
Research Experiences
for Undergraduates
(REU)

Software Project Planning and Management
Summer 2013—Dr. Straach

Reference Books

2

What are the attributes
of good software?
Good software should deliver the

required functionality and
performance to the user and
should be maintainable,
dependable and usable.

3

Essential attributes of good
software

4

Product

characteristic

Description

Maintainability Software should be written in such a way so that it can evolve to
meet the changing needs of customers. This is a critical attribute
because software change is an inevitable requirement of a changing
business environment.

Dependability and security Software dependability includes a range of characteristics including
reliability, security and safety. Dependable software should not cause
physical or economic damage in the event of system failure.
Malicious users should not be able to access or damage the
system.

Efficiency Software should not make wasteful use of system resources such as
memory and processor cycles. Efficiency therefore includes
responsiveness, processing time, memory utilisation, etc.

Acceptability Software must be acceptable to the type of users for which it is
designed. This means that it must be understandable, usable and
compatible with other systems that they use.

4

What is software
engineering?

Software engineering is an
engineering discipline that is
concerned with all aspects of
software production.

5

Software engineering

 Engineering discipline
Using appropriate theories and methods to

solve problems bearing in mind organizational
and financial constraints.

 All aspects of software production
Not just technical process of development.

Also project management and the
development of tools, methods etc. to support
software production.

6 6

What are the fundamental
software engineering activities?

Software specification
Software development
Software validation
Software evolution

7

Software process activities
 Software specification, where customers and

engineers define the software that is to be
produced and the constraints on its operation.

 Software development, where the software is
designed and programmed.

 Software validation, where the software is
checked to ensure that it is what the customer
requires.

 Software evolution, where the software is
modified to reflect changing customer and
market requirements.

8 8

What is the difference between
software engineering and
computer science?

Computer science focuses on theory
and fundamentals; software
engineering is concerned with the
practicalities of developing and
delivering useful software.

9

What are the key challenges
facing software engineering?

Coping with increasing diversity
and complexity, demands for
reduced delivery times, continual
change in requirements and
developing trustworthy software.

10

Key points

11

 Software engineering is an engineering
discipline that is concerned with all
aspects of software production.

 Essential software product attributes are
maintainability, dependability and security,
efficiency and acceptability.

 The high-level activities of specification,
development, validation and evolution are
part of all software processes.

 The fundamental notions of software
engineering are universally applicable to
all types of system development.

11

Importance of software
engineering
 More and more, individuals and society rely on advanced

software systems. We need to be able to produce
reliable and trustworthy systems economically and
quickly.

 It is usually cheaper, in the long run, to use software
engineering methods and techniques for software
systems rather than just write the programs as if it was a
personal programming project. For most types of
system, the majority of costs are the costs of changing
the software after it has gone into use.

12 12

The software process
 A structured set of activities required to develop a

software system.

 Many different software processes but all involve:
 Specification – defining what the system

should do;
 Design and implementation – defining the

organization of the system and implementing
the system;

 Validation – checking that it does what the
customer wants;

 Evolution – changing the system in response to
changing customer needs.

13

A software process model is an abstract representation of a

process. It presents a description of a process from some

particular perspective.

 13

Software process descriptions
 When we describe and discuss processes, we

usually talk about the activities in these
processes such as specifying a data model,
designing a user interface, etc. and the ordering
of these activities.

 Process descriptions may also include:
 Products, which are the outcomes of a process

activity;
 Roles, which reflect the responsibilities of the people

involved in the process;
 Pre- and post-conditions, which are statements that

are true before and after a process activity has been
enacted or a product produced. 14 14

Plan-driven vs. agile processes
 Plan-driven processes are processes

where all of the process activities are
planned in advance and progress is
measured against this plan.

 In agile processes, planning is incremental
and it is easier to change the process to
reflect changing customer requirements.

 In practice, most practical processes
include elements of both plan-driven and
agile approaches.

 There are no right or wrong software
processes.

15 15

Software process models
 The waterfall model

 Plan-driven model. Separate and distinct phases of
specification and development.

 Incremental development

 Specification, development and validation are
interleaved. May be plan-driven or agile.

 Reuse-oriented software engineering

 The system is assembled from existing components.
May be plan-driven or agile.

 In practice, most large systems are developed
using a process that incorporates elements from
all of these models.

16 16

The waterfall model

17 17

Waterfall model phases
 There are separate identified phases in the waterfall model:

1) Requirements analysis and definition
2) System and software design
3) Implementation and unit testing
4) Integration and system testing
5) Operation and maintenance

 The main drawback of the waterfall model is the difficulty of
accommodating change after the process is underway. In principle,
a phase has to be complete before moving onto the next phase.

18 18

Waterfall model problems
 Inflexible partitioning of the project into distinct stages

makes it difficult to respond to changing customer
requirements.
 Therefore, this model is only appropriate when the

requirements are well-understood and changes will be
fairly limited during the design process.

 Few business systems have stable requirements.
 The waterfall model is mostly used for large systems

engineering projects where a system is developed at
several sites.
 In those circumstances, the plan-driven nature of the

waterfall model helps coordinate the work.

19 19

Incremental development

20 20

Incremental development
benefits
 The cost of accommodating changing customer requirements is

reduced.
 The amount of analysis and documentation that has to be

redone is much less than is required with the waterfall model.
 It is easier to get customer feedback on the development work that

has been done.
 Customers can comment on demonstrations of the software and

see how much has been implemented.
 More rapid delivery and deployment of useful software to the

customer is possible.
 Customers are able to use and gain value from the software

earlier than is possible with a waterfall process.
21 21

Incremental development
problems
 The process is not visible.

 Managers need regular deliverables to measure progress. If
systems are developed quickly, it is not cost-effective to produce
documents that reflect every version of the system.

 System structure tends to degrade as new increments are added.
 Unless time and money is spent on refactoring to improve the

software, regular change tends to corrupt its structure.
Incorporating further software changes becomes increasingly
difficult and costly.

22 22

Reuse-oriented software
engineering
 Based on systematic reuse where systems are integrated from

existing components or COTS (Commercial-off-the-shelf) systems.

 Process stages
 Component analysis;
 Requirements modification;
 System design with reuse;
 Development and integration.

 Reuse is now the standard approach for building many types of
business system
 Reuse covered in more depth in Chapter 16.

23 23

Reuse-oriented software
engineering

24 24

Process activities
 Real software processes are inter-leaved sequences of technical,

collaborative and managerial activities with the overall goal of
specifying, designing, implementing and testing a software system.

 The four basic process activities of specification, development,
validation and evolution are organized differently in different
development processes. In the waterfall model, they are organized
in sequence, whereas in incremental development they are inter-
leaved.

25 25

Software specification
 The process of establishing what services are required and the

constraints on the system‘s operation and development.

 Requirements engineering process
 Feasibility study

 Is it technically and financially feasible to build the system?
 Requirements elicitation and analysis

 What do the system stakeholders require or expect from the
system?

 Requirements specification
 Defining the requirements in detail

 Requirements validation
 Checking the validity of the requirements

26 26

The requirements engineering process

27 27

Software design and
implementation
 The process of converting the system specification into an

executable system.

 Software design
 Design a software structure that realises the specification;

 Implementation
 Translate this structure into an executable program;

 The activities of design and implementation are closely related and
may be inter-leaved.

28 28

A general model of the design process

29 29

Design activities
 Architectural design, where you identify the overall structure of the

system, the principal components (sometimes called sub-systems or
modules), their relationships and how they are distributed.

 Interface design, where you define the interfaces between system
components.

 Component design, where you take each system component and
design how it will operate.

 Database design, where you design the system data structures and
how these are to be represented in a database.

30 30

Software validation
 Verification and validation (V & V) is

intended to show that a system conforms to
its specification and meets the requirements
of the system customer.

 Involves checking and review processes
and system testing.

 System testing involves executing the
system with test cases that are derived from
the specification of the real data to be
processed by the system.

 Testing is the most commonly used V & V
activity.

31 31

Stages of testing

32 32

Testing stages
 Development or component testing

 Individual components are tested independently;
 Components may be functions or objects or coherent groupings

of these entities.
 System testing

 Testing of the system as a whole. Testing of emergent properties
is particularly important.

 Acceptance testing
 Testing with customer data to check that the system meets the

customer‘s needs.

33 33

Testing phases in a plan-driven
software process

34 34

Software evolution
 Software is inherently flexible and can

change.

 As requirements change through changing
business circumstances, the software that
supports the business must also evolve and
change.

 Although there has been a demarcation
between development and evolution
(maintenance) this is increasingly irrelevant
as fewer and fewer systems are completely
new.

35 35

System evolution

36 36

Key points
 Software processes are the activities

involved in producing a software system.
Software process models are abstract
representations of these processes.

 General process models describe the
organization of software processes.
Examples of these general models include
the ‗waterfall‘ model, incremental
development, and reuse-oriented
development.

37
37

Key points
 Requirements engineering is the

process of developing a software
specification.

 Design and implementation processes
are concerned with transforming a
requirements specification into an
executable software system.

 Software validation is the process of
checking that the system conforms to its
specification and that it meets the real
needs of the users of the system.

 Software evolution takes place when
you change existing software systems to
meet new requirements. The software
must evolve to remain useful.

38 38

Coping with change
 Change is inevitable in all large software projects.

 Business changes lead to new and changed system
requirements

 New technologies open up new possibilities for improving
implementations

 Changing platforms require application changes
 Change leads to rework so the costs of change include both rework

(e.g. re-analyzing requirements) as well as the costs of
implementing new functionality

39 39

 Concerned with activities involved in ensuring
that software is delivered on time and on
schedule and in accordance with the
requirements of the organisations developing
and procuring the software.

 Project management is needed because
software development is always subject to
budget and schedule constraints that are set by
the organisation developing the software.

Software project management

40

Success criteria

 Deliver the software to the customer at the
agreed time.

 Keep overall costs within budget.
 Deliver software that meets the customer‘s

expectations.
 Maintain a happy and well-functioning

development team.

41

 The product is intangible.
 Software cannot be seen or touched. Software project

managers cannot see progress by simply looking at
the artefact that is being constructed.

 Many software projects are 'one-off' projects.
 Large software projects are usually different in some

ways from previous projects. Even managers who
have lots of previous experience may find it difficult to
anticipate problems.

 Software processes are variable and
organization specific.
We still cannot reliably predict when a particular

software process is likely to lead to development
problems.

Software management distinctions

42

 Project planning

 Project managers are responsible for planning.
estimating and scheduling project development and
assigning people to tasks.

 Reporting
 Project managers are usually responsible for

reporting on the progress of a project to customers
and to the managers of the company developing the
software.

 Risk management

 Project managers assess the risks that may affect a
project, monitor these risks and take action when
problems arise.

Management activities

43

Management activities

 People management
Project managers have to choose people for

their team and establish ways of working that
leads to effective team performance

 Proposal writing
The first stage in a software project may

involve writing a proposal to win a contract to
carry out an item of work. The proposal
describes the objectives of the project and
how it will be carried out.

44

Project planning
 Project planning involves breaking down

the work into parts and assign these to
project team members, anticipate
problems that might arise and prepare
tentative solutions to those problems.

 The project plan, which is created at the
start of a project, is used to communicate
how the work will be done to the project
team and customers, and to help assess
progress on the project.

45

Planning stages
 At the proposal stage, when you are bidding for

a contract to develop or provide a software
system.

 During the project startup phase, when you have
to plan who will work on the project, how the
project will be broken down into increments, how
resources will be allocated across your
company, etc.

 Periodically throughout the project, when you
modify your plan in the light of experience
gained and information from monitoring the
progress of the work. 46

The planning process
 Project planning is an iterative process that

starts when you create an initial project plan
during the project startup phase.

 Plan changes are inevitable.
 As more information about the system and the project

team becomes available during the project, you
should regularly revise the plan to reflect
requirements, schedule and risk changes.

 Changing business goals also leads to changes in
project plans. As business goals change, this could
affect all projects, which may then have to be re-
planned.

47

Project scheduling
 Project scheduling is the process of deciding

how the work in a project will be organized as
separate tasks, and when and how these tasks
will be executed.

 You estimate the calendar time needed to
complete each task, the effort required and who
will work on the tasks that have been identified.

 You also have to estimate the resources needed
to complete each task, such as the disk space
required on a server, the time required on
specialized hardware, such as a simulator, and
what the travel budget will be. 48

Milestones and deliverables

 Milestones are points in the schedule
against which you can assess progress,
for example, the handover of the system
for testing.

 Deliverables are work products that are
delivered to the customer, e.g. a
requirements document for the system.

49

Scheduling problems

 Estimating the difficulty of problems and
hence the cost of developing a solution is
hard.

 Productivity is not proportional to the
number of people working on a task.

 Adding people to a late project makes it
later because of communication
overheads.

 The unexpected always happens. Always
allow contingency in planning.

50

Schedule representation

 Graphical notations are normally used to
illustrate the project schedule.

 These show the project breakdown into
tasks. Tasks should not be too small. They
should take about a week or two.

 Bar charts are the most commonly used
representation for project schedules. They
show the schedule as activities or
resources against time.

51

Tasks, durations, and dependencies
Task Effort (person-

days)

Duration (days) Dependencies

T1 15 10

T2 8 15

T3 20 15 T1 (M1)

T4 5 10

T5 5 10 T2, T4 (M3)

T6 10 5 T1, T2 (M4)

T7 25 20 T1 (M1)

T8 75 25 T4 (M2)

T9 10 15 T3, T6 (M5)

T10 20 15 T7, T8 (M6)

T11 10 10 T9 (M7)

T12 20 10 T10, T11 (M8)
52

Activity bar chart

53

Staff allocation chart

54

What Is a Project?

 Project
 A complex, nonroutine, one-time effort limited by time,

budget, resources, and performance specifications
designed to meet customer needs.

 Major Characteristics of a Project
 Has an established objective.
 Has a defined life span with a beginning and an end.
 Typically requires across-the-organizational

participation.
 Involves doing something never done before.
 Has specific time, cost, and performance

requirements.
55

Comparison of Routine Work with Projects
Routine, Repetitive Work

Taking class notes

Daily entering sales receipts into
the accounting ledger

Responding to a supply-chain
request

Practicing scales on the piano

Routine manufacture of an Apple
iPod

Attaching tags on a manufactured
product

Projects

Writing a term paper

Setting up a sales kiosk for a
professional accounting meeting

Developing a supply-chain
information system

Writing a new piano piece

Designing an iPod that is
approximately 2 X 4 inches,
interfaces with PC, and
stores 10,000 songs

Wire-tag projects for GE and
Wal-Mart

56

Value of Project Management

Allows for excellent organization and tracking
Better control and use of resources
Reduces complexity of inter-related tasks
Allows measurement of outcome versus

plans
Early identification of problems and quick

correction

 57

Time Allocation by Phase
Activity Small Project

(2.5K LOC)
Large Project
(500K LOC)

Analysis 10% 30%

Design 20% 20%

Code 25% 10%

Unit Test 20% 5%

Integration 15% 20%

System test 10% 15%

McConnell, Steve, “Rapid Development”

58

Potential Deliverables by Phase

59

The Importance of Project Management

 Factors Leading to the Increased
Use of Project Management:
Compression of the product life

cycle
Global competition
Knowledge explosion
Corporate downsizing
 Increased customer focus
Small projects that represent

big problems
60

The
Technical
and
Sociocultural
Dimensions
of the Project
Management
Process

FIGURE 1.3

61

62

Portfolio of Projects by Type

FIGURE 2.2

63

Multi-Criteria Selection Models
 Checklist Model
 Uses a list of questions to review potential projects

and to determine their acceptance or rejection.
 Fails to answer the relative importance or value of a

potential project and doesn‘t to allow for comparison
with other potential projects.

 Multi-Weighted Scoring Model
 Uses several weighted qualitative and/or quantitative

selection criteria to evaluate project proposals.
 Allows for comparison of projects with other potential

projects

64

Sample Selection Questions Used in Practice

EXHIBIT 2.4

Topic Question

Strategy/alignment What specific strategy does this project align with?

Driver What business problem does the project solve?

Success metrics How will we measure success?

Sponsorship Who is the project sponsor?

Risk What is the impact of not doing this project?

Risk What is the project risk to our organization?

Risk Where does the proposed project fit in our risk profile?

Benefits, value, ROI What is the value of the project to this organization?

Benefits, value, ROI When will the project show results?

Objectives What are the project objectives?

65

Sample Selection Questions Used in Practice

EXHIBIT 2.4 cont’d

Topic Question

Organization culture Is our organization culture right for this type of project?

Resources Will internal resources be available for this project?

Approach Will we build or buy?

Schedule How long will this project take?

Schedule Is the time line realistic?

Training/resources Will staff training be required?

Finance/portfolio What is the estimated cost of the project?

Portfolio Is this a new initiative or part of an existing initiative?

Portfolio How does this project interact with current projects?

Technology Is the technology available or new?

66

Project Screening Matrix

FIGURE 2.3

67

How do you organize a project
team?

68

Most Common Structures

 Functional
 Dedicated
 Matrix

69

Functional Organization
Different segments of the project are

delegated to respective functional units.

Coordination is maintained through normal
management channels.

Used when the interest of one functional
area dominates the project or one
functional area has a dominant interest in
the project‘s success.

70

Functional Organizations

FIGURE 3.1

71

Functional Organization of Projects

 Advantages

No Structural

Change

Flexibility

 In-Depth

Expertise

Easy Post-Project

Transition

 Disadvantages

Lack of Focus

Poor Integration

Slow

Lack of

Ownership

72

Most Common Structures

 Functional
 Dedicated
 Matrix

73

Dedicated Team Structure

Teams operate as separate units under the

leadership of a full-time project manager.

 In a projectized organization where projects
are the dominant form of business, functional
departments are responsible for providing
support for its teams.

74

Dedicated Project Team

FIGURE 3.2

75

Project Organizational Structure

FIGURE 3.3

76

Project Organization: Dedicated Team

 Advantages

Simple

Fast

Cohesive

Cross-Functional

Integration

 Disadvantages

Expensive

 Internal Strife

Limited

Technological

Expertise

Difficult Post-

Project Transition
77

Most Common Structures

 Functional
 Dedicated
 Matrix

78

Matrix Structure

 Organizing Projects: Matrix Structure
Hybrid organizational structure (matrix) is overlaid

on the normal functional structure.
 Two chains of command (functional and project)
 Project participants report simultaneously to both

functional and project managers.
Matrix structure optimizes the use of resources.

 Allows for participation on multiple projects while
performing normal functional duties

 Achieves a greater integration of expertise and
project requirements 79

Matrix Organization Structure

FIGURE 3.4

80

Project Organization: Matrix Form

 Advantages

Efficient

Strong Project

Focus

Easier Post-

Project Transition

Flexible

 Disadvantages

Dysfunctional

Conflict

 Infighting

Stressful

Slow

81

Group Discussion
 Going to college is analogous to

working in a matrix environment in

that most students take more than

one class and must distribute their

time across multiple classes.

 What problems does this situation

create for you?

 How does it affect your

performance?

 How could the system be better

managed to make your life less

difficult and more productive?

82

What is an organization‘s
culture?

83

Organizational Culture
 Organizational Culture Defined
A system of shared norms, beliefs, values,

and assumptions which bind people together,
thereby creating shared meanings

The ―personality‖ of the organization that sets
it apart from other organizations.
 Provides a sense of identify to its members

 Helps legitimize the management system of the
organization

 Clarifies and reinforces standards of behavior

84

Key Dimensions Defining an
Organization‘s Culture

FIGURE 3.7

85

Group Discussion
 How would we map the

culture of UTD to the
previous mapping

86

Cultural Dimensions of an Organization
Supportive of Project Management

FIGURE 3.9

87

Small Team Discussion
 What do you believe is

more important for

successfully completing

a project – the formal

project management

structure or the culture

of the parent

organization?

88

Some thoughts on previous question
 Both are important and an argument can be

made for either structure or culture.
 Culture tends to be more important than

structure since it more directly impacts behavior.
A positive organizational culture can
compensate for the inherent weaknesses of the
formal structure.
 For example a functional matrix can be effective if the

norms and customs of the organization value
teamwork and effective problem-solving. Conversely,
a functional matrix is likely to be disastrous in a
negative culture that encourages competition and
looking out only for yourself. 89

Some thoughts on previous question
 Alternatively, one could argue that an

organization can circumvent a negative culture
by creating an independent project team or a
strong project matrix. In either case, the
strategy is to insulate the project team from the
dominant organizational culture and create a
unique project subculture.

90

91

Small Team Hands-On
 Team size of 3-4

 Build a house using paper
and tape

 You can only request the tape
once during the exercise and
can only use it for at most 30
seconds

 If the tape is in use, form a
queue for the tape

 You will need to transport
your house to the front

 8 minutes

92

Getting started on a project…

 Define it
 Get agreement on the definition
 Improperly defining a project leads to

project failure a high percentage of the
time

93

Defining the Project
Step 1: Defining the Project Scope

Step 2: Establishing Project Priorities

Step 3: Creating the Work Breakdown
Structure (not covered in this course)

Step 4: Integrating the WBS with the
Organization(not covered in this
course)

Step 5: Coding the WBS for the Information
System(not covered in this course) 94

Step 1: Defining the Project Scope

 Project Scope
 A definition of the end result or mission of the

project—a product or service for the client/customer—
in specific, tangible, and measurable terms.

 Purpose of the Scope Statement
 To clearly define the deliverable(s) for the end user.
 To focus the project on successful completion of its

goals.
 To be used by the project owner and participants as a

planning tool and for measuring project success.
95

Project Scope Checklist

1. Project objective

2. Deliverables

3. Milestones

4. Technical requirements

5. Limits and exclusions

6. Reviews with customer
96

Project Scope: Terms and Definitions
 Scope Statements

Also called statements of work (SOW)
 Project Charter

Can contain an expanded version of scope
statement

A document authorizing the project manager to
initiate and lead the project.

 Scope Creep
The tendency for the project scope to expand

over time due to changing requirements,
specifications, and priorities.

97

Step 2: Establishing Project Priorities
 Causes of Project Trade-offs

Shifts in the relative importance of criterions
related to cost, time, and performance
parameters
 Budget–Cost
 Schedule–Time
 Performance–Scope

 Managing the Priorities of Project Trade-offs
Constrain: a parameter is a fixed requirement.
Enhance: optimizing a parameter over others.
Accept: reducing (or not meeting) a parameter

requirement.
98

Project Management Trade-offs

FIGURE 4.1

99

Project Priority Matrix

FIGURE 4.2

100

Example Projects
 Time constrain, Scope enhance, cost accept

 Wealthy New Year‘s Eve Party
 Political campaign

 Time enhance, Scope constrain

 New line of bulletproof clothing
 Public construction of a bridge

 Time constrain, cost enhance
 Fuel efficient engine
 Longer lasting battery for laptop computers

101

Hierarchical
Breakdown
of the WBS

FIGURE 4.3

102

Responsibility Matrices
 Responsibility Matrix (RM)

Also called a linear responsibility chart
Summarizes the tasks to be accomplished and

who is responsible for what on the project
 Lists project activities and participants

 Clarifies critical interfaces between units and individuals
that need coordination

 Provide an means for all participants to view their
responsibilities and agree on their assignments

 Clarifies the extent or type of authority that can be
exercised by each participant

103

Responsibility Matrix for a Market
Research Project

FIGURE 4.9

104

Responsibility Matrix for the Conveyor
Belt Project

FIGURE 4.10

105

Project Communication Plan

 What information needs to be collected?
 Who will receive information?
 What information methods will be used?
 What are the access restrictions?
 When will information be communicated?
 How will information be communicated?

106

Communication Plan

 Stakeholder analysis
 Information needs
 Sources of information
 Dissemination modes
 Responsibility and timing

107

Communication Plan:

108

109

Estimating Projects
 Estimating

 The process of forecasting or approximating the time
and cost of completing project deliverables.

 The task of balancing expectations of stakeholders
and need for control while the project is implemented.

 Types of Estimates
 Top-down (macro) estimates: analogy, group

consensus, or mathematical relationships
 Bottom-up (micro) estimates: estimates of elements

of the work breakdown structure

110

Factors Influencing the Quality of
Estimates

Quality of
Estimates

Project
Duration

People

Project Structure
and Organization

Padding
Estimates

Organization
Culture

Other
(Nonproject)

Factors

Planning Horizon

111

Why Estimating Time and Cost Are
Important

EXHIBIT 5.1

• support good decisions.
• schedule work.
• determine how long the project should take and its cost.
• determine whether the project is worth doing.
• develop cash flow needs.
• determine how well the project is progressing.
• develop time-phased budgets and establish the project

baseline.

112

Why are accurate estimates critical
to effective project management?
 Without accurate time and cost estimates project control is

ineffective. Inaccurate estimates can make the difference
between profit and loss.

 Time and cost estimates are major inputs to project
planning.

 Project control is completely dependent on accuracy of
estimates.

 Estimates are needed to support good decisions.
 Estimates are used to determine project duration and cost.
 Estimates are used to develop cash flow needs.
 Estimates are used to develop time-phased budgets and

establish the project baseline.
 Absence of estimates results in inaccuracies which result

in time and cost under/overruns.
 The activity of estimating reduces error. 113

Estimating Guidelines for Times,
Costs, and Resources

1. Have people familiar with the tasks make the estimate.
2. Use several people to make estimates.
3. Base estimates on normal conditions, efficient

methods, and a normal level of resources.
4. Use consistent time units in estimating task times.
5. Treat each task as independent, don‘t aggregate.
6. Don‘t make allowances for contingencies.
7. Adding a risk assessment helps avoid surprises to

stakeholders.

114

Hands On Activity
 ES-DTU company plans to develop

software and needs you to create an
estimate

 The software has
 15 inputs that are rather low complexity
 5 outputs that are average complexity
 10 inquiries that are average complexity
 30 files that are rather complex
 20 interfaces with other systems that

are average complexity
 How can you estimate this new

software development?
115 115

Types of Estimates

Top-down (macro) estimates: analogy,
group consensus, or mathematical
relationships

Bottom-up (micro) estimates: estimates of
elements of the work breakdown structure

116

Top-Down versus Bottom-Up
Estimating
 Top-Down Estimates

 Are usually are derived from someone who uses
experience and/or information to determine the
project duration and total cost.

 Are made by top managers who have little knowledge
of the processes used to complete the project.

 Bottom-Up Approach
 Can serve as a check on cost elements in the WBS

by rolling up the work packages and associated cost
accounts to major deliverables at the work package
level. 117

Top-Down versus Bottom-Up
Estimating

TABLE 5.1

Conditions for Preferring Top-Down or Bottom-up

Time and Cost Estimates

Condition Macro Estimates Micro Estimates
Strategic decision making X

Cost and time important X

High uncertainty X

Internal, small project X

Fixed-price contract X

Customer wants details X

Unstable scope X

118

Estimating Projects:
Preferred Approach
 Make rough top-down estimates

 Make bottom-up estimates

 Develop schedules and budgets

 Reconcile differences between top-down
and bottom-up estimates

119

Simplified Basic Function Point Count
Process for a Prospective Project or
Deliverable

TABLE 5.2

120

Example:
Function Point Count Method

TABLE 5.3
Historically one person month = 5 function points

121

Top-Down and Bottom-Up Estimates

FIGURE 5.4

122

Phase Estimating over
Product Life Cycle

FIGURE 5.3

123

Estimate uncertainty

124

Refining Estimates

 Reasons for Adjusting Estimates
 Interaction costs are hidden in estimates.
Normal conditions do not apply.
Things go wrong on projects.
Changes in project scope and plans.

 Adjusting Estimates
Time and cost estimates of specific activities are

adjusted as the risks, resources, and situation
particulars become more clearly defined.

125

Estimating: more than predicting
the future
 Rules of Thumbs
 Techniques for software

126

Rules of Thumb for SE –Part 1

 Projects can be broken down by
 Features
 Phase
 Combination of the two

 Every project can be broken down into 10 to 20
tasks for the WBS/PBS
 Create sub-WBS/PBS as needed

 WBS/PBS key
Get it wrong and waste time going down wrong path

 Most accurate estimates rely on prior experience
 Postmortem reports from past projects key

127

Rules of Thumb for SE –Part 2
 No estimate is guaranteed to be accurate

 Things happen
 Goal is not to predict the future but gauge an

honest, well-informed opinion of the effort
 Disagreements about estimates are likely due to

assumptions
 Assumptions are used to deal with incomplete

information
 To reduce disagreements  document assumptions

 If assumption incorrect  adjust, explain
 Keep senior management aware of assumptions

 Use experts to brainstorm assumptions
 128

Brainstorming Questions
 Are there project goals that are known to the team and not

written in any documentation?
 Are there any concepts, terms, definitions that need to be

clarified?
 Are there standards that must be met but will be expensive to

comply with?
 How will the development of this project differ from that of

previous projects? Will there be new task added that were not
performed previously?

 Are there technology and architecture decisions that have
already been made?

 What changes are likely to occur elsewhere in the organization
that could cause this estimate to be inaccurate?

 Are there any issues that the team is know to disagree on that
will affect the project?

129

Team Motivation

 Brainstorming brings team together
 Begins the process of ownership
 Eliminates distrust
 Reduces ―I didn‘t estimate it but have to live with

it‖
 Provides accurate estimates in the future
 Allows team pressure to not ―pad‖ estimate
 Goal: reach common understanding between

engineers, managers, stakeholders.

130

Estimation Techniques-Part 1
 Delphi

 Moderator + estimation team
 RAND corporation
 Team corrects one another in a way that helps avoid errors and poor

estimation
 PROBE

 Proxy Based Estimating
 CMU as part of personal software process (discipline that helps individual

software engineers monitor, test, and improve their own work)
 Database of historical components of types and size

 Type examples: calculation, data, logic, etc
 Size examples: very small, small….very large

 Uses linear regression

131

Estimation Techniques-Part 2

 COCOMO II
Constructive Cost Model

 Barry Boehm
 Empirical study of 63 software projects
 Statisitical analysis

15 cost drivers
Variables that must be entered into model

 e.g. computer, personnel, project attributes

132

Estimation Techniques-Part 3

 The Planning Game
 XP (Extreme Programming)
 Negotiate between engineering team and

stakeholders
 Create emotional distance by treating as game where

playing pieces are ―user stories‖
 User stories get assigned a value and put into

production eventually
 Combines estimation with scope creation
 Highly iterative

133

134

Developing the Project Plan
 The Project Network

A flow chart that graphically depicts the
sequence, interdependencies, and start and finish
times of the project job plan of activities that is the
critical path through the network
 Provides the basis for scheduling labor and

equipment
 Provides an estimate of the project‘s duration
 Provides a basis for budgeting cash flow
 Highlights activities that are ―critical‖ and should not

be delayed
 Help managers get and stay on plan

135

Constructing a Project Network
 Terminology

Activity: an element of the
project that requires time.

Merge activity: an activity
that has two or more preceding
activities on which it depends.

Parallel (concurrent)

activities: Activities that can
occur independently and, if
desired, not at the same time.

A

C

B D

136

 Terminology
Event: a point in time when an activity is started

or completed. It does not consume time.
Burst activity: an activity that has more than one

activity immediately following it (more than one
dependency arrow flowing from it).

 Two Approaches
Activity-on-Node (AON)

 Uses a node to depict an activity
Activity-on-Arrow (AOA)

 Uses an arrow to depict an activity

B

D

A C

Constructing a Project Network (cont‘d)

137

Basic Rules to Follow in Developing
Project Networks
 Networks typically flow from left to right.
 An activity cannot begin until all of its dependent

prior activities are complete.
 Arrows indicate precedence and flow and can cross

over each other.
 Identify each activity with a unique number; this

number must be greater than its predecessors.
 Looping is not allowed.
 Conditional statements are not allowed.
 Use common start and stop nodes.

138

Activity-on-Node Fundamentals

FIGURE 6.2

139

Activity-on-Node Fundamentals (cont‘d)

FIGURE 6.2 (cont’d)

140

Network Information

TABLE 6.1

141

Koll Business Center—Partial Network

FIGURE 6.3

142

Koll Business Center—Complete Network

FIGURE 6.4

143

144

Network Computation Process
 Forward Pass—Earliest Times

How soon can the activity start? (early start—ES)
How soon can the activity finish? (early finish—EF)
How soon can the project finish? (expected time—

ET)
 Backward Pass—Latest Times

How late can the activity start? (late start—LS)
How late can the activity finish? (late finish—LF)
Which activities represent the critical path?
How long can it be delayed? (slack or float—SL)

145

Network Information

TABLE 6.2

146

Activity-on-Node Network

FIGURE 6.5

147

Activity-on-Node Network with Slack

FIGURE 6.8

148

149

The Resource Problem
 Resources and Priorities

Project network times are not a schedule until
resources have been assigned.
 The implicit assumption is that resources will be

available in the required amounts when needed.
 Adding new projects requires making realistic

judgments of resource availability and project
durations.

 Resource-Constrained Scheduling
Resource leveling (or smoothing) involves

attempting to even out demands on resources by
using slack (delaying noncritical activities) to
manage resource utilization.

150

Kinds of Resource Constraints

 People

 Materials

 Equipment

 Working Capital

151

Types of Project Constraints

 Technical or Logic Constraints
Constraints related to the networked

sequence in which project activities must
occur

 Resource Constraints
The absence, shortage, or unique

interrelationship and interaction
characteristics of resources that require a
particular sequencing of project activities

152

Constraint Examples

FIGURE 8.1

153

Resource Allocation Methods
 Limiting Assumptions
Splitting activities is not allowed—once an

activity is start, it is carried to completion.
Level of resource used for an activity cannot

be changed.
Activities with the most slack pose the least

risk.
Reduction of flexibility does not increase risk.
The nature of an activity (easy, complex)

doesn‘t increase risk.
154

Classification of a Scheduling Problem

 Time Constrained Project
A project that must be completed by an imposed date

 Time is fixed, resources are flexible: additional resources are
required to ensure project meets schedule.

 Resource Constrained Project
A project in which the level of resources available

cannot be exceeded
 Resources are fixed, time is flexible: inadequate resources will

delay the project.

155

Project Management Trade-offs

FIGURE 4.1

156

Time-Constrained Projects
Projects that must be completed by an imposed

date

Require the use of leveling techniques that focus
on balancing or smoothing resource demands by
using positive slack (delaying noncritical activities)
to manage resource utilization over the duration of
the project

 Peak resource demands are reduced.

 Resources over the life of the project are reduced.

 Fluctuation in resource demand is minimized.

157

Botanical Garden

FIGURE 8.2

158

Botanical Garden (cont‘d)

FIGURE 8.2 (cont’d) 159

Splitting/Multitasking
 Splitting/Multitasking
A scheduling technique use to get a better

project schedule and/or increase resource
utilization
 Involves interrupting work on an activity to employ the

resource on another activity, then returning the
resource to finish the interrupted work

 Is feasible when startup and shutdown costs are low

 Is considered the major reason why projects fail to
meet schedule

160

Splitting/Multitasking

FIGURE 8.10

161

Reducing Project Duration
 Time Is Money: Cost-Time Tradeoffs

Reducing the time of a critical activity usually incurs
additional direct costs.
 Cost-time solutions focus on reducing (crashing) activities

on the critical path to shorten overall duration of the
project.

Reasons for imposed project duration dates:
 Customer requirements and contract commitments
 Time-to-market pressures
 Incentive contracts (bonuses for early completion)
 Unforeseen delays
 Overhead and goodwill costs
 Pressure to move resources to other projects

162

Inclass Group Activity
 Brainstorm list of ways to shorten duration
 Write on board

163

Options for Accelerating Project Completion

 If resources are not
constrained
 Adding Resources

Outsourcing Project
Work

 Scheduling Overtime

 Establishing a Core
Project Team

 Do It Twice—Fast and
Correctly

 If resources are
constrained
 Fast-Tracking

 Reducing Project
Scope

 Compromise Quality

164

165

166

InClass Group Exercise
 Work in teams of 3 to 4
 ESDTU is a company that is developing

a new software. They estimate it will
take 24 weeks to complete. The project
will start December 1st.

 Brainstorm an extensive list of things
that could go wrong with the above
project

 Write your list on the board
167

Risk Management Process
 Risk

An uncertain event that, if it occurs, has a positive or
negative effect on project objectives

 Uncertain or chance events that planning can not
overcome or control.

 Risk Management
A proactive attempt to recognize and manage

internal events and external threats that affect the
likelihood of a project‘s success
 What can go wrong (risk event)

 How to minimize the risk event‘s impact (consequences)

 What can be done before an event occurs (anticipation)

 What to do when an event occurs (contingency plans) 168

Thinking About Risks

 What kinds of things could go wrong with
your class project in this class?

 What will you do if one of them does?
 How likely are they to happen?

169

The Risk Event Graph

FIGURE 7.1

170

Risk Management‘s Benefits
 A proactive rather than reactive approach

 Reduces surprises and negative
consequences

 Prepares the project manager to take
advantage of appropriate risks

 Provides better control over the future

 Improves chances of reaching project
performance objectives within budget and on
time

171

Risk Breakdown Structure

172

The Risk
Management
Process

FIGURE 7.2

173

Managing Risk

 Step 1: Risk Identification
Generate a list of possible risks through

brainstorming, problem identification and risk profiling.
 Macro risks first, then specific events

174

Managing Risk

 Step 2: Risk Assessment
Scenario analysis
Risk assessment matrix
Probability analysis

175

Risk Breakdown Structure

176

Risk Assessment Form

FIGURE 7.4

177

Impact Scales

178

Risk Severity Matrix

FIGURE 7.5

179

 Step 3: Risk Response Development
Mitigating or Reducing Risk

 Reducing the likelihood an adverse event will occur
 Reducing impact of adverse event

Transferring Risk
 Paying a premium to pass the risk to another party

Avoiding Risk
 Changing the project plan to eliminate the risk or condition

Sharing Risk
 Allocating risk to different parties

Retaining Risk
 Making a conscious decision to accept the risk

180

Contingency Planning

 Contingency Plan
An alternative plan that will be used if a possible

foreseen risk event actually occurs

A plan of actions that will reduce or mitigate the
negative impact (consequences) of a risk event

 Risks of Not Having a Contingency Plan

Having no plan may slow managerial response

Decisions made under pressure can be
potentially dangerous and costly 181

Risk Response Matrix

FIGURE 7.7

182

Risk and Contingency Planning
 Technical Risks

Backup strategies if chosen technology fails
Assessing whether technical uncertainties can be

resolved
 Schedule Risks

Use of slack increases the risk of a late project
finish

 Imposed duration dates (absolute project finish
date)

Compression of project schedules due to a
shortened project duration date

183

 Step 4: Risk Response Control
Risk control

 Execution of the risk response strategy
 Monitoring of triggering events
 Initiating contingency plans
 Watching for new risks

Establishing a Change Management System
 Monitoring, tracking, and reporting risk
 Fostering an open organization environment
 Repeating risk identification/assessment exercises
 Assigning and documenting responsibility for managing risk

184

The Risk
Management
Process

FIGURE 7.2

185

Change Management Control
 The Change Control Process

 Identify proposed changes.

 List expected effects of proposed changes on schedule
and budget.

 Review, evaluate, and approve or disapprove of changes
formally.

 Negotiate and resolve conflicts of change, condition, and
cost.

 Communicate changes to parties affected.

 Assign responsibility for implementing change.

 Adjust master schedule and budget.

 Track all changes that are to be implemented.

186

The Change
Control Process

FIGURE 7.8

187

Benefits of a Change Control System
1. Inconsequential changes are discouraged by the

formal process.
2. Costs of changes are maintained in a log.
3. Integrity of the WBS and performance measures is

maintained.
4. Allocation and use of budget and management

reserve funds are tracked.
5. Responsibility for implementation is clarified.
6. Effect of changes is visible to all parties involved.
7. Implementation of change is monitored.
8. Scope changes will be quickly reflected in baseline

and performance measures.
188

Change
Request
Form

FIGURE 7.9

189

Change
Request
Log

FIGURE 7.10

190

Thinking About Risks

 What kinds of things could go wrong with
your class project in this class?

 What will you do if one of them does?
 How likely are they to happen?

191

Project Status???
 Project is anticipated to take 10 weeks at

$400,000 per week
 After week 5
Actual cost incurred $2,400,000
 Is the project going to be overbudget?

 After week 8
Actual cost incurred $3,000,000
 Is the project going to be underbudget?

192

193

In Class Project

Think of a manager/leader from
your past

What were the good qualities?
What were the bad qualities?
You‘ll be asked to share one of

each that has not already been
given

194

Managing versus Leading a Project

 Managing: Coping

with Complexity

 Formulate plans and
objectives

 Monitor results
 Take corrective action
 Expedite activities
 Solve technical problems
 Serve as peacemaker
 Make tradeoffs among

time, costs, and project
scope

 Leading: Coping with

Change

 Recognize the need to
change to keep the
project on track

 Initiate change
 Provide direction and

motivation
 Innovate and adapt as

necessary
 Integrate assigned

resources
195

Project Management Maxims
You can‘t do it all and get it all done.

 Projects usually involve a vast web of
relationships.

Hands-on work is not the same as leading.
 More pressure and more involvement can

reduce your effectiveness as a leader.
What‘s important to you likely isn‘t as

important to someone else.
 Different groups have different stakes

(responsibilities, agendas, and priorities) in the
outcome of a project.

The challenge is relationships
 Build them before you need them!

196

Leading by Example

FIGURE 10.4

197

Contradictions of Leading/Managing

 Innovate and maintain stability
 See the big picture while getting

your hands dirty
 Encourage individuals but stress

the team
 Hands-off/hands-on
 Flexible but firm
 Team versus organizational

loyalties

198

Qualities of an Effective
Project Manager
 Systems thinker
 Personal integrity
 Proactive
 High emotional intelligence
 General business perspective
 Effective time management
 Skillful politician
 Optimist

199

Suggestions for Effective Leadership

 Build relationships before
you need them.

 Trust is sustained through
frequent face-to-face
contact.

 People have different
temperaments

200

The Dimensions of Personality Style

Introversion/Extraversion—

What energizes you?

Sensing/Intuiting—

What is the focus of

your attention?
Thinking/Feeling—

How do you make

decisions?

Judging/Perceiving—

How do you structure

your behavior?

201

What energizes you?

Introversion-Extraversion

Introversion

• quiet concentration

• like details & dislike

generalizations

• not remember names and

faces

• work one project for long

periods

• interest in idea behind task

• think before acting

• work well alone

• less communicative

Extraversion

• variety & action

• like fast, uncomplicated

procedures

• good at greeting people

• impatient with long slow

tasks

• results oriented

• don’t mind interruptions

• act first, think later

• like people around

• communicate freely
202

What is the focus of your attention?

Sensing-Intuiting

Sensing

• Dislike new problems

• Use established methods

• Like using old skills more

• Work steady and paced

• Step by step conclusion

• Patient with routine details

• Don’t trust inspiration

• Rare errors of fact

• Good at precise work

Intuiting

• Like new problems

• Dislike repetition

• Enjoy learning new skills

• Bursts of energy

• Reach conclusions quickly

• Impatient with routine details

• Patient with complexity

• Follow inspirations

• Errors of fact

• Dislike time for precision

203

How do you make decisions?

Thinking-Feeling

Thinking

• Not show or uncomfortable

with emotions

• Hurt feelings without

knowing

• Analysis & logical order

• Conflict is OK

• Decide impersonally

• Fairness & justice important

• Can reprimand & discipline

• Responds to ideas

• Firm-minded

Feeling

• Aware of people & feelings

• Pleasing people

• Like harmony; dislike conflict

• Decisions influence by likes &

wishes

• Need occasional praise

• Dislike discipline and control

• Respond to values & feelings

• Sympathetic

204

How do you structure your behavior?

Judging (structure)-Perceiving (change)

Judging

• Make plans and follow them

• Things settled and finished

• Decide too quickly

• Dislike changing priorities

• Not notice new things

• Just the essentials

• Satisfied with decision

Perceiving

• Adapt to changing situations

• Leave things open

• Open-ended decisions

• Too many unfinished projects

• Postpone unpleasant jobs

• Want to know everything

• Curious and open to ideas

205

206

Good old lessons in teamwork

from an age-old fable

The Tortoise

And

The Hare

207

Once upon a time a tortoise and
a hare had an argument about
who was faster.

I‘m the fastest
runner.

That‘s not true.
The fastest runner is
me!

208

Ok, let‘s have
a race.

Fine!

They decided to settle
the argument with a
race. They agreed on
a route and started off
the race.

209

The hare shot ahead and ran
briskly for some time. Then seeing
that he was far ahead of the tortoise,
he thought he'd sit under a tree for
some time and relax before
continuing the race.

Poor guy! Even if I take a nap, he
could not catch up with me.

210

He sat under the tree and soon fell
asleep.

211

The tortoise plodding on
overtook him and soon finished
the race, emerging as the
undisputed champ.

212

The hare woke up and realized that
he'd lost the race.

213

The moral of the story is that slow and

steady wins the race.

This is the version of the story that we've
all grown up with.

214

The story continues …

215

The hare was
disappointed at losing
the race and he did
some soul-searching.
He realized that he'd lost
the race only because
he had been
overconfident, careless
and lax. If he had not
taken things for granted,
there's no way the
tortoise could have
beaten him.

Why did I
lose the
race?

216

Can we have
another race?

Ok.

So he challenged the
tortoise to another
race. The tortoise
agreed.

217

This time, the hare went all
out and ran without
stopping from start to finish.
He won by several miles.

218

The moral of the story?

Fast and consistent will always beat the slow and

steady. If you have two people in your
organization, one slow, methodical and reliable,
and the other fast and still reliable at what he
does, the fast and reliable chap will consistently
climb the organizational ladder faster than the
slow, methodical chap.

It's good to be slow and steady; but it's better to

be fast and reliable.
219

But the story doesn't end
here …

220

The tortoise did some
thinking this time, and
realized that there's no
way he can beat the hare
in a race the way it was
currently formatted.

How can I
win

against
the hare?

221

He thought for a
while, and then
challenged the hare
to another race, but
on a slightly
different route.
The hare agreed.

Sure!

Can we have another race?
This time we‘ll go through a
different route.

222

They started off. In keeping with his
self-made commitment to be
consistently fast, the hare took off
and ran at top speed until he came to
a broad river. The finishing line was a
mile on the other side of the river.

Goal

223

The hare sat there wondering what to do. In
the meantime the tortoise trundled along,
got into the river, swam to the opposite
bank, continued walking and finished the
race.

What
should I

do?

224

The moral of the story?

First identify your core competency and then change the playing field to suit

your core competency.

In an organization, if you are a good speaker, make sure you create
opportunities to give presentations that enable the senior management to
notice you.

If your strength is analysis, make sure you do some sort of research, make a
report and send it upstairs.

Working to your strengths will not only get you noticed, but will also create

opportunities for growth and advancement.

225

The story still hasn't ended …

226

The hare and the tortoise, by
this time, had become pretty
good friends and they did
some thinking together. Both
realized that the last race
could have been run much
better.

227

So they decided to do
the last race again, but
to run as a team this
time.

Hi, buddy. How
about doing our last
race again?

Great! I think we could
do it much better, if we
two help each other.

228

They started off, and this time
the hare carried the tortoise till
the riverbank.

229

There, the tortoise took over
and swam across with the hare
on his back.

230

On the opposite bank, the hare
again carried the tortoise and
they reached the finishing line
together. They both felt a
greater sense of satisfaction
than they'd felt earlier.

231

The moral of the story?

It's good to be individually brilliant and to have

strong core competencies; but unless you're

able to work in a team and harness each other's

core competencies, you'll always perform below

par because there will always be situations at

which you'll do poorly and someone else does

well.

Teamwork is mainly about situational leadership,

letting the person with the relevant core

competency for a situation take leadership.
232

There are more lessons to be learned from this story.

Note that neither the hare nor the tortoise gave up after
failures. The hare decided to work harder and put in more
effort after his failure. The tortoise changed his strategy
because he was already working as hard as he could.

In life, when faced with failure, sometimes it is appropriate

to work harder and put in more effort. Sometimes it is

appropriate to change strategy and try something

different. And sometimes it is appropriate to do both.

The hare and the tortoise also learned another vital
lesson. When we stop competing against a rival and

instead start competing against the situation, we perform

far better. 233

To sum up, the story of the hare and
tortoise teaches us many things:

 Never give up when faced with failure
Fast and consistent will always beat slow

and steady

 Work to your competencies

Compete against the situation, not

against a rival.

 Pooling resources and working as a team

will always beat individual performers

234

What is a Team?

•Two or more individuals
with a high degree of
interdependence geared
toward the achievement
of a goal or the
completion of a task.

•Teams make decisions,
solve problems, provide
support, accomplish
missions, and plan their
work.

235

There are Many Types of Teams
 Examples of Teams:

Athletic Team – people working together to

win a game
Natural Work Group – people working

together every day in same office with similar
processes and equipment

Business Team – cross-functional team
overseeing a specific product line or customer
segment

 Improvement Team – ad hoc team with
responsibility for improving an existing
process

Student Team – students working together
on a course project
 236

High-Performing Teams
Synergy
 1 + 1 + 1 = 10

 (positive synergy)
 1 + 1 + 1 = 2

 (negative synergy)

237

Attitudes for Effective Teamwork

 Appreciation for value of team decisions
 Respect for team members
 Mutual trust
 Openness to feedback
 Reflection on group process and interest in

improving
 Shared vision

238

What are Characteristics of Effective
or High Performing Teams?
 Members have a clear goal
 The focus is on achieving results
 There is a plan for achieving the goal
 Members have clear roles
 Members are committed to the goal
 Members are competent
 They achieve decisions through consensus
 There is diversity among team members
 Members have effective interpersonal skills
 They know each other well and have good relationships

239

More Characteristics
 Each member feels empowered to act, speak up, offer

ideas
 Each member has a high standard of excellence
 An informal climate and easiness exists among

members
 The team has the support of management
 The team is open to new ideas
 There is periodic self-assessment
 There is shared leadership of the team
 The team is a relatively small size
 There is recognition of team member accomplishments
 There are sufficient resources to support the team work

240

Communication is Important!!!

 Team Communication Is Important

241

http://www.youtube.com/watch?v=JwjAAgGi-90

Effective Team-Building Takes
Time

 There must be frequent
and prolonged contact

 Team members come
together around a
specific goal or project

 Effective teams go
through four stages of
team development

242

The Five-Stage Team Development
Model

FIGURE 11.1

243

Establishing a Team Identity

Effective Use

of Meetings

Co-location of

team members

Creation of project

team name

Team rituals

244

Individual Assignment

 Fill out the column labeled Individual Rank
of Lost At Sea Worksheet

 No discussion allowed
 Put your name at the top

245

Team Assignment

 As a group, discuss and decide on a
common group decision for Lost At Sea

 Fill In The Column labeled Group Rank

246

247

Teamwork: Simply stated,

it is less me and more we.

248

TEAM = Together Everyone Achieves More

249

Coming together,

sharing together,

working together,

succeeding together.

250

A group becomes a team

when each member is sure

enough of himself and his

contribution to praise the

skills of the others.

251

Thomas Edison, when asked why he had a team of twenty-one
assistants, “If I could solve all the problems myself, I would.”

252

253

Major Tasks of Project Closure
1. Evaluate if the project delivered

the expected benefits to all
stakeholders.

• Was the project managed well?

• Was the customer satisfied?

2. Assess what was done wrong
and what contributed to
successes.

3. Identify changes to improve
the delivery of future projects. 254

Project Closure and Review Deliverables

FIGURE 14.1

255

Project Closure

 Types of Project Closure
 Normal
 Premature
 Perpetual
 Failed Project
 Changed Priority

 Close-out Plan:
Questions to be
Asked
 What tasks are

required to close the
project?

 Who will be
responsible for these
tasks?

 When will closure
begin and end?

 How will the project be
delivered?

14–256 256

Creating the Final Report
 Executive Summary

 Project goals met/unmet
 Stakeholder satisfaction

with project
 User reactions to quality

of deliverables

 Analysis
 Project mission and

objective
 Procedures and

systems used
 Organization resources

used

 Recommendations
 Technical improvements
 Corrective actions

 Lessons Learned
 Reminders
 Retrospectives

 Appendix
 Backup data
 Critical information

257

Retrospectives

 Lessons Learned
An analysis carried out during and shortly

after the project life cycle to capture positive
and negative project learning—―what worked
and what didn‘t?‖

 Goals of Retrospectives
To reuse learned solutions
To stop repetitive mistakes

14–258 258

Project Process Review Questionnaire

TABLE 14.3

1. Were the project objectives and strategic
intent of the project clearly and explicitly
communicated?

2. Were the objectives and strategy in
alignment?

3. Were the stakeholders identified and
included in the planning?

4. Were project resources adequate for this
project?

5. Were people with the right skill sets
assigned to this project?

6. Were time estimates reasonable and
achievable?

7. Were the risks for the project appropriately
identified and assessed before the project
started?

8. Were the processes and practices
appropriate for this type of project? Should
projects of similar size and type use these
systems? Why/why not?

9. Did outside contractors perform as
expected? Explain.

10. Were communication methods appropriate
and adequate among all stakeholders?
Explain.

11. Is the customer satisfied with the project
product?

12. Are the customers using the project
deliverables as intended? Are they
satisfied?

13. Were the project objectives met?
14. Are the stakeholders satisfied their

strategic intents have been met?
15. Has the customer or sponsor accepted a

formal statement that the terms of the
project charter and scope have been met?

16. Were schedule, budget, and scope
standards met?

17. Is there any one important area that needs
to be reviewed and improved upon? Can
you identify the cause?

14–259 259

Organizational Culture Review Questionnaire

TABLE 14.4

1. Was the organizational culture supportive for this type of project?
2. Was senior management support adequate?
3. Were people with the right skills assigned to this project?
4. Did the project office help or hinder management of the project? Explain.
5. Did the team have access to organizational resources (people, funds,

equipment)?
6. Was training for this project adequate? Explain.
7. Were lessons learned from earlier projects useful? Why? Where?
8. Did the project have a clear link to organizational objectives? Explain.
9. Was project staff properly reassigned?
10. Was the Human Resources Office helpful in finding new assignments?

Comment.

14–260 260

261

Express in

Numbers

 Measurement provides a mechanism

for objective evaluation

 Software Crisis
 According to American Programmer,

31.1% of computer software projects get
canceled before they are completed,

 52.7% will overrun their initial cost
estimates by 189%.

 94% of project start-ups are restarts of
previously failed projects.

 Solution?
systematic approach to software development
and measurement 263

Software Metrics

 It refers to a broad range of

quantitative measurements for

computer software that enable to

 improve the software process

continuously

assist in quality control and productivity

assess the quality of technical products

assist in tactical decision-making

264

Measure, Metrics, Indicators

 Measure.

provides a quantitative indication of the
extent, amount, dimension, capacity, or size
of some attributes of a product or process.

 Metrics.
relates the individual measures in some

way.

 Indicator.
 a combination of metrics that provide insight

into the software process or project or product
itself.

265

Motivation for Metrics

 Estimate the cost & schedule of future projects

 Evaluate the productivity impacts of new tools
and techniques

 Establish productivity trends over time

 Improve software quality

 Forecast future staffing needs

 Anticipate and reduce future maintenance needs

266

What Should Be Measured?

measurement

What do we

 use as a

 basis?

 • size?

 • function?

project metrics

process metrics
process

product

product metrics

267

Views on SE Measurement

268

Views on SE Measurement

269

Views on SE Measurement

270

Metrics of Project Management

 Budget
 Schedule/ReResour

ce Management
 Risk Management
 Project goals met or

exceeded
 Customer

satisfaction

271

Metrics of the Software
Product

 Focus on
Deliverable Quality

 Analysis Products
 Design Product

Complexity –
algorithmic, architectural,
data flow

 Code Products
 Production System

272

Process Measurement
 We measure the efficacy of a software process

indirectly.
 That is, we derive a set of metrics based on the

outcomes that can be derived from the process.
 Outcomes include

 measures of errors uncovered before release of the
software

 defects delivered to and reported by end-users
 work products delivered (productivity)
 human effort expended
 calendar time expended
 schedule conformance
 other measures.

 We also derive process metrics by measuring the
characteristics of specific software engineering tasks.

273

Process Metrics Guidelines
 Use common sense and organizational sensitivity when interpreting metrics

data.
 Provide regular feedback to the individuals and teams who collect measures

and metrics.
 Don’t use metrics to appraise individuals.

 Work with practitioners and teams to set clear goals and metrics that will be
used to achieve them.

 Never use metrics to threaten individuals or teams.

 Metrics data that indicate a problem area should not be considered
―negative.‖ These data are merely an indicator for process improvement.

 Don‘t obsess on a single metric to the exclusion of other important metrics.

274

Software Process
Improvement

SPI

Process model

Improvement goals

Process metrics

Process improvement
recommendations

275

Statistical Software Process Improvement

All errors and defects
are categorized by
origin

The cost to correct
each error and defect
is recorded

No. of errors and defects in
each category is counted
and ranked in descending
order

The overall cost in
each category is
computed

Resultant data are
analyzed and the
―culprit‖ category is
uncovered

Plans are developed to
eliminate the errors

276

Causes and Origin of Defects

Logic

20%

Sofware Interface

6%

Hardware Interface

8%

User Interface

12%

Data Handling

11%

Error Checking

11%

Standards

7%

Specification

25%

277

Defect Removal
Efficiency

where:

E is the number of errors found
before delivery of the software to
the end-user

D is the number of defects found
after delivery.

DRE = E /(E + D)

278

Measuring
Quality

 Correctness — the degree to which a
program operates according to
specification

 Maintainability—the degree to which a
program is amenable to change

 Integrity—the degree to which a program
is impervious to outside attack

 Usability—the degree to which a program
is easy to use 279

Source Lines of Code (SLOC)

 Measures the number of physical lines of
active code

 In general the higher the SLOC in a
module the less understandable and
maintainable the module is

280

Function Oriented Metric -
Function Points
 Function Points are a measure of ―how big‖ is

the program, independently from the actual
physical size of it

 It is a weighted count of several features of the
program

 Dislikers claim FP make no sense wrt the
representational theory of measurement

 There are firms and institutions taking them very
seriously

281

complexity multiplier

function points

number of user inputs

number of user outputs

number of user inquiries

number of files

number of ext.interfaces

measurement parameter

3

4

3

7

5

count

weighting factor

simple avg. complex

4

5

4

10

7

6

7

6

15

10

=

=

=

=

=

count-total

X

X

X

X

X

  
lesInternalFi terfacesExternalInInquiryOutputInputs

WeiWifWinWoWi

282

Factors are rated on a scale of 0 (not important)
to 5 (very important):

data communications
distributed functions
heavily used configuration
transaction rate
on-line data entry
end user efficiency

on-line update
complex processing
installation ease
operational ease
multiple sites
facilitate change

 MultiplierComplexity MultiplierComplexityFCM

Formula:

283

Typical Function-Oriented Metrics

 errors per FP (thousand lines of
code)

 defects per FP
 $ per FP
 pages of documentation per FP
 FP per person-month

284

LOC vs. FP

• Relationship between lines of code and function points depends
upon the programming language that is used to implement the
software and the quality of the design

• Empirical studies show an approximate relationship between
LOC and FP

285

Comparing LOC and FP
Programming LOC per Function point

Language avg. median low high

Ada 154 - 104 205
Assembler 337 315 91 694
C 162 109 33 704
C++ 66 53 29 178
COBOL 77 77 14 400
Java 63 53 77 -

JavaScript 58 63 42 75
Perl 60 - - -
PL/1 78 67 22 263
Powerbuilder 32 31 11 105
SAS 40 41 33 49
Sma lltalk 26 19 10 55
SQL 40 37 7 110
Visual Basic 47 42 16 158

286

LOC/FP (average)
Assembly language 320
C 128
COBOL, FORTRAN 106
C++ 64
Visual Basic 32
Smalltalk 22
SQL 12
Graphical languages (icons) 4

287

Typical Size-Oriented Metrics
 errors per KLOC (thousand lines of code)
 defects per KLOC
 $ per LOC
 pages of documentation per KLOC
 errors per person-month
 errors per review hour
 LOC per person-month
 $ per page of documentation

288

Typical Function-Oriented Metrics

 errors per FP (thousand
lines of code)

 defects per FP
 $ per FP
 pages of documentation per

FP
 FP per person-month

289

12 Steps to Useful Software Metrics
Step 1 - Identify Metrics Customers
Step 2 - Target Goals
Step 3 - Ask Questions
Step 4 - Select Metrics
Step 5 - Standardize Definitions
Step 6 - Choose a Model
Step 7 - Establish Counting Criteria
Step 8 - Decide On Decision Criteria
Step 9 - Define Reporting Mechanisms
Step 10 - Determine Additional Qualifiers
Step 11 - Collect Data
Step 12 - Consider Human Factors

290

Step 1 - Identify Metrics
Customers

Who needs the information?

Who‘s going to use the metrics?

If the metric does not have a customer --

do not use it.

291

Step 2 - Target Goals
 Organizational goals

Be the low cost provider

Meet projected revenue targets

 Project goals

 Deliver the product by June 1st

 Finish the project within budget

 Task goals (entry & exit criteria)

 Effectively inspect software module ABC

 Obtain 100% statement coverage during
 testing

292

Step 3 - Ask Questions

Goal: Maintain a high level of customer
 satisfaction

 What is our current level of customer
satisfaction?

 What attributes of our products and
services are most important to our
customers?

 How do we compare with our competition?
293

Step 4 - Select Metrics
Select metrics that provide information
to help answer the questions
 Be practical, realistic, pragmatic

 Consider current engineering environment

 Start with the possible

Metrics don‘t solve problems
-- people solve problems

Metrics provide information so people can make better decisions

294

Step 5 - Standardize Definitions

Developer User
295

Step 6 - Choose a Measurement
Models for code inspection metrics

• Primitive Measurements:
– Lines of Code Inspected = loc

– Hours Spent Preparing = prep_hrs

– Hours Spent Inspecting = in_hrs

– Discovered Defects = defects

• Other Measurements:

– Preparation Rate = loc / prep_hrs

– Inspection Rate = loc / in_hrs

– Defect Detection Rate = defects / (prep_hrs +
in_hrs)

296

Step 7 - Establish Counting
Criteria
Lines of Code

• Variations in counting

• No industry accepted standard

• SEI guideline - check sheets for criteria

• Advice: use a tool

297

Counting Criteria - Effort

What is a Software Project?

• When does it start / stop?

• What activities does it include?
• Who works on it?

298

Step 8 - Decide On Decision Criteria

Establish Baselines
• Current value

– Problem report backlog
– Defect prone modules

• Statistical analysis (mean & distribution)
– Defect density
– Fix response time
– Cycle time
– Variance from budget (e.g., cost, schedule)

 299

Step 9 - Define Reporting Mechanisms
Open Fixed Resolved

Jan-97 23 13 3
Feb-97 27 24 11
Mar-97 18 26 15
Apr-97 12 18 27

0

40

80

120

0 20 40 60 80 100 120

0

20

40

60

80

100

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

1 2 3 4 5 6 7 8 9 10 11 12

0

20

40

60

80

100

Jan Mar May July
0

40

80

120

160

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

300

Step 10 –
Determine Additional Qualifiers

A good metric is a generic metric

Additional qualifiers:

 Provide demographic information

 Allow detailed analysis at multiple levels

 Define additional data requirements

301

Additional Qualifier Example

Metric: software defect arrival rate

 Release / product / product line

 Module / program / subsystem

 Reporting customer / customer group

 Root cause

 Phase found / phase introduced

 Severity 302

Step 11 – Collect Data
 What data to collect?

• Metric primitives

• Additional qualifiers

 Who should collect the data?

• The data owner
– Direct access to source of data
– Responsible for generating data
– Owners more likely to detect anomalies
– Eliminates double data entry

303

Examples of Data Ownership
Owner Examples of Data Owned

• Management • Schedule
• Budget

• Engineers • Time spent per task
• Inspection data including defects found
• Root cause of defects

• Testers • Test Cases planned / executed / passed
• Problems
• Test coverage

• Configuration management • Lines of code
 specialists • Modules changed
• Users • Problems

• Operation hours

304

Step 12 – Consider Human Factors

 The People Side of the Metrics Equation
 How measures affect people
 How people affect measures

―Don‘t underestimate the intelligence of your engineers. For any one metric
you can come up with, they will find at least two ways to beat it.‖
[unknown]

305

Don‘t
Measure

individuals

Use metrics as a
―stick‖

Ignore the data

Use only one
metric Cost

Quality
Schedule

306

Do
Select metrics based

on goals
Goal 1 Goal 2

Question 1 Question 2 Question 3 Question 4

Metrics 1 Metric 2 Metric 3 Metric 4 Metric 5

[Basili-88]

Focus on processes, products
& services

Processes,
Products &

Services

Provide feedback

Feedback

Data

Data Providers Metrics

Obtain ―buy-in‖

307

308

