
Secure Coding in C/C++

Dr. Kamil Sarac

2012 REU (Research Experiences for Undergraduates)

Department of Computer Science

University of Texas at Dallas

Slides prepared by Mitch Adair and Kamil Sarac at UT Dallas

Outline

● Objective

● What is secure coding?

● Why should I care?

● Bug classes

● Memory corruption

● Integer overflows/underflows

● Type conversion

● Others

● Source code auditing

● Resources

Objective

● Be able to identify certain types of

bugs/vulnerabilities in C/C++ source code

● Identify the correct way to avoid these bugs

Secure Coding

● Programming in a way as to avoid bugs and

possible security vulnerabilities at the time of

development, rather than reviewing and fixing

code after the fact.

Why should I care?

● Create better software

● Secure

● Reliable

● Extendable

● …

● Save $$$

● Cost more to patch and roll out than to prevent

● Negative publicity can't be good...

Memory Corruption

● “...the contents of a memory location are

unintentionally modified due to programming

errors... When the corrupted memory contents

are used later in the computer program, it leads

either to program crash or to strange and

bizarre program behavior.” - wikipedia

Common Culprits

● String functions that assign/copy values, without a

length parameter

● strcpy

● strcat

● sprintf

● etc.

● These functions continue execution until a null byte is

found in the source string

● Trusting the source of input to contain a properly

terminated null string can be abused by attackers

Behind the scenes

Is equivalent to, and what the true

representation of s looks like :

Behind the scenes...

● If user_buffer is less than 15 bytes, there is no

problem, but with 15 or more bytes strcpy will

continue writing to the boundary of buff and

down the stack – regardless of buff's size.

What's really going on

ESP

EBP

RET

arguments

EBP

Possible local variable

buff
15 bytes

More than 15
bytes of data

...

previous stack frame

Stack frame

● strcpy will

continue

writing down

the stack

Slightly Safer Functions

● These functions have a similar prototype which

provides a length parameter :

● strncpy

● strncat

● snprintf

● …

● The 'n' indicates these functions take a length

parameter.

● strcpy(dest, source)

● strncpy(dest, source, length)

I'm safe now... right?

I'm safe now... right?

● Nope. strncpy is used and a specific length is

being copied into buff this time, but it is the

length of the untrusted user_buffer – not the

destination buff.

I'm safe now... right? #2

I'm safe now... right? #2

● Not quite, the buffer is not null terminated, the

entire buffer could get copied into and filled up,

not leaving room for a null byte

● What's the risk?

Forgetting null termination

Forgetting null termination...

ESP

EBP

RET

arguments

EBP

buff3

previous stack frame

Stack frame

buff2

buff1

src2
 ● If src2 is 512

bytes like buff2,

it will not be

null terminated

Forgetting null termination...

ESP

EBP

RET

arguments

EBP

buff3

previous stack frame

Stack frame

buff2

buff1

src2
 ● If src3 is 512

bytes like buff3,

it will not be

null terminated

● The size of

buff3 is now

1024 bytes

src3

Forgetting null termination...

ESP

EBP

RET

arguments

EBP

buff3

previous stack frame

Stack frame

buff2

buff1

src2
 ● Any string

operation on

buff3 will now

operate on at

least 1024 bytes,

because no null

bytes are in buff3

and buff2

src3

The proper way

● Will not overrun dest

● Allows for null termination

The proper way... strncat

● It's ugly, but correct

● If strncat isn't done properly, its another

common culprit – check it

Integer Overflows/Underflows

● “...an integer overflow occurs when an

arithmetic operation attempts to create a

numeric value that is larger than can be

represented within the available storage space”

- wikipedia

Unsigned values

Inter Overflows/Underflows...

● When a data-type is assigned a value larger

than it's maximum size, the value will 'wrap'

around

Overflow + allocation

● The +1 could be for the null byte

● malloc takes an unsigned int as its length param

● If len is the max value of an unsigned int, 2^32-1,

the length will wrap and malloc will allocate 0

bytes, but then 2^32-1 bytes will be written

Underflow

● Buff will be completely filled, with no null

termination from strncpy, which results in :

strncat(buff, source2, 20-20-1)

strncat(buff,source2, 2^32-1)

Rolls around to a
very large number

Type Conversion

● “...implicitly or explicitly, changing an entity of

one data type into another.” - wikipedia

● Arithmetic operations, assignments and

comparisons cause type promotion and

sometimes conversion

Type Conversion...

● Operations of data types (on x86) less than a

signed int, will cause the promotion of the data

types to signed ints – then the operation will

take place – then the data types will be

demoted to their original values

● Unless an unsigned int is in the operation, then

the other value will promoted to an unsigned int

● Why? On x86 systems integers are assumed to

be the most efficient data type

Why is this a problem?

● MAXLENGTH is a signed value, so is size.

● A size of -1 will pass the signed sanity check,

then size is converted to a very large unsigned

value in read

Things to look for

● Signed values being used as lengths

● Unsigned values being checked less than 0

● Like return values, these checks will always get

bypassed

Others

● String vulnerabilities make up a large portion of

C/C++ bugs, but there are several others

● Format strings

● Off-by-one

● etc.

● For the sake of sanity and time, we won't cover

these

Actually...

● Reviewing other people's/project's source code

with the intent of discovering vulnerabilities is

it's own line of work...

● Source code auditing

What is source code auditing

● “...a comprehensive analysis of source code in

a programming project with the intent of

discovering bugs, security breaches or

violations of programming conventions.” -

wikipedia

● Analyzing source code in order to discover

flaws

Source Code Auditing – who/why?

● Security researchers

– Fame, fun, hobby

● Code auditors

– career

● Exploit development - good and bad guys

– High profile vulnerabilities and their exploits sell for high

dollar $$$

Before you begin

● Scope

● Pick your targets

– Sources of input

– Any form of parsing

– Binary protocols (files, network, …)

● Balance time and code

● Gain an understanding of the target

● Documentation, manuals, etc.

● Don't forget the easy stuff

● Comments! “fixme”, “bad”, etc.

Resources

● Open source projects are a great way to

practice and hunt for vulnerabilities

● More specific / advanced tutorials are online

● https://www.fortify.com/vulncat/en/vulncat/index.

html

● Listing of vulnerability classes and types, by

language

https://www.fortify.com/vulncat/en/vulncat/index.html
https://www.fortify.com/vulncat/en/vulncat/index.html
https://www.fortify.com/vulncat/en/vulncat/index.html

