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Software Development Life Cycle  

 Need Determination  

 Concept Definition and Demonstration  

 Development  

 Testing  

 Deployment  

 Operations and Maintenance  
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Software Development Life-Cycle 

(SDLC) Models  

 Waterfall  

 Incremental  

 Evolutionary  

 Spiral  
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Waterfall Model  
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Waterfall: Advantages  

• System is well documented. 

• Phases correspond with project 
management phases. 

• Cost and schedule estimates may be 
more accurate. 

• Details can be addressed with more 
engineering effort if software is large or 
complex. 
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Waterfall: Disadvantages  

• All risks must be dealt with in a single 
software development effort. 

• Because the model is sequential, there is 
only local feedback at the transition between 
phases. 

• A working product is not available until late 
in the project. 

• Progress and success are not observable 
until the later stages.  

• Corrections must often wait for the 
maintenance phase. 9 



Incremental  

 A series of waterfalls  

 Collect requirements initially  

 Different builds address requirements 
incrementally  
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Incremental: Advantages  

• Provides some feedback, allowing later 
development cycles to learn from previous 
cycles. 

• Requirements are relatively stable and 
may be better understood with each 
increment. 

•  Allows some requirements modification 
and may allow the addition of new 
requirements. 

• It is more responsive to user needs than 
the waterfall model. 
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Incremental: Advantages  

• A usable product is available with the 
first release, and each cycle results in 
greater functionality. 

• The project can be stopped any time 
after the first cycle and leave a working 
product. 

• Risk is spread out over multiple cycles. 

• This method can usually be performed 
with fewer people than the waterfall 
model. 
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Incremental: Advantages  

• Return on investment is visible earlier in 
the project.  

• Project management may be easier for 
smaller, incremental projects.  

• Testing may be easier on smaller 
portions of the system. 
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Incremental: Disadvantages  

• Formal reviews may be more difficult to 
implement on incremental releases.   

• Interfaces between modules must be 
well-defined in the beginning.  

• Cost and schedule overruns may result in 
an unfinished system. 

• Operations are impacted as each new 
release is deployed. 

• Users are required to learn how to use a 
new system with each deployment. 
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Evolutionary  

 Requirements evolve as system is used  
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Evolutionary: Advantages  

• Project can begin without fully defining or 
understanding requirements. 

• Final requirements are improved and 
more in line with real user needs. 

• Risks are spread over multiple software 
builds and controlled better. 

• Operational capability is achieved earlier 
in the program. 

• Newer technology can be incorporated 
into the system as it becomes available 
during later prototypes. 
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Evolutionary: Disadvantages  

• Usually an increase in both cost and 
schedule over the waterfall method. 

• Management activities are increased. 

• Configuration management activities are 
increased. 

• Greater coordination of resources is 
required. 

• Prototypes change between cycles, 
adding a learning curve for developers and 
users. 
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Spiral  

 Addresses risk incrementally  

 Determines objectives and constraints  

 Evaluate alternatives  

 Identify risks  

 Resolves risks by assigning priorities  

 Develop a series of prototypes for 
identified risks, start with highest risk  

 Waterfall for each prototype development 

 Progress with risk resolution, else end.   
18 



Spiral  
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Spiral Model  

 Advantages 

• It provides better risk management than 
other models. 

• Requirements are better defined. 

• System is more responsive to user needs. 

 Disadvantages 

• The spiral model is more complex and harder 
to manage. 

• This method usually increases development 
costs and schedule. 
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Problem with Requirements  

 Library System  

 System maintains record of all library items  

 Allows users to search by title, author, ISBN  

 User interface via web browser  

 System supports 20 transactions per second  

 Facilities demonstrable in 10 minutes or less  

22 

General Requirements  Functional Requirements  

Implementation Requirements  

Performance  Requirements  Usability Requirements  
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Problems with Requirements 

 
 We have trouble understanding the 

requirements that we do acquire from the 
customer 

 We often record requirements in a 
disorganized manner 

 We spend far too little time verifying what we 
do record 

 We allow change to control us, rather than 
establishing mechanisms to control change 

 Most importantly, we fail to establish a solid 
foundation for the system or software that 
the user wants built 

 

 
(Source: Pressman, R. Software Engineering: A Practitioner’s Approach.  McGraw-Hill, 2005) 
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Problems with Requirements 

 
 Many software developers argue that 

 Building software is so compelling that we want to 
jump right in   

 Things will become clear as we build the software 

 Things change so rapidly that requirements 
engineering is a waste of time 

 The bottom line is producing a working program 
and that all else is secondary 

 All of these arguments contain some truth, 
especially for small projects   

 However, as software grows in size and 
complexity, these arguments begin to fail  



Problems with Requirements  

 Many different kind of requirements  

 No standard way of writing requirements  

 Application domain dependent  

 Writer dependent  

 Reader dependent  

 Organization practices  

 What is required of system may include 

 General information about type of system  

 Information about standards to adhere to  

 Information about other interacting systems  
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Problems with Requirements  

 Requirements at the root of software 
engineering problems 

 Real needs of customer not reflected  

 Misunderstanding between customer, marketing, 
and developer  

 Inconsistent or incomplete requirements  

 Allows users to search by title, author, ISBN  

 Requirement problems are universal  

 Human issues, impossible to be accurate  

 Good practices reduce issues  

 Requirements engineering is about good 
practices  

26 
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Requirements Process 

 Requirements in Software Lifecycle 
 Initial phase 
 May span the entire life cycle 

 Essential Requirements Process Steps  
 Understand the problem   
 elicitation 

 Formally describe the problem  
 specification, modeling 

 Attain agreement on the nature of problem 
 validation, conflict resolution, negotiation 
 requirements management - maintain the 

agreement! 

 Sequential or iterative/incremental 



Requirements Elicitation  

 Four Dimensions  

 Application Domain Knowledge  

 Cataloguing System  Knowledge of Library 

 Knowledge can be present in multiple places    

 Problem Understanding  

 Cataloguing System  How Library organizes? 

 People who understand the problem are busy  

 Business Understanding  

 Organization issues may influence the 
requirements  

 Needs of Stakeholders  

 General knowledge, difficult to articulate  
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Problems with Elicitation  

 Scope  

 Volatility  

 Understanding  
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Scope  

 Boundary of system ill-defined  

 Unnecessary design information may be 
given  

 Focus on creation of requirements and 
not on design activities  

 Users may not understand design language  

 Such a focus may not reflect user needs  
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Scope  

 Organizational Factors  

 Input providers 

 Users of target system  

 Managers of users  

 How target system will change 
organization’s means of doing business? 

 Environmental Factors  

 Accurate description of users  

 Accurate description of environment  

 H/W or S/W constraints imposed  

 Interfaces to the larger system  

 Role in larger system  31 



Volatility  

 Requirements Change 

 User needs may change over time  

 They may evolve over time  

 Iterative nature of RE process 

 Conflicting and changing needs of stakeholders 

 Political climate may change  

 You cannot complete requirements 
capture before the design stage  

32 



Understanding  

 Understanding issues lead to 
requirements that are:  

 Ambiguous  

 Incomplete  

 Inconsistent  

 Incorrect  

 Reasons  

 Variety of background  

 Experience levels  

 Language too formal or informal  

 Amount of information  
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Understanding  

 Stakeholders 

 Sponsors  

 Users  

 Developers 

 Quality Assurance  

 Requirement Analysts  

 Managers of users  

34 



Tree Swing  

 What marketing suggested  

 

 

 

 What management approved  
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Tree Swing  

 What engineering designed  

 

 

 

 What was manufactured  
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Tree Swing  

 As maintenance installed it 

 

 

 

 What the customer wanted 
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Importance of Requirements 

 Engineering Argument 

 A good solution can only be developed if the engineer 
has a solid understanding of the problem. 

 Economic Argument 

 Defects are cheaper to remove if are found earlier.  

 Empirical Argument 

 Failure to understand and manage requirements is the 
biggest single cause of cost and schedule over-runs. 

 Safety Argument 

 Safety-related software errors arise most often from 
inadequate or misunderstood requirements 

 … …  



Software Requirements  

 Introduction to Software Requirements 

 How is Software Developed? 

 Software Development Life Cycle   

 Problems with Software Requirements 

 Types of Requirements: Library System  

 Stakeholders: Tree Swing  

 Tracking Requirements  

 Quality Function Deployment  

 Apple iPhone 4S Case Study  
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Quality Function Deployment (QFD) 

 Developed in Japan in the mid 1970s 

 Introduced in USA in the late 1980s 

 Toyota was able to reduce 60% of cost to 
bring a new car model to market 

 Toyota decreased 1/3 of its development 
time 

 Used in cross functional teams 

 Companies feel it increased customer 
satisfaction 

Zahed Siddique, OU 



Why? 

 Product should be designed to reflect 
customers’ desires and tastes. 

 House of Quality is a kind of a conceptual map 
that provides the means for inter-functional 
planning and communications 

 To understand what customers mean by quality 
and how to achieve it from an engineering 
perspective. 

 HQ is a tool to focus the product development 
process 



QFD Key Points  

 Should be employed at the beginning of 
every project (original or redesign) 

 Customer requirements should be translated 
into measurable design targets 

 It can be applied to the entire problem or any 
sub-problem 

 First worry about what needs to be designed 
then how 

 It takes time to complete 
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Step 1: Who are the customers? 

 To “Listen to the voice of the 
customer” first need to identify the 
customer 

 In most cases there are more than 
one customer 

 consumer 

 regulatory agencies 

 manufacturing 

 marketing/Sales 

Customers drive the development 
of the product, not the designer 



Step 2: Determine the customers’ 

requirements 

 Need to determine what is 
to be designed 

 Consumer 

 product works as it should 

 lasts a long time 

 is easy to maintain 

 looks attractive 

 incorporated latest 
technology 

 has many features 
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List all the demanded 
qualities at the same level 

of abstraction 



Step 2: cont... 

 Manufacturing 

 easy to produce 

 uses available resources 

 uses standard components and methods 

 minimum waste 

 Marketing/Sales 

 Meets customer requirements 

 Easy to package, store, and transport 

 is suitable for display 

 



How to determine the “Whats”? 

 Customer survey (have to formulate 
the questions very carefully) 

 If redesign, observe customers using 
existing products 

 Combine both or one of the approaches 
with designer knowledge/experience to 
determine “the customers’ voice” 



Step 3: Who vs. What 

 Need to evaluate the importance of 
each of the customer’s requirements.   

 Generate weighing factor for each 
requirement by rank ordering or other 
methods 
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Rank Ordering 

 Order the identified customer requirements 

 Assign “1” to the requirement with the lowest 
priority and then increase as the requirements 
have higher priority. 

 Sum all the numbers 

 The normalized weight 

Rank/Sum 

 The percent weight is: Rank*100/Sum 



Step 4: How satisfied is the customer 

now? 

 The goal is to determine how the customer 
perceives the competition’s ability to meet each of 
the requirements 

 it creates an awareness of what already exists 

 it reveals opportunities to improve on what already exists 

The design: 
1. does not meet the requirement at all 
2. meets the requirement slightly 
3. meets the requirement somewhat 
4. meets the requirement mostly 
5. fulfills the requirement completely 
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Step 5: How will the customers’ 

requirements be met? 

 The goal is to develop a set of engineering 
specifications from the customers’ 
requirements. 

Restatement of the design problem and customer 
requirements in terms of parameters that can be measured. 

Each customer requirement should 
have at least one engineering 

parameter.  
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Step 6: Hows measure Whats? 

 This is the center portion of the house.  Each 
cell represents how an engineering parameter 
relates to a customers’ requirements. 
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Step 7: How are the How’s Dependent on 

each other? 

 Engineering specifications maybe 
dependent on each other. 
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Step 8: How much is good enough? 

 Determine target value for 
each engineering 
requirement. 

 Evaluate competition 
products to engineering 
requirements 

 Look at set customer targets 

 Use the above two 
information to set targets 
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Kano Model 

Excitement
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-

+

Disgusted

Delighted

Basic Quality: These requirements 
are not usually mentioned by 
customers.  These are mentioned 
only when they are absent from the 
product.  

Performance Quality: provides an 
increase in satisfaction as 
performance improves  

Excitement Quality or “wow requirements”: are 
often unspoken, possibly because we are seldom 
asked to express our dreams.  Creation of some 
excitement features in a design differentiates the 
product from competition.  



Software Requirements  

 Requirements & Specification  

 Formal Approach  

 IEEE Standard: Software Requirement Spec. 

 Non-functional Requirements  

 Software Security, Reliability, and Safety 

 Improving Software Safety with Fault-
Tolerance    
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Meaning of Requirements  

 For now, Requirements => Functional 
requirements 

 Requirements are located in environment, which 
is distinguished from the machine/software to be 
built. 

 Distinction between requirements and 
specifications  

 A specification is a restricted form of 
requirement, providing enough information for 
the implementer to build the machine without 
further environment knowledge 

 Requirements need appropriate description 
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The Machine and The Environment 

 The requirements do not directly concern the 
machine, they concern the environment into 
which it will be installed. 

 The environment is the part of the world with 
which the machine will interact, in which the 
effects of the machine will be observed and 
evaluated 

 Example 

 Machine: Lift-control system 

 Environment: floors served, lift shaft, motor, doors 
and etc. 

 Environment: What is given 

 Machine: What is to be constructed  
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Shared Phenomena 

 The machine can affect, and be affected by, the 
environment only because they have some shared 
phenomena in common (events and states) 

 Example in the lift system 

 Shared event: turn-motor-on (between motor and 
machine) 

 Shared state: up-sensor-2-on (between a sensor located in 
the lift at floor 2 and machine’s store)  

 In considering shared phenomena, it is essential to 
distinguish between those that are controlled by the 
machine and those that are controlled by the environment  

 turn-motor-on event is controlled by machine 

 up-sensor-2-on state is controlled by environment 
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Optative and Indicative 

 The full description of a requirement consists of 
at least two parts: 

 We must describe the requirement itself 

 The desired condition over the phenomena of the 
environment (optative) guaranteed by the machine 

 We must also describe the given properties of 
the environment (indicative) guaranteed by 
the env. (environment assertions) 

 By virtue of which it will be possible for a machine, 
participating only in the shared phenomena, to 
ensure that the req. is satisfied   
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Requirements in Environment  

The Environment 

The Machine 

Machine 

behaviour is 

about these 

shared 

phenomena 

only  

Requirements are 

typically about 

these private 

phenomena 

Environment 

properties relate 

all of these 

shared and 

private 

phenomena, and 

so relate the 

requirements to 

the machine 

bahaviour   
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Requirements and Specifications 

 To show that the requirements are 
satisfied by some machine, we derive a 
specification S of the machine. 

 If a machine whose behavior satisfies S is 
installed in the environment and the 
environment has the properties described 
in E, then the environment will exhibit the 
properties described in R:        

E , S ├ R Or E ∧ S R 
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The Importance of Requirements  

 Reasons for failure: 
 Straightforward programming errors 

 Mismatch between the designed behavior and 
the effects in the environment  

 Errors in requirements 

 Incorrectly identified  

 Imprecisely expressed 

 Based on faulty reasoning about the 
environment 

 Based on faulty approximations to the 
reality of the phenomena and properties of 
the environment   
 

 



Turnstile Example  

 Control of turnstile at the entry of zoo 

 Turnstile consists of  

 Rotation of Barrier  

 A coin slot  

 Electrical Interfaces  

 Mechanical part exists  

 Development: S/W that controls  

 M/C: Small computer on which the s/w runs  

 Environment: Turnstile mechanism itself and 
its use by visitors  
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Turnstile  

 Visitor who wants to enter the zoo 

 Must push on the turnstile barrier  

 Move it to an intermediate position  

 It rotates on its from that position letting 
visitor in  

 Returns to original position  

 Has a locking device when locked prevents 
barrier being pushed to the intermediate 
position  

65 



Designations  

 Write a designation set  

 Each designation informally described  

 Terms to denote the phenomena  

 What’s happening in the environment? 

 Pushing the barrier into intermediate  

 Insertion of coins in the slot  

 Entry into the zoo 

 Locking of the barrier  

 Unlocking of the barrier  
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Designations: Shared and Unshared  

 Designations, all predicates  

 Push(e) 

 Lock (e) 

 Coin (e) 

 Unlock (e) 

 Enter (e) 

 Shared - Some phenomena must be shared. 

 Push(e) 

 Lock (e) 

 Coin (e) 

 Unlock (e) 
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All designations are specific to  
the environment.  

Identify phenomena using which  
Requirements and Specifications can  
be expressed  



Control of Phenomena  

 Where does the control of shared 
phenomena reside? 

 Environment Controlled – initiated here  

 Push  

 Coin  

 Enter  

 Machine Controlled – initiated here  

 Lock  

 Unlock  

 Machine can prevent Push and Enter through 
locking of turnstile  
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Safety:    something “bad” will never happen 

Liveness:  something “good” will happen   
        (but we don’t know when) 

Safety and Liveness 

Safety:    the program will never produce a         
       wrong result (“partial correctness”) 

Liveness:  the program will produce a result     
       (“termination”) 



Requirements  

 No entry without payment.  

 Anyone paid should be allowed to enter.  

 

 Needs designated environment 
phenomena based on previously 
designated phenomena.  

 Push#(v, n) 

 Enter# (v, n) 

 Coin# (v, n) 
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Question  

 Assume (a OR b) is the logic expression that 
captures the environment properties for a 
machine and (a OR c) is the logical expression 
that captures the overall specification of the 
machine. It turns out that the requirements for 
this machine can be refined to the logic (~a OR 
(b AND c)), where ~ represents the negation 
operation. Do the satisfaction of environment 
properties and the specification imply the 
satisfaction of requirements for this machine?  
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E ∧ S R 



Software Requirements  

 Requirements & Specification  

 Formal Approach  

 IEEE Standard: Software Requirement Spec. 

 Non-functional Requirements  

 Software Security, Reliability, and Safety 

 Improving Software Safety with Fault-
Tolerance    
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Software Development Life Cycle 

Project initiation 
 

Needs 
 

Requirements 
 

Specifications 
 

Prototype design 
 

Prototype test 
 

Revision of specs 
 

Final design 
 

Coding 
 

Unit test 
 

Integration test 
 

System test 
 

Acceptance test 
 

Field deployment 
 

Field maintenance 
 

System redesign 
 

Software discard 

 

 Software flaws may arise  

 at several points within  

 these life-cycle phases. 
  



Software Importance  

 Software is becoming central to many life-
critical systems  

 Software is created by error-prone humans  

 In the real world, software is executed by 
error-intolerant machines  

 Software development and maintenance is 
affected more by budget and schedule 
concerns than by a concern of reliability 



Faults and Failures 

 

 A software is said to contain a fault if for 
some input data the output is incorrect  

 For each execution of the software 
program where the output is incorrect, 
we observe a failure  

 Error, bug, mistake, malfunction, defect 
etc.  
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What Does Software Reliability Mean? 

 Major structural and logical problems are removed very early 
in the process of software testing 

 Flaws appear less frequently afterwards  

 Software usually contains one or more flaws per thousand 
lines of code, with < 1 flaw considered good (linux has been 
estimated to have 0.1) 

 If there are f flaws in a software component, rate of failure 
occurrence per hour, is kf, with k being the constant of 
proportionality which is determined experimentally   

 Software reliability: R(t) = e–kft     

 The only way to improve software reliability is to reduce the 
number of residual flaws through more rigorous verification 
and/or testing 



Comparison (cont’d) 

 Once a software fault is removed it will 
never cause the same failure again.  

 Software reliability can be improved by 
testing whereas, for hardware one has to 
use better material, improved design, and 
increased strength etc.  

 Software redundancy does not make 
any sense unless multi-version 



Reliability Improvement 

 Fault Avoidance  

 Fault Detection and Removal   

 Fault Tolerance  



 

Fault Tolerance 

 

 Exception handling  

 Recovery Block Schemes  

 N-version programming  

 Self checking programs  



Exception Handling  

 Framework within which each phase of FT can be 
implemented  

 Software system is a hierarchy of modules  

 Hierarchy represented by acyclic graph  

 Arrow from module M to N, if M uses N 

 Successful completion of M depends upon N’s success  

 Response of each module  

 Normal  

 Abnormal  [Exceptions]  

 EH framework signals & handles [mask] 
exceptions 
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Programming with Exceptions  

Traditional piece of code: 

Open a file, do something with it, close the file.  

void use_file (const char* fn) 

{ 

FILE* f = fopen(fn,"r"); 

// use f 

fclose(f); 

} 

Something goes wrong in “use f” segment 
then possible to exit code without closing 
file f.  



Programming with Exceptions  

A typical first attempt to make use_file() fault-
tolerant looks like this: 

void use_file(const char* fn) 
{ 

FILE* f = fopen(fn,"r"); 

try { 

// use f 
} 
catch (...) { 

fclose(f); 

throw; 
} 

fclose(f); 
} 

Catches exception, closes file, re-throws exception 



Exception Handling 

 Section of code in which exception may occur, 
enclosed in a try statement 

 Something that causes exception and triggers 
emergency procedures through a throw 
statement  

 Exception handling  code inside a catch block  
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Recovery Block Scheme  

The software counterpart to standby sparing for hardware 

Suppose we can verify the result of a software module by subjecting 
it to an acceptance test 

ensure      acceptance test 
by      primary module 
else by      first alternate 
 

  .    
  .    
  .    
 

else by      last alternate 
else fail 

e.g., sorted list 
e.g., quicksort 
e.g., bubblesort 
 

  . 
  . 
  . 
 

e.g., insertion sort 
 

The acceptance test can range from a simple reasonableness check 
to a sophisticated and thorough test 

Design diversity helps ensure that an alternate can succeed when the 
primary module fails 



RBS: Example 

 Sorting program  

 Ensure A[j+1] > A[j] for j=1,2,...,n-1  

 by Sort A using quick sort  

 by Sort A using insertion sort  

 by Sort A using bubble sort  

 else ERROR  
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   RBS: Acceptance-Test Design  

 Design of acceptance tests (ATs) that are both simple and 
thorough is can be difficult 

 Simplicity is desirable because acceptance test is executed 
after the primary computation, thus lengthening the 
critical path 

 Thoroughness ensures that an incorrect result does not 
pass the test (of course, a correct result always passes a 
properly designed test) 

 Some computations do have simple tests (inverse 
computation) Examples: square-rooting can be checked 
through squaring, and roots of a polynomial can be 
verified via polynomial evaluation 

 At worst, the acceptance test might be as complex as the 
primary computation itself 
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RBS: Deadline Mechanism 

Based on  Recovery Block approach to avoid timing failures  

Service  <service-name> 

 

Within <response-period> 

 

By  

   Primary Algorithm  

Else  by  

   Alternate Algorithm  



RBS: Performance & Reliability  
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 P 

AT 

S1 

AT 

S2 

AT 

Pass 

Pass 

Pass 

Fail  

Fail  

Fail  

P1 = Prob. of P’s success  

P2 = Prob. of S1’s success  

P2 = Prob. of S2’s success  

Prob. that scheme successful = 
 
P1 + ( 1 – P1) (P2 + (1 – P2) (P3 + ….))  
 

T1 = Time taken by P + AT  

T2 =  Time taken by S1 + AT  

T3 = Time taken by S2 + AT    

Time taken by RBS scheme = 
 
T1 + ( 1 – P1) (T2 + (1 – P2) (T3 + ….))  
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N-Version Programming  

Independently develop N different programs (known as “versions”) 

from the same initial specification 

The greater the diversity in the N versions, the less likely  
that they will have flaws that produce correlated errors 
 

Diversity in: 
1. Programming teams (personnel and structure) 
2. Software architecture 
3. Algorithms used 
4. Programming languages 
5. Verification tools and methods 
6. Data (input re-expression and output adjustment) 

Version 1 

Version 2 

Version 3 

Voter Output Input 

Adjudicator; 
Decider; 
Data fuser 



NVP: Key Points  

 Independent generation of  n>2 functionally 
equivalent programs from the same initial 
specification.  

 Independent generation - programs developed 
by N different groups that do not interact. 

 Multiple versions must be run  

 Versions can run in parallel  

 Construction of voting mechanism    

Airbus A320/330/340 flight control: 4 dissimilar 

hardware/software modules drive two independent sets of 

actuators. 



RBS vs. NVP 

 

 In RBS if the error escapes the AT, no 
recovery action is initiated  

 In NVP if a majority of versions have the 
same fault recovery will not be initiated  

 In recovery blocks, production cost low, since 
earlier versions of the software can be used 
as alternates  

 Combination schemes are attractive.  
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RBS & NVP Combinations  

Recoverable N-version 

block scheme =  

N-self-checking program 
 

Voter acts only on module 

outputs that have passed 

an acceptance test 

 

Consensus recovery 

block scheme 
 

Only when there is no 

majority agreement, 

acceptance test applied 

(in a prespecified order) 

to module outputs until 

one passes its test 

Source: Parhami, B., “An Approach to Component-Based Synthesis of 
Fault-Tolerant Software,” Informatica, Vol. 25, pp. 533-543, Nov. 2001. 

 1 

3 

(a) RNVB / NSCP 

2 

F  P 

 1 2 3 

1 2 3 

(b) CRB 

 1 2 3 

1 

2 

3 

F 

F 

F F F 

 P  P 

 P 

 P 

 P v/2 >v/2 

Modules 

Tests 

Tests 

Voter 

Voter 

Error Error 



Multicore & FT  

 Dual-core/Quad-core processor contain 2/4 

independent microprocessors.  

 

c
o
r
e 
 
1 

c
o
r
e 
 
2 

c
o
r
e 
 
3 

c
o
r
e 
 
4 

several  

threads 

several  

threads 
several  

threads 

several  

threads 



Multicore & FT 

 N-Version programming can utilize 
multiple cores to improve performance  

 Ideal for any FT schemes that use voting 

 Requires parallel programming  

 OpenMP (Shared  Memory MP) 

 MPI (message passing) 

 Helps both software and hardware FT  
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Algorithm-Based Fault Tolerance 

 Encode the input data stream 

 Redesign of the algorithm to operate on 
the coded data 

 Generally more suitable for 
computationally intensive applications 

 Matrix operations 

 Transposition, Addition 

 Multiplication 

 FFT 

 



ABFT: Matrix Multiplication 

 Use column and row checksum encoding 

23

01

01

12



 BA

Ac Br      

2 1

1 0

1 1

1

3

0

2

1

5

5 2 7

1 0 1

4 2 6



  

 

Data Diversity 

A = xy 

a

z 

x 

y 

R 

r 

A = ½ z2 sin a A = 4r (R2 – r2)1/2 

Alternate formulations of the same information (input re-expression) 

Example: The shape of a rectangle can be specified: 

By its two sides x and y 

By the length z of its diameters and the angle a between them 

By the radii r and R of its inscribed and circumscribed circles 

Area calculations with computation and data diversity 



FT Cloud 

 A single moment of downtime: Not an option in 
today’s business  

 A single server failure could result in enormous 
loss of business opportunities  

 Minimize risk of downtime: keep systems up 
and running 

 FT Servers: Fully Redundant Servers  

 Address planned and unplanned downtime  

 HP, NEC, DELL, …. 
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High Availability  

 Servers engineered for transparent failover and 
system integrity: NEC FT Servers   

 

 

 

 

 

 Hardware components replicated 

 Redundancy chipset controls redundant h/w  

 Redundant modules provide lockstep 
processing  
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Single Server View  

 Perform as single servers running single 
operating system 

 

 

 

 

 

 

 No need to modify any middleware or 
applications  
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