
UTD 2012 REU Summer Program on

Software Safety

 Bhanu Kapoor, PhD

Adjunct Faculty, Department of Computer Science

UTD, Dallas, TX

 bhanu.kapoor@utdallas.edu, 214-336-4973

June 04-05, 2012

UTD, Dallas, TX

Lecture Notes

1

Software Requirements

 Introduction to Software Requirements

 How is Software Developed?

 Software Development Life Cycle

 Problems with Software Requirements

 Types of Requirements: Library System

 Stakeholders: Tree Swing

 Smartphone Requirements

 Tracking Requirements

 Quality Function Deployment

 Apple iPhone 4S Case Study

2

Software Requirements

 Requirements & Specification

 Formal Approach

 IEEE Standard: Software Requirement Spec.

 Non-functional Requirements

 Software Security, Reliability, and Safety

 Improving Software Safety with Fault-
Tolerance

3

Software Requirements

 Introduction to Software Requirements

 How is Software Developed?

 Software Development Life Cycle

 Problems with Software Requirements

 Types of Requirements: Library System

 Stakeholders: Tree Swing

 Smartphone Requirements

 Tracking Requirements

 Quality Function Deployment

 Apple iPhone 4S Case Study

4

Software Development Life Cycle

 Need Determination

 Concept Definition and Demonstration

 Development

 Testing

 Deployment

 Operations and Maintenance

5

Software Development Life-Cycle

(SDLC) Models

 Waterfall

 Incremental

 Evolutionary

 Spiral

6

Waterfall Model

7

Waterfall: Advantages

• System is well documented.

• Phases correspond with project
management phases.

• Cost and schedule estimates may be
more accurate.

• Details can be addressed with more
engineering effort if software is large or
complex.

8

Waterfall: Disadvantages

• All risks must be dealt with in a single
software development effort.

• Because the model is sequential, there is
only local feedback at the transition between
phases.

• A working product is not available until late
in the project.

• Progress and success are not observable
until the later stages.

• Corrections must often wait for the
maintenance phase. 9

Incremental

 A series of waterfalls

 Collect requirements initially

 Different builds address requirements
incrementally

10

Incremental: Advantages

• Provides some feedback, allowing later
development cycles to learn from previous
cycles.

• Requirements are relatively stable and
may be better understood with each
increment.

• Allows some requirements modification
and may allow the addition of new
requirements.

• It is more responsive to user needs than
the waterfall model.

11

Incremental: Advantages

• A usable product is available with the
first release, and each cycle results in
greater functionality.

• The project can be stopped any time
after the first cycle and leave a working
product.

• Risk is spread out over multiple cycles.

• This method can usually be performed
with fewer people than the waterfall
model.

 12

Incremental: Advantages

• Return on investment is visible earlier in
the project.

• Project management may be easier for
smaller, incremental projects.

• Testing may be easier on smaller
portions of the system.

13

Incremental: Disadvantages

• Formal reviews may be more difficult to
implement on incremental releases.

• Interfaces between modules must be
well-defined in the beginning.

• Cost and schedule overruns may result in
an unfinished system.

• Operations are impacted as each new
release is deployed.

• Users are required to learn how to use a
new system with each deployment.

14

Evolutionary

 Requirements evolve as system is used

15

Evolutionary: Advantages

• Project can begin without fully defining or
understanding requirements.

• Final requirements are improved and
more in line with real user needs.

• Risks are spread over multiple software
builds and controlled better.

• Operational capability is achieved earlier
in the program.

• Newer technology can be incorporated
into the system as it becomes available
during later prototypes.

16

Evolutionary: Disadvantages

• Usually an increase in both cost and
schedule over the waterfall method.

• Management activities are increased.

• Configuration management activities are
increased.

• Greater coordination of resources is
required.

• Prototypes change between cycles,
adding a learning curve for developers and
users.

17

Spiral

 Addresses risk incrementally

 Determines objectives and constraints

 Evaluate alternatives

 Identify risks

 Resolves risks by assigning priorities

 Develop a series of prototypes for
identified risks, start with highest risk

 Waterfall for each prototype development

 Progress with risk resolution, else end.
18

Spiral

19

Spiral Model

 Advantages

• It provides better risk management than
other models.

• Requirements are better defined.

• System is more responsive to user needs.

 Disadvantages

• The spiral model is more complex and harder
to manage.

• This method usually increases development
costs and schedule.

20

Software Requirements

 Introduction to Software Requirements

 How is Software Developed?

 Software Development Life Cycle

 Problems with Software Requirements

 Types of Requirements: Library System

 Stakeholders: Tree Swing

 Smartphone Requirements

 Tracking Requirements

 Quality Function Deployment

 Apple iPhone 4S Case Study

21

Problem with Requirements

 Library System

 System maintains record of all library items

 Allows users to search by title, author, ISBN

 User interface via web browser

 System supports 20 transactions per second

 Facilities demonstrable in 10 minutes or less

22

General Requirements Functional Requirements

Implementation Requirements

Performance Requirements Usability Requirements

23

Problems with Requirements

 We have trouble understanding the

requirements that we do acquire from the
customer

 We often record requirements in a
disorganized manner

 We spend far too little time verifying what we
do record

 We allow change to control us, rather than
establishing mechanisms to control change

 Most importantly, we fail to establish a solid
foundation for the system or software that
the user wants built

(Source: Pressman, R. Software Engineering: A Practitioner’s Approach. McGraw-Hill, 2005)

24

Problems with Requirements

 Many software developers argue that

 Building software is so compelling that we want to
jump right in

 Things will become clear as we build the software

 Things change so rapidly that requirements
engineering is a waste of time

 The bottom line is producing a working program
and that all else is secondary

 All of these arguments contain some truth,
especially for small projects

 However, as software grows in size and
complexity, these arguments begin to fail

Problems with Requirements

 Many different kind of requirements

 No standard way of writing requirements

 Application domain dependent

 Writer dependent

 Reader dependent

 Organization practices

 What is required of system may include

 General information about type of system

 Information about standards to adhere to

 Information about other interacting systems

25

Problems with Requirements

 Requirements at the root of software
engineering problems

 Real needs of customer not reflected

 Misunderstanding between customer, marketing,
and developer

 Inconsistent or incomplete requirements

 Allows users to search by title, author, ISBN

 Requirement problems are universal

 Human issues, impossible to be accurate

 Good practices reduce issues

 Requirements engineering is about good
practices

26

6/29/2013
27

Requirements Process

 Requirements in Software Lifecycle
 Initial phase
 May span the entire life cycle

 Essential Requirements Process Steps
 Understand the problem
 elicitation

 Formally describe the problem
 specification, modeling

 Attain agreement on the nature of problem
 validation, conflict resolution, negotiation
 requirements management - maintain the

agreement!

 Sequential or iterative/incremental

Requirements Elicitation

 Four Dimensions

 Application Domain Knowledge

 Cataloguing System  Knowledge of Library

 Knowledge can be present in multiple places

 Problem Understanding

 Cataloguing System  How Library organizes?

 People who understand the problem are busy

 Business Understanding

 Organization issues may influence the
requirements

 Needs of Stakeholders

 General knowledge, difficult to articulate

 28

Problems with Elicitation

 Scope

 Volatility

 Understanding

29

Scope

 Boundary of system ill-defined

 Unnecessary design information may be
given

 Focus on creation of requirements and
not on design activities

 Users may not understand design language

 Such a focus may not reflect user needs

30

Scope

 Organizational Factors

 Input providers

 Users of target system

 Managers of users

 How target system will change
organization’s means of doing business?

 Environmental Factors

 Accurate description of users

 Accurate description of environment

 H/W or S/W constraints imposed

 Interfaces to the larger system

 Role in larger system 31

Volatility

 Requirements Change

 User needs may change over time

 They may evolve over time

 Iterative nature of RE process

 Conflicting and changing needs of stakeholders

 Political climate may change

 You cannot complete requirements
capture before the design stage

32

Understanding

 Understanding issues lead to
requirements that are:

 Ambiguous

 Incomplete

 Inconsistent

 Incorrect

 Reasons

 Variety of background

 Experience levels

 Language too formal or informal

 Amount of information

33

Understanding

 Stakeholders

 Sponsors

 Users

 Developers

 Quality Assurance

 Requirement Analysts

 Managers of users

34

Tree Swing

 What marketing suggested

 What management approved

35

Tree Swing

 What engineering designed

 What was manufactured

36

Tree Swing

 As maintenance installed it

 What the customer wanted

37

6/29/2013
38

Importance of Requirements

 Engineering Argument

 A good solution can only be developed if the engineer
has a solid understanding of the problem.

 Economic Argument

 Defects are cheaper to remove if are found earlier.

 Empirical Argument

 Failure to understand and manage requirements is the
biggest single cause of cost and schedule over-runs.

 Safety Argument

 Safety-related software errors arise most often from
inadequate or misunderstood requirements

 … …

Software Requirements

 Introduction to Software Requirements

 How is Software Developed?

 Software Development Life Cycle

 Problems with Software Requirements

 Types of Requirements: Library System

 Stakeholders: Tree Swing

 Tracking Requirements

 Quality Function Deployment

 Apple iPhone 4S Case Study

39

Quality Function Deployment (QFD)

 Developed in Japan in the mid 1970s

 Introduced in USA in the late 1980s

 Toyota was able to reduce 60% of cost to
bring a new car model to market

 Toyota decreased 1/3 of its development
time

 Used in cross functional teams

 Companies feel it increased customer
satisfaction

Zahed Siddique, OU

Why?

 Product should be designed to reflect
customers’ desires and tastes.

 House of Quality is a kind of a conceptual map
that provides the means for inter-functional
planning and communications

 To understand what customers mean by quality
and how to achieve it from an engineering
perspective.

 HQ is a tool to focus the product development
process

QFD Key Points

 Should be employed at the beginning of
every project (original or redesign)

 Customer requirements should be translated
into measurable design targets

 It can be applied to the entire problem or any
sub-problem

 First worry about what needs to be designed
then how

 It takes time to complete

Components of House

of Quality

Customer

Evaluation

Units

Targets

T
h

is
 P

ro
d

u
c
t

This Product

Targets

W
h
o

Whats

W
h
o
 v

s
.

W
h
a
ts

Hows vs
Hows

Hows

Whats vs
Hows

Now

N
o
w

 v
s

W
h
a
t

How Muches
Hows vs

How
Muches

Step 1: Who are the customers?

 To “Listen to the voice of the
customer” first need to identify the
customer

 In most cases there are more than
one customer

 consumer

 regulatory agencies

 manufacturing

 marketing/Sales

Customers drive the development
of the product, not the designer

Step 2: Determine the customers’

requirements

 Need to determine what is
to be designed

 Consumer

 product works as it should

 lasts a long time

 is easy to maintain

 looks attractive

 incorporated latest
technology

 has many features

Customer

Evaluation

Units

Targets

T
h

is
 P

r
o

d
u

c
t

This Product

Targets

W
h
o

Whats

W
h
o
 v

s.

W
h
a
ts

Hows vs
Hows

Hows

Whats vs
Hows

Now

N
o
w

 v
s

W
h
a
t

How Muches
Hows vs

How
Muches

List all the demanded
qualities at the same level

of abstraction

Step 2: cont...

 Manufacturing

 easy to produce

 uses available resources

 uses standard components and methods

 minimum waste

 Marketing/Sales

 Meets customer requirements

 Easy to package, store, and transport

 is suitable for display

How to determine the “Whats”?

 Customer survey (have to formulate
the questions very carefully)

 If redesign, observe customers using
existing products

 Combine both or one of the approaches
with designer knowledge/experience to
determine “the customers’ voice”

Step 3: Who vs. What

 Need to evaluate the importance of
each of the customer’s requirements.

 Generate weighing factor for each
requirement by rank ordering or other
methods

Customer

Evaluation

Units

Targets

T
h

is
 P

ro
d

u
ct

This Product

Targets

W
h
o

Whats

W
h
o
 v

s
.

W
h
a
ts

Hows vs
Hows

Hows

Whats vs
Hows

Now

N
o
w

 v
s

W
h
a
t

How Muches
Hows vs

How
Muches

Rank Ordering

 Order the identified customer requirements

 Assign “1” to the requirement with the lowest
priority and then increase as the requirements
have higher priority.

 Sum all the numbers

 The normalized weight

Rank/Sum

 The percent weight is: Rank*100/Sum

Step 4: How satisfied is the customer

now?

 The goal is to determine how the customer
perceives the competition’s ability to meet each of
the requirements

 it creates an awareness of what already exists

 it reveals opportunities to improve on what already exists

The design:
1. does not meet the requirement at all
2. meets the requirement slightly
3. meets the requirement somewhat
4. meets the requirement mostly
5. fulfills the requirement completely

Customer

Evaluation

Units

Targets

T
h

is
 P

ro
d

u
ct

This Product

Targets

W
h
o

Whats

W
h
o
 v

s
.

W
h
a
ts

Hows vs
Hows

Hows

Whats vs
Hows

Now

N
o
w

 v
s

W
h
a
t

How Muches
Hows vs

How
Muches

Step 5: How will the customers’

requirements be met?

 The goal is to develop a set of engineering
specifications from the customers’
requirements.

Restatement of the design problem and customer
requirements in terms of parameters that can be measured.

Each customer requirement should
have at least one engineering

parameter.

Customer

Evaluation

Units

Targets

T
h

is
 P

ro
d

u
ct

This Product

Targets

W
h
o

Whats

W
h
o
 v

s
.

W
h
a
ts

Hows vs
Hows

Hows

Whats vs
Hows

Now

N
o
w

 v
s

W
h
a
t

How Muches
Hows vs

How
Muches

Step 6: Hows measure Whats?

 This is the center portion of the house. Each
cell represents how an engineering parameter
relates to a customers’ requirements.

Customer

Evaluation

Units

Targets

T
h

is
 P

ro
d

u
ct

This Product

Targets

W
h
o

Whats

W
h
o
 v

s
.

W
h
a
ts

Hows vs
Hows

Hows

Whats vs
Hows

Now

N
o
w

 v
s

W
h
a
t

How Muches
Hows vs

How
Muches

9 = Strong Relationship
3 = Medium Relationship
1 = Weak Relationship
Blank = No Relationship at all

Step 7: How are the How’s Dependent on

each other?

 Engineering specifications maybe
dependent on each other.

Customer

Evaluation

Units

Targets

T
h

is
 P

ro
d

u
ct

This Product

Targets

W
h
o

Whats

W
h
o
 v

s
.

W
h
a
ts

Hows vs
Hows

Hows

Whats vs
Hows

Now

N
o
w

 v
s

W
h
a
t

How Muches
Hows vs

How
Muches

9 = Strong Relationship
3 = Medium Relationship
1 = Weak Relationship
-1 = Weak Negative Relationship
-3 = Medium Negative Relationship
-9 = Strong Negative Relationship
Blank = No Relationship at all

Step 8: How much is good enough?

 Determine target value for
each engineering
requirement.

 Evaluate competition
products to engineering
requirements

 Look at set customer targets

 Use the above two
information to set targets

Customer

Evaluation

Units

Targets

T
h

is
 P

ro
d

u
ct

This Product

Targets

W
h
o

Whats

W
h
o
 v

s
.

W
h
a
ts

Hows vs
Hows

Hows

Whats vs
Hows

Now

N
o
w

 v
s

W
h
a
t

How Muches
Hows vs

How
Muches

Kano Model

Excitement

Satisfiers
Basic

P
er

fo
rm

an
ce

Fully
implemented

Absent

Customer Satisfaction

-

+

Disgusted

Delighted

Basic Quality: These requirements
are not usually mentioned by
customers. These are mentioned
only when they are absent from the
product.

Performance Quality: provides an
increase in satisfaction as
performance improves

Excitement Quality or “wow requirements”: are
often unspoken, possibly because we are seldom
asked to express our dreams. Creation of some
excitement features in a design differentiates the
product from competition.

Software Requirements

 Requirements & Specification

 Formal Approach

 IEEE Standard: Software Requirement Spec.

 Non-functional Requirements

 Software Security, Reliability, and Safety

 Improving Software Safety with Fault-
Tolerance

56

57

Meaning of Requirements

 For now, Requirements => Functional
requirements

 Requirements are located in environment, which
is distinguished from the machine/software to be
built.

 Distinction between requirements and
specifications

 A specification is a restricted form of
requirement, providing enough information for
the implementer to build the machine without
further environment knowledge

 Requirements need appropriate description

58

The Machine and The Environment

 The requirements do not directly concern the
machine, they concern the environment into
which it will be installed.

 The environment is the part of the world with
which the machine will interact, in which the
effects of the machine will be observed and
evaluated

 Example

 Machine: Lift-control system

 Environment: floors served, lift shaft, motor, doors
and etc.

 Environment: What is given

 Machine: What is to be constructed

59

Shared Phenomena

 The machine can affect, and be affected by, the
environment only because they have some shared
phenomena in common (events and states)

 Example in the lift system

 Shared event: turn-motor-on (between motor and
machine)

 Shared state: up-sensor-2-on (between a sensor located in
the lift at floor 2 and machine’s store)

 In considering shared phenomena, it is essential to
distinguish between those that are controlled by the
machine and those that are controlled by the environment

 turn-motor-on event is controlled by machine

 up-sensor-2-on state is controlled by environment

60

Optative and Indicative

 The full description of a requirement consists of
at least two parts:

 We must describe the requirement itself

 The desired condition over the phenomena of the
environment (optative) guaranteed by the machine

 We must also describe the given properties of
the environment (indicative) guaranteed by
the env. (environment assertions)

 By virtue of which it will be possible for a machine,
participating only in the shared phenomena, to
ensure that the req. is satisfied

61

Requirements in Environment

The Environment

The Machine

Machine

behaviour is

about these

shared

phenomena

only

Requirements are

typically about

these private

phenomena

Environment

properties relate

all of these

shared and

private

phenomena, and

so relate the

requirements to

the machine

bahaviour

62

Requirements and Specifications

 To show that the requirements are
satisfied by some machine, we derive a
specification S of the machine.

 If a machine whose behavior satisfies S is
installed in the environment and the
environment has the properties described
in E, then the environment will exhibit the
properties described in R:

E , S ├ R Or E ∧ S R

63

The Importance of Requirements

 Reasons for failure:
 Straightforward programming errors

 Mismatch between the designed behavior and
the effects in the environment

 Errors in requirements

 Incorrectly identified

 Imprecisely expressed

 Based on faulty reasoning about the
environment

 Based on faulty approximations to the
reality of the phenomena and properties of
the environment

Turnstile Example

 Control of turnstile at the entry of zoo

 Turnstile consists of

 Rotation of Barrier

 A coin slot

 Electrical Interfaces

 Mechanical part exists

 Development: S/W that controls

 M/C: Small computer on which the s/w runs

 Environment: Turnstile mechanism itself and
its use by visitors

64

Turnstile

 Visitor who wants to enter the zoo

 Must push on the turnstile barrier

 Move it to an intermediate position

 It rotates on its from that position letting
visitor in

 Returns to original position

 Has a locking device when locked prevents
barrier being pushed to the intermediate
position

65

Designations

 Write a designation set

 Each designation informally described

 Terms to denote the phenomena

 What’s happening in the environment?

 Pushing the barrier into intermediate

 Insertion of coins in the slot

 Entry into the zoo

 Locking of the barrier

 Unlocking of the barrier

66

Designations: Shared and Unshared

 Designations, all predicates

 Push(e)

 Lock (e)

 Coin (e)

 Unlock (e)

 Enter (e)

 Shared - Some phenomena must be shared.

 Push(e)

 Lock (e)

 Coin (e)

 Unlock (e)

67

All designations are specific to
the environment.

Identify phenomena using which
Requirements and Specifications can
be expressed

Control of Phenomena

 Where does the control of shared
phenomena reside?

 Environment Controlled – initiated here

 Push

 Coin

 Enter

 Machine Controlled – initiated here

 Lock

 Unlock

 Machine can prevent Push and Enter through
locking of turnstile

68

Safety: something “bad” will never happen

Liveness: something “good” will happen
 (but we don’t know when)

Safety and Liveness

Safety: the program will never produce a
 wrong result (“partial correctness”)

Liveness: the program will produce a result
 (“termination”)

Requirements

 No entry without payment.

 Anyone paid should be allowed to enter.

 Needs designated environment
phenomena based on previously
designated phenomena.

 Push#(v, n)

 Enter# (v, n)

 Coin# (v, n)

70

Question

 Assume (a OR b) is the logic expression that
captures the environment properties for a
machine and (a OR c) is the logical expression
that captures the overall specification of the
machine. It turns out that the requirements for
this machine can be refined to the logic (~a OR
(b AND c)), where ~ represents the negation
operation. Do the satisfaction of environment
properties and the specification imply the
satisfaction of requirements for this machine?

71

E ∧ S R

Software Requirements

 Requirements & Specification

 Formal Approach

 IEEE Standard: Software Requirement Spec.

 Non-functional Requirements

 Software Security, Reliability, and Safety

 Improving Software Safety with Fault-
Tolerance

72

73

Software Development Life Cycle

Project initiation

Needs

Requirements

Specifications

Prototype design

Prototype test

Revision of specs

Final design

Coding

Unit test

Integration test

System test

Acceptance test

Field deployment

Field maintenance

System redesign

Software discard

 Software flaws may arise

 at several points within

 these life-cycle phases.

Software Importance

 Software is becoming central to many life-
critical systems

 Software is created by error-prone humans

 In the real world, software is executed by
error-intolerant machines

 Software development and maintenance is
affected more by budget and schedule
concerns than by a concern of reliability

Faults and Failures

 A software is said to contain a fault if for
some input data the output is incorrect

 For each execution of the software
program where the output is incorrect,
we observe a failure

 Error, bug, mistake, malfunction, defect
etc.

76

What Does Software Reliability Mean?

 Major structural and logical problems are removed very early
in the process of software testing

 Flaws appear less frequently afterwards

 Software usually contains one or more flaws per thousand
lines of code, with < 1 flaw considered good (linux has been
estimated to have 0.1)

 If there are f flaws in a software component, rate of failure
occurrence per hour, is kf, with k being the constant of
proportionality which is determined experimentally

 Software reliability: R(t) = e–kft

 The only way to improve software reliability is to reduce the
number of residual flaws through more rigorous verification
and/or testing

Comparison (cont’d)

 Once a software fault is removed it will
never cause the same failure again.

 Software reliability can be improved by
testing whereas, for hardware one has to
use better material, improved design, and
increased strength etc.

 Software redundancy does not make
any sense unless multi-version

Reliability Improvement

 Fault Avoidance

 Fault Detection and Removal

 Fault Tolerance

Fault Tolerance

 Exception handling

 Recovery Block Schemes

 N-version programming

 Self checking programs

Exception Handling

 Framework within which each phase of FT can be
implemented

 Software system is a hierarchy of modules

 Hierarchy represented by acyclic graph

 Arrow from module M to N, if M uses N

 Successful completion of M depends upon N’s success

 Response of each module

 Normal

 Abnormal [Exceptions]

 EH framework signals & handles [mask]
exceptions

80

Programming with Exceptions

Traditional piece of code:

Open a file, do something with it, close the file.

void use_file (const char* fn)

{

FILE* f = fopen(fn,"r");

// use f

fclose(f);

}

Something goes wrong in “use f” segment
then possible to exit code without closing
file f.

Programming with Exceptions

A typical first attempt to make use_file() fault-
tolerant looks like this:

void use_file(const char* fn)
{

FILE* f = fopen(fn,"r");

try {

// use f
}
catch (...) {

fclose(f);

throw;
}

fclose(f);
}

Catches exception, closes file, re-throws exception

Exception Handling

 Section of code in which exception may occur,
enclosed in a try statement

 Something that causes exception and triggers
emergency procedures through a throw
statement

 Exception handling code inside a catch block

84

Recovery Block Scheme

The software counterpart to standby sparing for hardware

Suppose we can verify the result of a software module by subjecting
it to an acceptance test

ensure acceptance test
by primary module
else by first alternate

 .
 .
 .

else by last alternate
else fail

e.g., sorted list
e.g., quicksort
e.g., bubblesort

 .
 .
 .

e.g., insertion sort

The acceptance test can range from a simple reasonableness check
to a sophisticated and thorough test

Design diversity helps ensure that an alternate can succeed when the
primary module fails

RBS: Example

 Sorting program

 Ensure A[j+1] > A[j] for j=1,2,...,n-1

 by Sort A using quick sort

 by Sort A using insertion sort

 by Sort A using bubble sort

 else ERROR

S86

 RBS: Acceptance-Test Design

 Design of acceptance tests (ATs) that are both simple and
thorough is can be difficult

 Simplicity is desirable because acceptance test is executed
after the primary computation, thus lengthening the
critical path

 Thoroughness ensures that an incorrect result does not
pass the test (of course, a correct result always passes a
properly designed test)

 Some computations do have simple tests (inverse
computation) Examples: square-rooting can be checked
through squaring, and roots of a polynomial can be
verified via polynomial evaluation

 At worst, the acceptance test might be as complex as the
primary computation itself

87

RBS: Deadline Mechanism

Based on Recovery Block approach to avoid timing failures

Service <service-name>

Within <response-period>

By

 Primary Algorithm

Else by

 Alternate Algorithm

RBS: Performance & Reliability

88

 P

AT

S1

AT

S2

AT

Pass

Pass

Pass

Fail

Fail

Fail

P1 = Prob. of P’s success

P2 = Prob. of S1’s success

P2 = Prob. of S2’s success

Prob. that scheme successful =

P1 + (1 – P1) (P2 + (1 – P2) (P3 + ….))

T1 = Time taken by P + AT

T2 = Time taken by S1 + AT

T3 = Time taken by S2 + AT

Time taken by RBS scheme =

T1 + (1 – P1) (T2 + (1 – P2) (T3 + ….))

89

N-Version Programming

Independently develop N different programs (known as “versions”)

from the same initial specification

The greater the diversity in the N versions, the less likely
that they will have flaws that produce correlated errors

Diversity in:
1. Programming teams (personnel and structure)
2. Software architecture
3. Algorithms used
4. Programming languages
5. Verification tools and methods
6. Data (input re-expression and output adjustment)

Version 1

Version 2

Version 3

Voter Output Input

Adjudicator;
Decider;
Data fuser

NVP: Key Points

 Independent generation of n>2 functionally
equivalent programs from the same initial
specification.

 Independent generation - programs developed
by N different groups that do not interact.

 Multiple versions must be run

 Versions can run in parallel

 Construction of voting mechanism

Airbus A320/330/340 flight control: 4 dissimilar

hardware/software modules drive two independent sets of

actuators.

RBS vs. NVP

 In RBS if the error escapes the AT, no
recovery action is initiated

 In NVP if a majority of versions have the
same fault recovery will not be initiated

 In recovery blocks, production cost low, since
earlier versions of the software can be used
as alternates

 Combination schemes are attractive.

92

RBS & NVP Combinations

Recoverable N-version

block scheme =

N-self-checking program

Voter acts only on module

outputs that have passed

an acceptance test

Consensus recovery

block scheme

Only when there is no

majority agreement,

acceptance test applied

(in a prespecified order)

to module outputs until

one passes its test

Source: Parhami, B., “An Approach to Component-Based Synthesis of
Fault-Tolerant Software,” Informatica, Vol. 25, pp. 533-543, Nov. 2001.

 1

3

(a) RNVB / NSCP

2

F P

 1 2 3

1 2 3

(b) CRB

 1 2 3

1

2

3

F

F

F F F

 P P

 P

 P

 P v/2 >v/2

Modules

Tests

Tests

Voter

Voter

Error Error

Multicore & FT

 Dual-core/Quad-core processor contain 2/4

independent microprocessors.

c
o
r
e

1

c
o
r
e

2

c
o
r
e

3

c
o
r
e

4

several

threads

several

threads
several

threads

several

threads

Multicore & FT

 N-Version programming can utilize
multiple cores to improve performance

 Ideal for any FT schemes that use voting

 Requires parallel programming

 OpenMP (Shared Memory MP)

 MPI (message passing)

 Helps both software and hardware FT

94

Algorithm-Based Fault Tolerance

 Encode the input data stream

 Redesign of the algorithm to operate on
the coded data

 Generally more suitable for
computationally intensive applications

 Matrix operations

 Transposition, Addition

 Multiplication

 FFT

ABFT: Matrix Multiplication

 Use column and row checksum encoding

23

01

01

12



 BA

Ac Br      

2 1

1 0

1 1

1

3

0

2

1

5

5 2 7

1 0 1

4 2 6

Data Diversity

A = xy

a

z

x

y

R

r

A = ½ z2 sin a A = 4r (R2 – r2)1/2

Alternate formulations of the same information (input re-expression)

Example: The shape of a rectangle can be specified:

By its two sides x and y

By the length z of its diameters and the angle a between them

By the radii r and R of its inscribed and circumscribed circles

Area calculations with computation and data diversity

FT Cloud

 A single moment of downtime: Not an option in
today’s business

 A single server failure could result in enormous
loss of business opportunities

 Minimize risk of downtime: keep systems up
and running

 FT Servers: Fully Redundant Servers

 Address planned and unplanned downtime

 HP, NEC, DELL, ….

98

High Availability

 Servers engineered for transparent failover and
system integrity: NEC FT Servers

 Hardware components replicated

 Redundancy chipset controls redundant h/w

 Redundant modules provide lockstep
processing

99

Single Server View

 Perform as single servers running single
operating system

 No need to modify any middleware or
applications

100

