion

 The user has received their cash and the internal logs have been updated.

 Failure Condition

 The logs have been updated accordingly.

 Special Requirements:

 [SpReq:WC-1] The ATM shall dispense cash in multiples of $20.

 [SpReq2:WC-2] The maximum individual withdrawal is $500.

 [SpReq:WC-1] The ATM shall keep a log, including date and time, of all complete and incomplete
transactions with the Bank.

76

Example: Data Entry System
We are designing a data entry system. The primary actor is the data entry worker, who will enter
information into a user interface to create and update records for the client. During a
Requirements Workshop, a typical data entry worker is interviewed and describes the following
process:

“I receive the paper invoices with the checks attached to them. I enter the invoice number into the
system, and pull up the record of sale. I then enter the payment information into the system, including
the payer name and address, the check number, date received, amount, checking account number and
routing number.”

Brief Use Case:
 The System displays a screen that allows the User to enter an invoice number. The System accesses the
sales record and displays the current information in the record to the User, highlighting fields that are
related to payment. The User types information into the fields and submits the updated record. The
System updates the sales record.

77

Example: Data Entry(Fully Dressed)
 Use Case Name: Enter Payment Data Into Sales Record System

 Scope: Sales Record System

 Level: User-goal

 Actors: Data Entry Worker(Primary), System (Supporting)

 Stakeholders:
Data Entry Worker: Enter payment information for invoice into system
Bank: Properly track payments for sales

 Preconditions: There is an active network connection between the Data Entry Worker and the
Sales Record database

78

Example: Data Entry
 Main Success Flow:

 1. The use case begins when User enters an invoice number into a search screen

 2. The System retrieves the Sales Record and displays the information to the User

 3. The System highlights areas that are related to payment information

 4. The User types the payment information into the payment fields indicated by the system

 5. The User submits the record to the System to be updated

79

Example: Data Entry
 Alternate flows (details left out):

 Invalid Invoice Number

 User attempts to submit the record to the System before all payment fields are filled in

 User enters invalid information into payment fields

 The System fails to update the record due to internal failure (database error)

80

Example: Data Entry
 Post-Conditions (Success Guarantee):

 Successful Completion

 The sales record has been successfully updated in the sales database.

 Failure Condition

 The sales record has not been properly updated with the payment information in the sales
database.

 Special Requirements:

 The System must contain a proper interface to an existing sales database.

 The payment fields are dictated by the database design and invoice design

81

What is an Executive Summary (Brief)
 Very short (one page) summary, intended for high level executives

 Format:
Introductory paragraph, describes the purpose of the brief
Several bullet points that highlight the main message of the summary
Closing paragraph that sums it up

Brevity is critical – keep this high level!

Avoid typos, grammar mistakes, misspellings, etc.
Look professional

82

How to Find Use Cases
One the hardest, but most important parts of the projects

All understanding of the requirements, and hence system design, will flow from
here

Interact closely with customer/client/user
Here customer means the person purchasing the software

One great strategy – take an actor perspective, role play
Each use case should be designed to satisfy a goal or a primary actor

83

The NextGen POS System
Point-of-Sale (POS) system is application used to record sales and secure payment

Checkout line at store

System includes hardware and software

Has interfaces to various service apps, like tax calculator and inventory control, and the
system should work even if access to these external services is down (i.e., at least allow
checkout with cash if the credit card processing interface goes down)

Needs to support multiple client-side interface types, like thin web-browser,
touchscreen, wireless phone, etc.

We plan to sell this to many types of businesses which may have different business
processing rules – we need flexibility and the ability to customize

84

Defining Use Cases: System Boundaries
Choose a System Boundary

Determine the edges of the system being designed – is it the software, the software and
hardware? Does it include the person using the system?
We are determining the Domain for the system

Think about our POS Case Study … what is the system boundary?
In this case, the system under design is the software and hardware associated with it
The cashier, store databases, payment authorization services, etc. are outside the boundary of
the system
Note that does not mean that they are not important – they are simply outside the boundary

Having trouble identifying the boundary? Identify the external actors, and that
should help define it

85

Use Cases: Identify Primary Actors and Goals
Actors and goals are usually defined together, because in order to identify the primary actor, you
usually must know what his/her goal is

Ask the fundamental questions: How is the system being used, and by whom?
Who starts the action, who provides what, who monitors, etc.
Remember, actors can be other systems, like a payment system or a database – not necessarily human
users!

 This is usually done in the requirements workshop brainstorm sessions

 One useful approach: create a table, list all actors and goals, and then identify the primaries
Remember, the primary actor is the one that has a need or goal fulfilled by the system
Secondary (supporting) actors provide a service to the system
Offstage actors have an interest in the behavior of the system, but are not primary or supporting

Note the primary actor may be defined based upon the choice of system boundary

86

Use Cases: Identify Actors, Goals
In Use Case Modeling, in order identify the actors and their goals, we need to
understand the system from the actors’ perspectives

Who is using the system? What are they doing with the system?

Best approach to this is to identify the actors and then ask “What are your goals?
Are they measurable?”

This gets to the heart of what the stakeholders really want from the system
Also helps to avoid slipping into design too early – if we concentrate on the end goals, everyone
stays open to new solutions to meet those goals

87

Use Cases: Primary Actors and System Boundaries

Goal: Process sales

Cashier

Customer

POS System

Checkout Service

Goal: Buy items

Enterprise Selling Things

Sales Tax
Agency

Goal: Collect
taxes on sales Sales Activity

System

Goal: Analyze sales
and performance data

88

POS Case Study: Primary Actor
The previous diagram implies the cashier is the primary actor
What about the customer?

Customer is an actor, but not primary. Why not?

Look at system boundary: For this case study, the system is the POS system.
Unless self checkout, the customer’s goal is not the principle goal here

The cashier’s goal (look up prices, get the total, process payment) is the main goal to be
fulfilled by the system. The system is being designed for use by the cashier – to meet his/her
primary goal.

Goes back to the basic domain definition – what are we designing?
Note: If the system under design is the entire sales enterprise system (inventory,
sales tracking, POS), then the customer is the primary actor

89

Use Cases: Putting it all Together
First, define the system boundary. This involves defining the limits of what
services the system will provide
Next, define the actors and their goals, including the primaries

Role play, actor/goal tables
Can also do this by analyzing events that may take place, and then identifying the actor
generating the event and the goal of the actor

Finally, define the use case
Generally do one use case for each user goal
Use a name that describes the goal, start with a verb
Often the CRUD goals are collapsed into one goal called Manage X, where X is whatever is
being managed (e.g., “Manage User Accounts”)

90

Use Cases: How Big or Small?
It really depends on context

Generally, the use case should define a task performed by one actor in one place
at one time, in response to an event.

If the use case is growing to many pages in length, consider creating sub-tasks

If the use case is only one sentence or step, probably too small and not worth
exploring

Is there a basic business value in the use case?
Which actors are impacted and how?
What is the impact to the overall business?

91

Applying UML: Use Case Diagrams
Note that diagrams are secondary in use case development, and are often used just as
an easy documentation tool. Use Cases are carefully crafted text.

Good to draw these when working out the actors and goals, and the actor-goal list

Can also be very helpful when deciding system boundaries – decide what is inside the
system and what is outside

Use case diagrams are tools, and should be used to help understand the system and use
cases under development

Never accept a set of use case diagrams as the “official” Use-Case Model for a project!
They are much too vague, and you are leaving yourself open to misunderstanding later down the
road
Get it in writing!

92

Example: POS
NextGen POS

Manage Users

. . .

Cashier

System
Administrator

actor

use case

communicationsystem boundary

Payment
Authorization

Service

玜ctor?
Tax Calculator

玜ctor?
Accounting

System

alternate
notation for
a computer
system actor

玜ctor?
HR System

Cash In

玜ctor?
Sales Activity

System

Manage Security

Analyze Activity

Customer

Manager

Process Sale

Handle Returns

93

UML Use Case Diagramming

NextGen

Process Sale

. . .
Cashier

Show computer system actors
with an alternate notation to
human actors.

primary actors on
the left

supporting actors
on the right

For a use case context
diagram, limit the use cases to
user-goal level use cases.

玜ctor?
Payment

Authorization
Service

94

UML Use Case Diagramming (alt)

NextGen

Process Sale

玸ystem ?
Payment

Authorization
Service

...

玜ctor?
Payment

Authorization
Service

Some UML alternatives to
illustrate external actors that
are other computer systems.

The class box style can be
used for any actor, computer or
human. Using it for computer
actors provides visual
distinction.

Payment
Authorization

Service

95

Use Cases – Some Observations
Don’t design, don’t suggest coding. Think about the user story, the actors and goals

UML can also be used to create activity diagrams, which are workflow diagrams. We will
discuss later

Avoid detailed function lists – this is old school, tedious, and not efficient. Write user
stories.

The Use-Case Model artifact captures the functional requirements

Remember, there are other UP artifacts that may still collect requirements: non-
functional requirements, domain rules, etc. may be captured in the Supplementary
Specification artifact.

The Vision document artifact may contain a list of high level system functions, as these
are necessary to define the system scope

96

Case Two: The Monopoly Game
Software version of Monopoly game

This will run as a simulation; the user will configure the game (i.e. indicate the number of players,
etc.), start the simulation, and let the game run to its conclusion.

A trace log will be created to record each move a player makes

97

Monopoly Game Use Case
This is an example of a project where most of the requirements are NOT
captured by the use cases!

In this case, there is only one (simple) use case …
The player starts the game (simulation)

Are there no requirements?
The functional requirements are simple, and basically captured in the project description on
the last slide
This system will have many rules requirements – namely, the rules of the Monopoly game.

These requirements, like most business logic requirements, would be captured in
the Supplementary Specification (we will talk about this later).

This type of requirement is not directly functional to the user, so usually not captured in the
use case

98

Monopoly Game: Use Case Diagram

Monopoly

Play Monopoly
Game

Observer

99

Monopoly Game Use Case
 USE CASE UC1: Play Monopoly Game

 Scope: Monopoly application

 Primary Actor: Observer

 Stakeholders and Interests: Observer: Wants to easily observe the output of the game
simulation

 Main Case Scenario:
1. Observer requests new game initialization, enters number of players
2. Observer starts play.
3. System displays game trace for next player move (see domain rules, and “game trace” in glossary for

trace details)
4. Repeat step 3 until a winner is decided or the Observer cancels the simulation

100

Monopoly Game Use Case
 USE CASE UC1: Play Monopoly Game (cont.)

 Extensions:

 *a. At any time, System fails:
(to support recovery, System logs after each completed move)
1. Observer restarts System.
2. System detects prior failure, reconstructs state, and prompts to continue.
3. Observer chooses to continue (from last completed player turn).

Special Requirements:
o Provide both graphical and text trace modes.

101

Use Cases and Iterative Methods
UP is use-case driven development
Functional requirements are primarily captured in the use cases (i.e. the Use-Case
Model) – this means you would not expect to find many functional requirements
elsewhere
Critical to planning iterations

Planning usually involves selecting a use case to work on, or enhancing an existing use case

In UP, the main goal for each team is to design objects which, when collaborating
together, will realize a use case. This is true of Agile methods in general.
Use cases often give valuable material for the creation of user manuals
Use cases also provide valuable ideas for testing
Use cases often developed in Requirements Workshops held with the customer

102

Iterative Development: Disciplines, Phases, and Artifacts
Discipline Artifact Inception Elaboration Construction Transition
Business
Modeling

Domain Model S, R

Requirements Use-Case Model
Vision
Supp Spec
Glossary

S
S
S
s

R
R
R
R

Design Design Model
SW Arch Doc

S
S

R

S – Start, R - Refine

103

Relating Use Cases
Often we need to relate one use case to another, such as the
withdrawing money from the ATM and establishing a session on the
ATM use cases

Note that this does not change the behavior of the system – it’s
simply a way to better organize a set of use cases that hopefully
makes the system more understandable

Also reduces redundant text, which makes it easier to manage documentation

104

Relating Use Cases
These relationships are tools that can help organize use cases – they
should not be the focus of the use case development effort

Spend your time writing text, not debating diagrams and relationships

Keep in mind, the organization of use cases by relationships may
evolve over the iterations (in the Elaboration Phase, for example). It is
not worth the effort to try to get all the relationships defined up front
– this is Waterfall thinking

105

Terminology: Types of Use Cases
A concrete use case is initiated by an actor and performs the entire
behavior desired by the actor to meet a goal.

These are the elementary use cases that we have seen earlier

An abstract use case is a use case that is never instantiated on its
own; it is always a part of another use case, like a “subfunction” use
case.

For example, in our POS case study, we may have a Process Sale use case, and a
part of that use case may be Handle Credit Payment. The first use case is
concrete, the second is abstract, because it is always used as part of another
use case.

106

Terminology: Types of Use Cases
Abstract use cases often evolve later in the iteration process, when it
is noticed that certain process steps are repeated in multiple use
cases.

Fundamental process in developing reusable code: If you see
commonly occurring themes (code), abstract out and create sub-
classes

The use case that includes another use case (or is extended or
specialized by another use case) is called the base use case. The use
case that is the inclusion, extension, or specialization is called the
addition use case.

107

Relation between use cases
Use cases are business processes and

 A business process may (conditionally) include another business

process.

 The execution of one business process may continue with the
execution of another business process.

108

The include Relationship
Most common and important

This will involve an abstract use case that contains some behavior that is common to several
other concrete use cases

If we consider the previous example, we may have something like this in the Process Sale use
case:

Main Success Scenario
1. Customer arrives at POS system with goods/services to purchase
…
7. Customer pays and System handles payment
Extensions:
7a. Paying by credit: Include Handle Credit Payment
7b. Paying by check: Include Handle Check Payment

109

The include Relationship
The Handle Credit Payment use case would then have its own use case
description, complete with Main Success Scenario and Extensions
Use of the “Include” keyword is optional; it can be left off
When using included use cases, hyperlinks (either in document or on line) is very
useful
This can also be used to break up a very complex use case into higher level steps
which are then detailed in the included use cases
This can also be used to capture branching behavior or asynchronous behavior in
the use case

These are actions that the user may take at any time in main success scenario, and thus are not
associated with any particular step

110

The include Relationship
To include an asynchronous branch point in a use case, we usually
use the following notation:

Extensions
*a. At any time, the Customer selects to cancel the request: Cancel Request
*b. At any time, the Customer selects to return to main menu: Return to Main
Menu
3 – 10: Customer requests help: Show Help Screen

Note the last extension indicated that this included use case can be
instantiated at any time between steps 3 and 10 (inclusive)

111

The extend Relationship
This relationship is used to add to a use case that has been more or less frozen
for some reason

Sometimes expanding or extending a use case is troublesome, and needs to be avoided

Use “Extension Points” to extend the base use case, and then write the
subfunction use case separately
Process Sale (Base Use Case)
…
Extension Points: Payment in Step 7

…

7. Customer pays and System handles payment

112

The extend Relationship
Pay With Gift Certificate (Extended Use Case)
…

Trigger: Customer wants to use a gift certificate

Extension Points: Payment in Process Sale

Level: Subfunction

Main Success Scenario:

1. Customer gives gift certificate to the Cashier

2. …

Note the extended use case refers to the Extension Point, not a numbered step in the base use
case - more robust.

113

114

NextGen POS

Cashier

Customer

Handle Cash
Payment

Process Rental

Process Sale

Handle Check
Payment

Handle Returns

玦nclude? 玦nclude?

玦nclude?

玦nclude? 玦nclude?
玦nclude?

玜ctor?
Accounting

System

玜ctor?
Credit

Authorization
Service

Manage Users

...

UML notation:
the base use
case points to
the included use
case

Handle Credit
Payment

This diagram shows how to indicate an “include” relationship in a UML diagram

UML Diagrams – Extend Relationship

Process Sale

Extension Points:
Payment

VIP Customer

玡xtend?
Payment, if Customer

presents a gift certificate

UML notation:
1. The extending use case
points to the base use case.

2. The condition and
extension point can be
shown on the line.

Handle Gift Certificate
Payment

115

116

Process Sale

Extension Points:
Payment

VIP Customer

玡xtend?
Payment, if Customer

presents a gift certificate

UML notation:
1. The extending use case
points to the base use case.

2. The condition and
extension point can be
shown on the line.

Handle Gift Certificate
Payment

This diagram shows how to indicate an “extend” relationship in a UML diagram

Other Requirements
In the UP, there are some other important requirements artifacts other than the
Use-Case Model

These may not be as important to OOA/OOD, but they are needed for the project to succeed

Other important artifacts that capture requirements:
Supplementary Specification: Most non-functional requirements, like reporting, packaging,
documentation, etc
Glossary: Terms and Definitions
Vision: High level system description
Business Rules: Rules that may transcend the current project, i.e. tax laws, etc.

117

Supplementary Specification
Look for requirements, information, and constraints not easily captured in the use cases
or Glossary

Use FURPS+
In particular, look for Usability, Reliability, Performance, and Supportability requirements
These are known as the “Quality Requirements”

This will be important when we get to architecting the system
“architectural analysis and design are largely concerned with the identification and resolution of the
quality attributes in the context of the functional requirements”
In other words, we want to design the system to meet the functional requirements for the user
while still meeting the quality requirements

Note the Supplementary Specification may also contain business logic rules, like
application-specific calculations.

118

System Sequence diagrams

119

Creating SSDs
 Identify a particular course of events to demonstrate

This is usually found in a use case – each SSD demonstrates a particular use case main success scenario

 The SSD will show the external actors that interact with the system, the system itself (as a black
box), and the system events that the actors generate

 Note this is a simple UML Interaction Diagram – at this level (Use-Case Model), we do not have
much information on the design of the system we are creating

We are simply trying to identify the system events; we will later define object operations from here

 Next slide shows an SSD for the cash-only Process Sale scenario in the NextGen POS project.

 Note the use of the UML interaction diagram notation we discussed last time

120

121

enterItem(itemID, quantity)

:System: Cashier

endSale

makePayment(amount)

a UML loop
interaction
frame, with a
boolean guard
expression

external actor to
system

Process Sale Scenario

system as black box

the name could be "NextGenPOS" but "System" keeps it
simple

the ":" and underline imply an instance, and are explained in a
later chapter on sequence diagram notation in the UML

a message with
parameters

it is an abstraction
representing the
system event of
entering the
payment data by
some mechanism

description, total

return value(s)
associated with the
previous message

an abstraction that
ignores presentation
and medium

the return line is
optional if nothing is
returned

total with taxes

change due, receipt

makeNewSale

[more items]loop

SSDs – Why?
The SSDs are useful for capturing overall system behavior

What events the system is expected to handle, what response (if any) is given to the user (primary actor)

Note that this is still very much an analysis tool - it is explaining what they system is expected to
do, not how it is to be done

This is why the system is modeled as a black box

Later, in the Design Model, we will explore how the system will handle the events it is presented
with

This will include more detailed inter-action diagrams (like we saw last lecture) showing how the software
classes interact to handle the system events

Also useful for capturing interactions with other (external) systems, i.e. “supporting actors”

122

Creating SSDs … Key Ideas
 Create an SSD for one scenario of a use case

 Try to name the system events at the abstract level of intention, rather than in terms of a system
device

So “enterItem” is better than “scan”, as the latter implies some type of scanner

 Usually best to start the event names with a verb if possible – implies action

 SSDs sometimes will include interactions with external systems – we will see more later

 Often, terms and expressions included in the SSD are added to the Glossary while the SSDs are
being built

 These are iterative, just like the Use-Case Model artifact that they belong to
Add more scenarios as new SSDS as the project progresses
May add details to an existing SSD, or use an existing SSD as a part of a new SSD

123

124

: Cashier :System

Simple cash-only Process Sale scenario:

1. Customer arrives at a POS checkout
with goods and/or services to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. System records sale line item and
presents item description, price, and
running total.
Cashier repeats steps 3-4 until indicates
done.
5. System presents total with taxes
calculated.
6. Cashier tells Customer the total, and
asks for payment.
7. Customer pays and System handles
payment.
...

enterItem(itemID, quantity)

endSale

makePayment(amount)

description, total

total with taxes

change due, receipt

makeNewSale

[more items]loop

Process Sale Scenario

125

intro to domain models

126

Case Study: NextGen POS Requirements (Inception)
Key Decisions made during Inception, plans for first iteration:

Implement basic, key scenario of Process Sale use case – entering items
and receiving cash payment
Implement Start Up use case to initialize the system
No collaboration with external services at this point
No complex pricing rules
Notice that for the first iteration, the use case is limited – it will be
expanded in later iterations

127

Case Study: Monopoly Requirements (Inception)
Implement basic, key scenario of Play Monopoly Game use case:

2-8 players
Play for 20 rounds. Each round, each player takes one turn. During a turn, the player advances
his/her piece clockwise around the board a number of squares equal to the number rolled on
two six-sided dice.
The results of each player’s roll is displayed: The display includes the name of the player and
the value of the roll. When a player lands on a square, the player’s name and the name of the
square are displayed
There is no money, winner, or loser, no properties to buy or rent, no special squares
There are 40 squares on the board: One is named “Go”, the others are simply numbered as
“Square 1”, “Square 2”, … “Square 39”
The only user input required is the number of players

128

Domain Model - Introduction
Very important model in OOA … started after some key use cases
have been developed

Illustrates the important concepts in the Domain, and will inspire the
design of some software objects

Also provides input to other artifacts
Use-Case Model
Glossary
Design Model (Sequence Diagrams)

129

130

Register

Item

Store

address
name

Sale

date
time

Payment

amount

Sales
LineItem

quantity

Stocked-in

*

Houses

1..*

Contained-in

1..*

Records-sale-of

0..1

Paid-by

1

1

1

1

1

1

0..1

1

Captured-on 

concept
or domain
object

association

attributes

This diagram shows an
example of a an early
Domain Model for the POS
system.

Note …
We will be using the UML diagrams we saw earlier

The Domain Model appears to capture the important conceptual classes that
make up the domain

We will see how to identify these shortly

The model also shows how these classes inter-relate to each other

Key aspect of OOA: Identifying a rich set of conceptual classes

Remember, this is an iterative approach – don’t need the entire Domain Model
created at once!

The model is refined over the iterations in the Elaboration Phase

131

Domain Model: Definition
The Domain Model can be thought of as a visual representation of conceptual
classes or real-situation objects in the domain (i.e. the real world).

In UP, the term Domain Model means a representation of real-situation
conceptual classes, not software objects. The term does not mean a set of
diagrams describing software classes, the domain layer of the software
architecture, or software objects with responsibilities

This artifact is created in the Business Modeling discipline

Think of as a visual dictionary describing the domain: important abstractions,
domain vocabulary, and information content

132

133

Payment

amount

Sale

date
time

Pays-for

Payment

amount: Money

getBalance(): Money

Sale

date: Date
startTime: Time

getTotal(): Money
. . .

Pays-for

UP Domain Model
Stakeholder's view of the noteworthy concepts in the domain.

UP Design Model
The object-oriented developer has taken inspiration from the real world domain
in creating software classes.

Therefore, the representational gap between how stakeholders conceive the
domain, and its representation in software, has been lowered.

1 1

1 1

A Payment in the Domain Model
is a concept, but a Payment in
the Design Model is a software
class. They are not the same
thing, but the former inspired the
naming and definition of the
latter.

This reduces the representational
gap.

This is one of the big ideas in
object technology.

inspires
objects

and
names in

The difference between
domain model and design
model – UML used in two
different ways.

Creating Domain Models
This is dependent upon which iteration cycle you are in, but in general there are
three steps:

1. Find the conceptual classes

2. Draw the classes as UML diagrams (conceptual level)

3. Add associations and attributes

Finding Conceptual Classes
Use or modify existing models – we will see some of these later
Use a category list
Identify noun phrases in the use cases

134

Category Lists
This is a list of common conceptual class categories, generalized to
apply to many situations
Can be used as a starting point; look for these conceptual classes in
your domain

Book has good list …
Business transactions, transaction line items, where is the transaction recorded,
physical objects, catalogs, other collaborating systems, ..

You can make a list of categories (or use a pre-existing list), and after
reviewing use cases and requirements, list all conceptual classes you
find that relate to a particular category

135

Noun Phrase Identification
Look at a textual description of the domain, and identify all the nouns
and noun phrases

Try not to do this mechanically – not all nouns are conceptual classes!

Good place to start is the fully dressed use case
Go through the main success scenario, identify all important nouns, use
these to name conceptual classes

136

Example: POS Use Case
Main Success Scenario (cash only):
1. Customer arrives at POS checkout with goods and/or services to

purchases
2. Cashier starts new sale
3. Cashier enters item identifier
4. System records sale line item and presents item description, price,

and running total
(repeat 2-3 until no more items)

137

Example: POS Use Case (identify key nouns)
Main Success Scenario (cash only):
1. Customer arrives at POS checkout with goods and/or services to

purchases
2. Cashier starts new sale
3. Cashier enters item identifier
4. System records sale line item and presents item description,

price, and running total
(repeat 2-3 until no more items)

138

Example – Initial Draft of Domain Model for POS

StoreRegister SaleItem

Cash
Payment

Sales
LineItem Cashier Customer

Product
Catalog

Product
Description

Ledger

139

Example – Initial Draft of Domain Model for Monopoly

140

Observations
This model will evolve as the project goes through iterations
But aside from that, why save this model? Once it has served
its purpose, it can be discarded

Once the more detailed class diagrams are created, there may not
be a need for this model

It can be maintained in a UML CASE tool (there are many
available)

141

Observations
Note not all conceptual classes need to be included – we are
not going for a complete model in the beginning

Be careful with classes that simply report information derived from
other classes – like Receipt.
If the reporting entity has some importance in the use case being
considered (Receipt would be useful for Handle Returns, for
example), then it should be included

142

Guidelines
Think like a mapmaker

Use existing names you find in the requirements/use cases, don’t invent new
ones
Use terminology that is consistent with the business area

Exclude irrelevant or out of scope features
For example, in the Monopoly first iteration, we are not using “cards”, so they
do not need to be modeled
Likewise, for the NextGen POS system, we do not need to include tax rules yet

143

Guidelines
Never add a conceptual class for something that is not there!

Always model the real system – don’t try to design ahead
Remember – think like a map-maker

Don’t be afraid of abstract conceptual classes
Virtual connection, etc.
If these are important to the real-world system, they should be modeled in the
Domain model

144

Attributes and Conceptual Classes
Be careful not to turn conceptual classes into attributes

If X cannot be thought of as a number or text, it is probably a conceptual class

For example, in the POS case study, the Store is not a number or
some text, so it should be modeled as a conceptual class (and not an
attribute of Sale, for example)
In Monopoly, the Piece, Board, Square, and Dice are not numbers or
text, so they will be conceptual classes
The number that each dice rolls, however, can be thought of as an
attribute

145

Description Classes
Often it is a good idea to include the information that describes a
class (conceptual or software) in a separate class, called a description
class (also called a specification).

This is a more robust way to design the conceptual classes
Putting all information in each instance is wasteful because it duplicates
information, and may be error-prone (what if something changes?)

Common in sales, product, and service domains.
These are separate objects (conceptual classes, or real software
classes)

146

Descriptor Class – Store Item
Item

description
price
serial number
itemID

ProductDescription

description
price
itemID

Item

serial number
Describes Better

Worse

1 *

147

Descriptor Class – Airline Flight
Worse

Flight

date
time

FlightDescription

number

Airport

name

Describes-flights-to

Described-by

Flight

date
number
time

Airport

name
Flies-to

Better

1*

1*

1

*

148

Associations
An association is a relationship between classes that indicates a meaningful and
interesting connection.

When to add an association between conceptual classes to the domain model?
Ask “do we require some memory of the relationship between these classes?”
The knowledge of the relationship needs to be preserved for some duration
For example, we need to know that a SalesLineItem is associated with a Sale, because
otherwise we would not be able to do much with the Sale (like compute the total
amount, print receipt, etc.)
For the Monopoly example, the Square would not need to know the value of the Dice
roll that landed a piece on that square – these classes are probably not associated

149

Associations
Avoid adding too many associations

A graph with n nodes can have (n x (n – 1)/2) associations, so 20 classes can generate 190
associations!

Realize that there may not be a direct association between software classes in
the class definition model just because there is an association between
conceptual classes in the domain model

Associations in the domain model show that the relationship is meaningful in a conceptual way
But many of these relationships do become paths of navigation in the software

Naming: Use ClassName – VerbPhrase – ClassName format

Can add a small arrow help to help explain the diagram to the reader

150

Associations

SaleRegister Records-current 
0..11

association name multiplicity

-"reading direction arrow"
-it has no meaning except to indicate direction of
 reading the association label
-often excluded

151

Register

ItemStore

Sale

CashPayment

Sales
LineItem

CashierCustomer

Product
Catalog

Product
Description

Stocks

*

Houses

1..*

Used-by

*

Contains
1..*

Describes

*

Captured-on

Contained-in

1..*

Records-sale-of

0..1

Paid-by Is-for

Logs-
completed

*

 Works-on

1
1

1

1 1..*

1

1

1

1

1

1

1

0..1 1

1

Ledger

Records-
accounts-

for

1

1

NextGen POS – Domain Model with associations

152

Monopoly Game – Domain Model with associations

153

Domain Models: Adding Attributes
Useful to add attributes to conceptual classes to satisfy an information requirement in a scenario. Note
that in this case the attribute is a logical data value of an object
Attributes are added to the bottom of the conceptual class box

Notation: visibility name : type multiplicity = default value {property-string}

Sale

- dateTime : Date
- / total : Money

Private visibility
attributes

Math

+ pi : Real = 3.14 {readOnly}

Public visibility readonly
attribute with initialization

Person

firstName
middleName : [0..1]
lastName

Optional value

154

Domain Models: Adding Attributes
Usually assume that the attribute is private, unless otherwise noted

Be careful about placing attribute requirements in the Domain Model
The Domain Model is generally used as a tool to understand the system under
development, and often any requirements that are captured there may be
overlooked
Best to capture attribute requirements in a Glossary
Can also use UML tools that can integrate a data dictionary

Note in the previous example we use the symbol “/” to indicate that
an attribute is derived, i.e. computed.

155

Derived Attribute: Example
In this case, multiple instances of an item can be added to a SaleLineItem one at a time or as a
group. The quantity attribute can be computed directly from the multiplicity of the Items:

SalesLineItem ItemRecords-sale-of 10..1

SalesLineItem ItemRecords-sale-of 0..1 1..*

Each line item records a
separate item sale.
For example, 1 tofu package.

Each line item can record a
group of the same kind of items.
For example, 6 tofu packages.

SalesLineItem

/quantity

ItemRecords-sale-of 0..1 1..*

derived attribute from
the multiplicity value

156

Attributes Versus Classes
 Often attributes are primitive data types

Boolean, Date, Number, Char, String, Time, …

Do not make a complex domain concept an attribute – this should be a separate class.
Data types are things which can be compared by value; conceptual classes are usually compared by
identity
Person class versus name string

Flight

Flight

destination
Worse

Better
Flies-to Airport1 1

destination is a complex
concept

157

Data Type Classes
It is also possible to have more complex data types as attributes in the Domain
Model, and these are often modeled as classes

For example, in the NextGen POS example, we may have an itemID for each item;
it is probably contained in the Item or ProductDescription classes. It could be a
number or a string, but it may have more parts too

In general, your analysis of the system will tell if the attributes are simple or need
more complexity

For example, upon examining the detail of the itemID, we may discover that it is made up of
multiple parts, including a unique UPC, a manufacturer ID, a country code, etc. This would be a
good candidate for a separate class

158

Data Type Class: Example

 In the bottom example, itemID and address would need to be described in the Glossary or
someplace else in the Domain Model

OK

OK

Product
Description

Product
Description

itemId : ItemID

1
Store

Store

address : Address

11 1
ItemID

id
manufacturerCode
countryCode

Address

street1
street2
cityName
...

159

Guidelines for Creating Data Type Class
If the data type is composed of multiple sections, like name, phone number, etc.

There are operations associated with the data type, like parsing

There are other attributes that are associated with it
A promotionalPrice may have a startDate and an endDate.

It represents a quantity with a unit, e.g. currency

It is an abstraction with one or more types of the above

Do not use a “foreign key” to associate two classes – use UML associations, not attributes
A simple attribute that is used to relate two classes – see next slide for an example

Be careful with quantities that require units – best to do a separate classes. Examples are Money and
Weight

160

No Foreign Keys

Cashier

name
currentRegisterNumber

Cashier

name

Register

number
Works-on

Worse

Better

a "simple" attribute, but being
used as a foreign key to relate to
another object

1 1

161

Modeling Quantities
Payment

amount : Number

Payment Quantity

amount : Number

Unit

...

Payment

amount : Quantity

Has-amount
1*

Is-in
1*

not useful

quantities are pure data
values, so are suitable to
show in attribute section better

Payment

amount : Money

variation: Money is a
specialized Quantity whose
unit is a currency

162

Register

ItemStore

Sale

CashPayment

Sales
LineItem

CashierCustomer

Product
Catalog

Product
Description

Stocks

*

Houses

1..*

Used-by

*

Contains
1..*

Describes

*

Captured-on

Contained-in

1..*

Records-sale-of

0..1

Paid-by Is-for

Logs-
completed

*

 Works-on

1
1

1

1 1..*

1

1

1

1

1

1

1

0..1 1

1

Ledger

Records-
accounts-

for

1

1

NextGen POS – Domain Model with associations, add attributes?

163

Attributes: POS Example
After examining the NextGen POS system, we may conclude the
following attributes are needed (we are only assuming cash payments
in this iteration):

CashPayment – Will contain an amountTendered, which is usually a currency amount, must be
captured
ProductDescription – This class will need several pieces of information to accurately describe a
an item: description, itemID, and price for starters.
Sale – this class will need a dateTime attribute. Also will contain a derived total attribute.
SalesLineItem – this class will need to include a quantity attribute
Store – this class will need to contain attributes for name, address

164

Register

id

ItemStore

name
address

Sale

dateTime
/ total

CashPayment

amountTendered

Sales
LineItem

quantity

Cashier

id

Customer

Product
Catalog

Product
Description

itemID
description
price

Stocks

*

Houses

1..*

Used-by

*

Contains
1..*

Describes

*

Captured-on

Contained-in

1..*

Records-sale-of

0..1

Paid-by Is-for

Logs-
completed

*

 Works-on

1
1

1

1 1..*

1

1

1

1

1

1

1

0..1 1

1

Ledger

Records-
accounts-

for

1

1

165

Attributes: Monopoly Example
After examining the Monopoly system, we may conclude the
following attributes are needed (remember, this is just the first
iteration):

Die – This class will need a faceValue attribute, so we can print the players’ dice rolls to the log
Square - this class will need a name attribute, so we can print the players’ moves to the log
Player – this class needs a name for logging
Piece – this class needs a name

166

167

Domain Modeling in UP
Models are tools of communication and understanding, and by nature they are inaccurate representations
of the real world

There is no “correct” Domain Model, but some models are more useful than others

The Domain Model will evolve over several iterations in the UP
The model is usually limited to prior and current scenarios under construction as use cases are developed

Rarely is the Domain Model started during Inception – it is usually started during the early stages of
Elaboration, and evolves over the first few iterations as the requirements and use cases are revealed

UP also has a Business Object Model artifact, which is an enterprise model used to describe the entire
business

The BOM artifact consists of several items, including diagrams (class, activity, sequence) that show how the enterprise
should run
We will not study this artifact

168

Domain Model Refinement
 Suppose in our next iteration of the NextGen POS system, as the result of our analysis we add two new payment
options: By credit card and by check. The Process Sale use case has been extended:

Use Case UC1: Process Sale

…
Extensions
7b Paying by Credit:
 1. Customer enters their credit account information
 2. System sends payment authorization request to an external Payment Authorization Service, requests payment
approval
 3. System receives payment approval
…

7c Paying by Check
 1. Customer writes check, and give it along with their drivers license to the Cashier
 2. Cashier writes the drivers license number on the check, enters it, and requests check payment authorization
…

169

Domain Model Refinement: Generalization
Note that we could go through this use case and identify new concepts based upon the nouns we
see

CreditAuthorizationService, CheckAuthorizationService, etc.

Also note that the concepts of CashPayment, CreditPayment, and CheckPayment are all very
similar – they just represent different ways of paying

In situations like this, it is often useful to organize the various related concepts into a
generalization-specialization class hierarchy (or class hierarchy).

In this example, it would make sense to create a Payment superclass, and consider the cash,
credit, and check payments to be specialized subclasses

Remember – we are in the Domain Model, so these are conceptual classes, not software classes

170

Domain Model Refinement: Generalization
 Even though these are not software classes, this type of modeling can lead to better software
design later (inheritance, etc.)

 UML notation uses an open arrow to denote subclasses of a conceptual class

171

Cash
Payment

Credit
Payment

Check
Payment

Payment

Cash
Payment

Credit
Payment

Check
Payment

Payment

Super- and Sub-Classes

172

Cash
Payment

Credit
Payment

Check
Payment

Payment

amount : Money
Payment

CashPayment CreditPayment CheckPayment

Super and Sub Classes
All statements about the super-class apply to any sub-classes; in other words, 100% of the super-
class definition applies to the sub-class

The sub-class must conform to the attributes and associations of the super-class
A Credit Payment pays-for a Sale. A Check Payment has an amount

173

Cash
Payment

Credit
Payment

Check
Payment

Payment

amount : Money
SalePays-for

11

Refining Domain Models: Super and Sub Classes
Can think of the “sub-class as being a kind of super-class”

A Credit Payment is a kind of Payment
Often shortened to: A Credit Payment is a Payment

We can identify sub-classes by these two rules
The 100% - all the super-class definition applies to the sub-class
The “is a” rule – the sub-class is a kind of super-class

Any sub-class of a super-class must obey these rules

174

Sub-Classes: When to Define
Occasionally a super-class is created to capture similar sub-classes, but usually
the process works the other way: A more general super-class has been defined,
and as the iterations proceed, sub-classes are created to handle more detailed
scenarios

Guidelines: Create a sub-class when …
The class under consideration “is a” kind of an existing super-class
The class under consideration has additional attributes of interest
The class under consideration has additional associations of interest
The class under consideration is operated on, handled, reacted to, or manipulated differently than the
super-class (or other subclasses)
The class under consideration represents an actor that behaves differently than the super-class or other
sub-classes

175

Super- and Sub-Classes: When to Create

176

 Bad example:

Male
Customer

Female
Customer

Customer Correct subclasses.

But useful?

 When would this make sense?
 Market research model, where there are behaviors of male and female shoppers that are different
 Medical research, since men and women are different biologically

Super-Classes: When to Define
This may occur when common traits are identified among various
conceptual classes in the Domain Model

Create a super-class when:
The potential sub-classes appear to be variations of the same concept
All the potential sub-classes will conform to the “is a” rule for the new super-
class
A set of common attributes that belong to all the potential sub-classes is
identified and can be factored out
A set of common associations that all potential sub-classes have has been
identified and can be factored out

177

Example: Payment Sub-Classes

178

Cash
Payment

Credit
Payment

Check
Payment

Payment

amount : Money

Check

Identifies-credit-with Paid-with
*

each payment subclass is
handled differently

additional associations

superclass justified by common
attributes and associations

Sale
Pays-for

CreditCard

1

1

1 1

179

Credit
Authorization

Service

Check
Authorization

Service

Check
Payment

AuthorizationService

address
name
phoneNumber

additional associations

superclass justified by
common attributes and
associations

Store
Authorizes-payments-of *

Authorizes

Credit
Payment

Authorizes

**

*

1 1

Domain Models: Levels of Granularity
As the Domain Model evolves, the question will arise: What level of
detail to go to? How many sub-classes?
Depends on the system being modeled – remember, the Domain
Model is a tool to help understand the system
Note that system transactions (request – reply) are usually modeled,
because other activities and processes depend upon them
But it is not always necessary to define sub-classes for every
transaction
General rule: don’t add complexity unless needed!

180

181

CreditPayment
Approval

Reply

CheckPayment
Approval

Reply

CreditPayment
Approval
Request

CheckPayment
Approval
Request

CreditPayment
Denial
Reply

CheckPayment
Denial
Reply

CheckPayment
Authorization

Reply

CreditPayment
Authorization

Reply

Payment
Authorization

Reply

Payment
Authorization

Request

Payment
Authorization
Transaction

date
time

Concepts too fine grained?
Useful to show this degree of
partitioning?

Each transaction is
handled differently, so
it is useful to partition
them into discrete
classes.

182

CreditPayment
Approval
Request

CheckPayment
Approval
Request

Payment
Authorization

Reply

Payment
Authorization

Request

Payment
Authorization
Transaction

date
time

CreditPayment
Approval

Reply

CheckPayment
Approval

Reply

CreditPayment
Denial
Reply

CheckPayment
Denial
Reply

Abstract Conceptual Classes
Recall that when we were developing use cases, we saw that it may be useful to collect a
series of steps that occurs in several use cases and define an abstract use case that the
other use cases could refer to
We can do something similar for conceptual classes: If every member of a class C is a
sub-class of C, then C is called an abstract class. But if there is an instance of C that is not
a member of a sub-class, then C is not an abstract class.

The Payment conceptual class we have been discussing is an abstract class, because all payments fall
into one of the three sub-classes

Usually, when a super-class is created from a set of sub-classes, the super-class is
abstract
Not all super-classes are abstract classes
Denote with italics in Domain Model

183

Modeling State Changes
Occasionally it is necessary to capture the state of an transaction, for example, in
the Domain Model.

This should not be done with sub-classes, because the super-class can transition

Best to use a separate conceptual class for this, and provide state subclasses of
the state class

The association is usually “is-in” for these state transition classes

State transitions can also be captured in a state diagram

184

Example: Modeling State Changes

185

Paymentnot useful

these subclasses are
changing states of the
superclass Unauthorized

Payment
Authorized
Payment

PaymentState better

Unauthorized
State

Authorized
State

Payment Is-in 1*

Association Classes
Often, the association between conceptual classes contains information that needs to be
captured in the model, but does not belong in either class as an attribute

A merchantID may be an attribute with the payment authorization service, but this does not
belong in either the Store or AuthorizationService classes
A salary may be an attribute of employment, but it does not belong as an attribute of the
person or employer classes

General rule: If class C can simultaneously have many values of attribute A, then A
should not be placed in C.

Could create a new conceptual class and associate it with the existing classes, but this
can add complexity to the model

Better way: Create a special class that represents the attributes of the association

186

Example: An Association Class

187

address
name
phoneNumber

AuthorizationService

address
name

Store

merchantID

ServiceContract
an association class

its attributes are related to the association

its lifetime is dependent on the association

Authorizes-payments-via
1..**

Association Classes – When to Add
If the attribute(s) appear to be related to the association and not a particular
conceptual class ….

The lifetime of the attributes is dependent upon the association …

There is a many-to-many association between two conceptual classes, and there
are many attributes (common clue)

188

Aggregation and Composition
These are software class concepts that will be important later

Aggregation implies a container or collection of classes
In this case, if the container class is destroyed, the individual parts are not
Denoted in UML as an open diamond

Composition also implies a collection of classes, but with a stronger life
dependency

If the container class is destroyed, the individual component instances are also
destroyed
Denoted by a filled in diamond in UML

189

Examples: Aggregation and Composition

190

Aggregation and Composition
Usually not critical for domain models, but may be used to …

Clarify constraints in the Domain Model (e.g. existence of a class depends on
another class)

Help model situations when create/delete operations apply to many sub-parts

191

Examples: Composition in NextGen POS

192

SalesLineItemSale
1..*

Product
Description

Product
Catalog 1..*

1

1

Association Role Names

Occasionally a role name is added
to an association; this name
describes the role the object plays
in the association

Not required, often included if
there role is not clear

Should model the role as a
separate class if there are unique
attributes, associations, etc.
related to the role

193

Flight CityFlies-to* destination

role name

describes the role of a city in the
Flies-to association

Person

*
parent

Creates 

2
child

1

“Reflexive
Association”

Qualified Associations
A qualifier may be used in an association; it distinguishes a set of objects at the far
end of the association based upon the qualifier value

In the example below, we can identify the ProductDescriptions by the itemID, so
we denote this in the UML diagram and change the multiplicity. Be careful not to
design!

194

Product
Catalog

Product
DescriptionitemID Contains

Product
Catalog

Product
Description

Contains

1..*

multiplicity reduced to 1

(a)

(b)

qualifier

1

11

Packages

Often, a Domain Model may become complex and hard to read

Re-structuring the model using packages is an way to improve readability and
maintainability

195

Domain

Core Elements Sales

Packages

An element is owned by the package it belongs to, but can be referenced by
elements in another package

196

SalesCore Elements

Sale

Core Elements::
Register

Captures

Store RegisterHas
1..*1

1

1

Packages

Packages may be dependent upon each other; this happens if the elements know
about or are coupled to elements in another package

197

Domain

Core Elements Sales

Partitioning the Domain Model
Use packages to partition the Domain Model when there are groups of elements
that …

 … are in the same subject area, closely related by concept or purpose

 … are in the same class hierarchy together

 … participate in the same use case

 … are strongly associated

198

NextGen POS – Domain Model

199

Domain

Core/Misc Payments Products Sales

Authorization
Transactions

NextGen POS: Core/Misc Package

200

Core/Misc

Register Manager

Store

address
name

Houses

1..*

Employs

1..*
1

1

201

Payments

Check

Accounts
Receivable

Credit
Payment

Check
Payment

Check
Authorization

Service

Credit
Authorization

Service

Authorized-by

Authorized-by

*
**

AuthorizationService

address
name
phoneNumber

Core::StorePayment

amount

Establishes-
credit-for 

Logs 

*

CreditCard

expiryDate
number

DriversLicense

number

1..*

Establishes-
identity-for 

Paid-by

CashPayment

amountTendered *

Sales::CustomerAbused-by

Identifies

Authorization Transactions::
PaymentAuthorizationReply

- CheckPayments have
 CheckPaymentReplies

- CreditPayments have
 CreditPaymentReplies

1

1

1

111

1

1 1

1

1

Authorizes-payments-of

merchantID

ServiceContract

1

202

Products

1..*

Core::
Store

Stocks

*

Describes

*

Sales::
SalesLineItem

Described-by *

Records-sale-of

0..1

Product
Description

description
price
itemID

ProductCatalog

Item
1

1

1

1

1

203

Sales

Cashier

Customer

1..*

SalesLineItem

/quantity

Sale

date
isComplete
time

Initiates

Core::
Register

Records-sales-on

Captured-on

Core::
Store

Logs-completed
*

1

1

1

1

1

1

1

1

Tax
LineItem

description
percentage
amount

1..* 1

204

Authorization Transactions

CreditPayment
Approval
Request

CheckPayment
Approval
Request

Payment
Authorization

Reply

Payment
Authorization

Request

CreditPayment
Approval

Reply

CheckPayment
Approval

Reply

CreditPayment
Denial
Reply

CheckPayment
Denial
Reply

Payment
Authorization
Transaction

	Object-Oriented Analysis and Design
	Textbook
	What will we learn?
	What will we learn?
	We will:
	Objects
	OOA/OOD
	Analysis and Design:
	UML
	UML
	UML
	Slide Number 12
	UML
	UML
	UML
	UML
	Slide Number 17
	Example: The Dice Game
	The Dice Game: Domain Model
	The Dice Game: Object Responsibilities and Interactions
	The Dice Game: Interaction Diagram
	The Dice Game: Design Class Diagrams
	The Dice Game: Class Design Diagram
	UML: Conceptual versus Specification Perspective
	iterative, evolutionary, and agile
	Iterative Development
	Unified Process (UP)
	Iterative Methodology
	The Iterative Process
	Embrace Change
	Iteration Convergence
	The Benefits
	Waterfall Lifecycle
	Example
	Example
	Slide Number 36
	Agile Methods and Attitudes
	The Agile Principles
	The Agile Principles
	Agile Modeling
	UP – The Key Practices
	UP Phases
	UP Phases
	The UP Disciplines
	Slide Number 45
	UP Disciplines and Phases
	UP Development Case
	More on Agile Methods
	When Do Agile Methods Work Best?
	The Case Studies We Will Work With
	The Case Studies
	Case One: The NextGen POS System
	Case Two: The Monopoly Game
	inception, requirements, use cases�
	What will we learn?
	Inception
	Inception
	Evolutionary Requirements
	FURPS+
	Requirements Organization: UP Artifacts
	Slide Number 61
	The Use-Case Model Artifact
	Key Features
	Key Features
	Example: ATM Session Use Case
	Example: ATM Session Use Case
	Example: ATM Session Use Case
	Actors and Use Case Formats
	Use Case Template
	Use Case Template
	Guidelines (Fully Dressed)
	Example: ATM Withdrawal (Fully Dressed)
	Example: ATM Withdrawal
	Example: ATM Withdrawal
	Example: ATM Withdrawal
	Example: ATM Withdrawal
	Example: Data Entry System
	Example: Data Entry(Fully Dressed)
	Example: Data Entry
	Example: Data Entry
	Example: Data Entry
	What is an Executive Summary (Brief)
	How to Find Use Cases
	The NextGen POS System
	Defining Use Cases: System Boundaries
	Use Cases: Identify Primary Actors and Goals
	Use Cases: Identify Actors, Goals
	Use Cases: Primary Actors and System Boundaries
	POS Case Study: Primary Actor
	Use Cases: Putting it all Together
	Use Cases: How Big or Small?
	Applying UML: Use Case Diagrams
	Example: POS
	UML Use Case Diagramming
	UML Use Case Diagramming (alt)
	Use Cases – Some Observations
	Case Two: The Monopoly Game
	Monopoly Game Use Case
	Monopoly Game: Use Case Diagram
	Monopoly Game Use Case
	Monopoly Game Use Case
	Use Cases and Iterative Methods
	Iterative Development: Disciplines, Phases, and Artifacts
	Relating Use Cases
	Relating Use Cases
	Terminology: Types of Use Cases
	Terminology: Types of Use Cases
	Relation between use cases
	The include Relationship
	The include Relationship
	The include Relationship
	The extend Relationship
	The extend Relationship
	Slide Number 114
	UML Diagrams – Extend Relationship
	Slide Number 116
	Other Requirements
	Supplementary Specification
	System Sequence diagrams
	Creating SSDs
	Slide Number 121
	SSDs – Why?
	Creating SSDs … Key Ideas
	Slide Number 124
	Slide Number 125
	intro to domain models�
	Case Study: NextGen POS Requirements (Inception)
	Case Study: Monopoly Requirements (Inception)
	Domain Model - Introduction
	Slide Number 130
	Note …
	Domain Model: Definition
	Slide Number 133
	Creating Domain Models
	Category Lists
	Noun Phrase Identification
	Example: POS Use Case
	Example: POS Use Case (identify key nouns)
	Example – Initial Draft of Domain Model for POS
	Example – Initial Draft of Domain Model for Monopoly
	Observations
	Observations
	Guidelines
	Guidelines
	Attributes and Conceptual Classes
	Description Classes
	Descriptor Class – Store Item
	Descriptor Class – Airline Flight
	Associations
	Associations
	Associations
	Slide Number 152
	Slide Number 153
	Domain Models: Adding Attributes
	Domain Models: Adding Attributes
	Derived Attribute: Example
	Attributes Versus Classes
	Data Type Classes
	Data Type Class: Example
	Guidelines for Creating Data Type Class
	No Foreign Keys
	Modeling Quantities
	Slide Number 163
	Attributes: POS Example
	Slide Number 165
	Attributes: Monopoly Example
	Slide Number 167
	Domain Modeling in UP
	Domain Model Refinement
	Domain Model Refinement: Generalization
	Domain Model Refinement: Generalization
	Super- and Sub-Classes
	Super and Sub Classes
	Refining Domain Models: Super and Sub Classes
	Sub-Classes: When to Define
	Super- and Sub-Classes: When to Create
	Super-Classes: When to Define
	Example: Payment Sub-Classes
	Slide Number 179
	Domain Models: Levels of Granularity
	Slide Number 181
	Slide Number 182
	Abstract Conceptual Classes
	Modeling State Changes
	Example: Modeling State Changes
	Association Classes
	Example: An Association Class
	Association Classes – When to Add
	Aggregation and Composition
	Examples: Aggregation and Composition
	Aggregation and Composition
	Examples: Composition in NextGen POS
	Association Role Names
	Qualified Associations
	Packages
	Packages
	Packages
	Partitioning the Domain Model
	NextGen POS – Domain Model
	NextGen POS: Core/Misc Package
	Slide Number 201
	Slide Number 202
	Slide Number 203
	Slide Number 204

