

Software Architecture
and Design Overview

II

 Mark C. Paulk, Ph.D.

 Mark.Paulk@utdallas.edu, Mark.Paulk@ieee.org

 http://mark.paulk123.com/

mailto:Mark.Paulk@utdallas.edu
mailto:Mark.Paulk@utdallas.edu
mailto:Mark.Paulk@ieee.org
http://mark.paulk123.com/
http://mark.paulk123.com/

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

2

What Is An “Agile Method”?

 A software engineering ―methodology‖ that

follows the Agile Manifesto?

 A method that supports responding rapidly to

changing requirements?
- Mark Paulk

 Does an agile method necessarily imply

• Evolutionary / iterative / incremental

development?

• Empowerment / participation of the

development team?

• Active collaboration with the customer?

• …

3

4

Agile Manifesto

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

 That is, while there is value in the items on the right, we

value the items on the left more.

Kent Beck

Mike Beedle

Arie van Bennekum

Alistair Cockburn

Ward Cunningham

Martin Fowler

James Grenning

Jim Highsmith

Andrew Hunt

Ron Jeffries

Jon Kern

Brian Marick

Robert C. Martin

Steve Mellor

Ken Schwaber

Jeff Sutherland

Dave Thomas

Agile Principles

 Customer satisfaction by early and continuous

delivery of valuable software

 Welcome changing requirements, even late in

development

 Deliver working software frequently

 Business people and developers work together

daily

 Build projects around motivated individuals

5

Agile Principles -1

 Face-to-face conversation is the most effective

and efficient method of conveying information

 Working software is the primary measure of

progress

 Promote sustainable development

 Able to maintain a constant pace indefinitely

 Close, daily co-operation between business

people and developers

6

Agile Principles -2

 Continuous attention to technical excellence and

good design

 Simplicity

 Self-organizing teams

 Reflect on how to become more effective, tune

and adjust behavior

7

Architecture in an Agile Context

 The best teams may be self-organizing, but the

best architectures still require technical skill,

deep experience, and deep knowledge.

 A focus on early and continuous release of

software, where ―working‖ is measured in terms

of customer-facing features, leaves little time for

addressing the kinds of cross-cutting concerns

and infrastructure critical to a high-quality large-

scale system.

 The issue is not agile vs architecture but how to

best blend agile and architecture…

8

9

Building the Foundation

0

20

40

60

80

100

Sprint

E
ff

o
rt

Architecture & Infrastructure

Business Value

Up-Front Work vs Agility

 Boehm and Turner analyzed the effects of up-

front architecture and risk resolution effort.

(COCOMO II RESL)

 Up-front design work on the architecture vs

rework

 Amount of architecture and risk resolution effort

is plotted as the dashed line, moving up and to

the right from near the origin

• project of 10 KSLOC

• project of 100 KSLOC

• project of 1,000 KSLOC

10

11

Architecture vs Agility Tradeoff

 Adding time for up-front work reduces later

rework.

 There is a sweet spot for each project.

• 10 KSLOC project, at the far left

• 100 KSLOC project, around 20% of the project

schedule

• 1,000 KSLOC project, around 40% of the

project schedule

 No one answer is appropriate for all situations.

12

Documentation and YAGNI

 Expect the greatest agile friction from evaluation and

documentation.

 Technical documentation principle: write for the

reader.

• No reader  no documentation

 The Views and Beyond approach
- uses the architectural view as the ―unit‖ of documentation

- prescribes producing a view if and only if it addresses

substantial concerns of an important stakeholder

community

- the view selection method prescribes producing the

documentation in prioritized stages to satisfy the needs of

the stakeholders who need it now

13

Incremental Commitment Model
(Boehm)

 Commitment and accountability of success-

critical stakeholders

 Stakeholder ―satisficing‖

 Incremental and evolutionary growth of system

definition and stakeholder commitment

 Iterative system development and definition

 Interleaved system definition and development

 Risk management

14

Guidelines for Agile Architecture
(Booch)

 All good software-intensive architectures are agile.
- a successful architecture is resilient and loosely coupled

- composed of a core set of well-reasoned design decisions

- contains some ―wiggle room‖ that allows modifications to be made

and refactorings to be done

 An effective agile process will allow the architecture to grow

incrementally as the system is developed and matures.
- decomposability

- separation of concerns

- near-independence of the parts

 The architecture should be visible and self-evident in the code
- make the design patterns, cross-cutting concerns, and other important

decisions obvious, well communicated, and defended

- may, in turn, require documentation

- ―socialize‖ the architecture

15

16

Technical Debt

 Ward Cunningham first drew the comparison between
technical complexity and debt in 1992.

 Shipping first time code is like going into debt.

- A little debt speeds development so long as it is paid back
promptly with a rewrite...

- The danger occurs when the debt is not repaid.
- Every minute spent on not-quite-right code counts as interest

on that debt.

 Activities that might be postponed include

• documentation
• writing tests
• attending to to-do comments
• tackling compiler and static code analysis warnings
• knowledge that isn't shared around the organization
• code that is too confusing to be modified easily

Tradeoff Advice

 Large and complex system with relatively stable

and well-understood requirements

• do a large amount of architecture work up

front

 Big projects with vague or unstable requirements

• quickly design a complete candidate

architecture

• Cockburn’s Crystal Clear ―walking skeleton‖

 Smaller projects with uncertain requirements,

• try to get agreement on the central patterns

17

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

18

Architecturally Significant
Requirements (ASRs)

 Requirements documents

• most of what is in a requirements specification

does not affect the architecture

• much of what is useful to an architect is not in

even the best requirements document

• ASRs often derive from business goals in the

development organization

• excavation and archaeology is required to dig

ASRs from requirements documents

19

20

Interviewing Stakeholders

 Architects often have good ideas what quality

attributes are exhibited by similar systems and

are reasonable.

 Stakeholders often have no idea what quality

attributes they want in a system.

 Results of stakeholder interviews

• a list of architectural drivers

• a set of quality attribute scenarios that the

stakeholders (as a group) prioritized

21

Quality Attribute Workshop

1) QAW Presentation and Introductions

2) Business/Mission Presentation

3) Architectural Plan Presentation

4) Identification of Architectural Drivers

5) Scenario Brainstorming

6) Scenario Consolidation

7) Scenario Prioritization

8) Scenario Refinement

22

Gathering ASRs by
Understanding the Business Goals

 Business goals are the reason for building a

system.
- often the precursor of requirements that may or may

not be captured in a requirements specification

 Business goals often lead to quality attribute

requirements.
- every quality attribute requirement should originate

from some higher purpose that can be described in

terms of added value

 Business goals may directly affect the

architecture without precipitating a quality

attribute requirement at all.

23

Standard Business Goal Categories

24

Pedigreed Attribute eLicitation Method
(PALM)

 Day and a half workshop attended by architects

and stakeholders who can speak to the business

goals of the organizations involved

1) PALM overview presentation

2) Business drivers presentation

3) Architecture drivers presentation

4) Business goals elicitation

5) Identification of potential quality attributes

from business goals

6) Assignment of pedigree to existing quality

attribute drivers

7) Exercise conclusion

25

Utility Tree

 Begins with the word ―utility‖ as the root node.

 List the major quality attributes that the system

is required to exhibit.

• under each quality attribute, record a specific

refinement of that QA

• under each refinement, record the appropriate

ASRs (usually expressed as QA scenarios)

 Evaluate against two criteria

• the business value of the candidate ASR

• the architectural impact of including it
- must-have, important, nice-to-have

26

Tying the Methods Together

 If you have a requirements process that gathers,

identifies, and prioritizes ASRs, consider yourself

lucky…

 If nobody has captured the business goals behind

the system you’re building, then a PALM exercise.

 If you feel that important stakeholders have been

overlooked, capture their concerns through

interviews.

• Quality Attribute Workshop

 Building a utility tree is a good way to capture ASRs

along with their prioritization.

27

Blending Methods

 PALM makes an excellent ―subroutine call‖ from

a Quality Attribute Workshop for the step that

asks about business goals.

 A quality attribute utility tree makes an excellent

repository for the scenarios that are the

workshop’s output.

 Pick the approach that fills in the biggest gap in

your existing requirements:

• stakeholder representation

• business goal manifestation

• ASR prioritization

28

Designing an Architecture

 The building blocks for designing a software

architecture:

• locating architecturally significant

requirements

• capturing quality attribute requirements

• choosing, generating, tailoring, and analyzing

design decisions for achieving those

requirements

 Now to pull the pieces together…

29

Design Strategy

 Three ideas key to architecture design methods

• decomposition
- quality attributes refer to the system as a whole

- as the design is decomposed, QA are too and

assigned to elements of the decomposition

• designing to architecturally significant

requirements
- non-ASR requirements may not be met

- 1) relax the non-ASR requirement

- 2) re-prioritize and re-visit the design

- 3) don’t meet the non-ASR requirement

• generate and test
- testing determines whether the design meets the

requirements

30

Generate and Test

 Generate and test as a design strategy leads to the

following questions

1) Where does the initial design hypothesis come from?

2) What are the tests that are applied?

3) How is the next hypothesis generated?

4) When are you done?

31

Creating the Initial Hypothesis

 Design solutions are created using ―collateral‖

that is available to the project.

• existing systems

• frameworks

• patterns and tactics

• domain decomposition

• design checklists

32

Choosing the Tests

 Three sources of tests

• analysis techniques

• design checklists for quality attributes

• ASRs

33

Generating the Next Hypothesis

 If you have concerns… a list of quality attribute

problems

 Use design tactics to improve the design with

respect to the particular quality attribute.

34

Terminating the Process

 If you do not produce an acceptable design

within budget…

1) Proceed to implementation with the best

hypothesis you were able to produce.
- some ASRs may not be met and may need to be

relaxed or eliminated

2) Argue for more budget for design and

analysis.
- revisit some of the major early design decisions

3) Suggest that the project be terminated.

35

Attribute-Driven Design (ADD) Method

 Produce a workable architecture quickly

 Before beginning a design process, the

requirements should (ideally) be known…

 Requirements (changes) are continually

arriving…

 ADD can begin when a set of architecturally

significant requirements is known.

36

ADD Inputs

 ASRs

 Context description

• What are the boundaries of the system being

designed?

• What are the external systems, devices, users,

and environmental conditions with which the

system being designed must interact?

37

ADD Outputs

 A set of sketches of architectural views

 Module decomposition view

 Other views according to the design solutions

chosen

38

Breadth vs Depth First

 Personnel availability may dictate a refinement strategy.

 Risk mitigation may dictate a refinement strategy.

 Deferral of some functionality or quality attribute

concerns may dictate a mixed approach.

 All else being equal, a breadth-first refinement strategy

is preferred because

• it allows you to apportion the most work to the most

teams soonest

• allows for consideration of the interaction among the

elements at the same level

39

Generate a Design Solution

 Sources of design candidates— patterns, tactics,

and checklists

• initial candidate design will likely be inspired

by a pattern

• possibly augmented by one or more tactics

• consider the design checklists for the quality

attributes

 To the extent that the system you’re building is

similar to others, it is likely that the solutions you

choose will solve a collection of ASRs

simultaneously…

40

Verify and Refine Requirements

 Your design solution may not satisfy all the

ASRs.

 Backtrack – reconsider the design.

 Unsatisfied ASRs may relate to

• A quality attribute requirement allocated to the

parent element

• A functional responsibility of the parent

element

• One or more constraints on the parent element

41

What Requirements Are Left?

 Requirements assigned to element are

satisfied…

 Delegate to one of the children

 Distribute among the children

 Cannot be satisfied with the current design

• backtrack

• push back on the requirement

42

Done?

 Terminate with a sketch of the architecture…

• flesh out the architecture consistent with the

overall design approaches laid out

 Satisfy (contractual) specifications…

 Exhaust design budget…

 Terminating ADD and releasing the architecture

are different decisions.

• early architectural views can be usable

43

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

44

Documenting Software Architectures

 If it is not written down, it does not exist.

• Philippe Kruchten

 If you don’t have it in writing, I didn’t make a

commitment.
- mcp

 (A lack of planning on your part does not constitute

a crisis on my part.)
- mcp

 Architecture has to be communicated in a way to let

its stakeholders use it properly to do their jobs.

45

Uses of Architecture Documentation

 As a means of education

• introducing people to the system

 As a primary vehicle for communication among

stakeholders

• including the architect in the project’s future

 As the basis for system analysis and

construction

46

Notations

 Informal notations
- general-purpose diagramming and editing tools and visual

conventions

 Semiformal notations
- a standardized notation that prescribes graphical elements

and rules of construction, e.g., UML

 Formal notations
- has a precise (usually mathematically based) semantics

- formal analysis of both syntax and semantics is possible

- generally referred to as architecture description languages

- the use of such notations is rare

47

Views

 A representation of a set of system elements and

relations among them — not all system elements,

but those of a particular type.

 Let us divide the multidimensional entity that is a

software architecture into a number of

manageable representations of the system.

 Documenting an architecture is a matter of

documenting the relevant views and then adding

documentation that applies to more than one

view  Views and Beyond

48

Module Views

 A module is an implementation unit that provides

a coherent set of responsibilities.

 The relations that modules have to one another

include is part of, depends on, and is a.

 It is unlikely that the documentation of any

software architecture can be complete without at

least one module view.

49

Component-and-Connector Views

 Show elements that have some runtime presence
- processes, objects, clients, servers, and data stores

 Include as elements the pathways of interaction
- communication links and protocols, information

flows, and access to shared storage

 Components have interfaces called ports.

 Connectors have roles, which are its interfaces,

defining the ways in which the connector may be

used by components to carry out interaction.

50

Notations for C&C Views

 Assign each component type and each

connector type a separate visual form (symbol),

and list each of the types in a key.

• UML components are a good semantic match

to C&C components.

• UML ports are a good semantic match to C&C

ports.

• UML connectors cannot have substructure,

attributes, or behavioral descriptions.
- UML connectors are not always rich enough to

represent C&C connectors

- represent a ―simple‖ C&C connector using a UML

connector – a line

 51

Allocation Views

 Describe the mapping of software units to elements

of an environment in which the software is developed

or in which it executes.

 The relation in an allocation view is allocated to.

 The usual goal of an allocation view is to compare

• the properties required by the software element

with

• the properties provided by the environmental

elements

 to determine whether the allocation will be successful

or not.

52

Quality Views

 Module, C&C, and allocation views are all

structural views.

 In some systems structural views may not be the

best way to present the architectural solution.

• certain quality attributes are particularly

important and pervasive

• the solution may be spread across multiple

structures that are inconvenient to combine

 Extract the relevant pieces of the structural

views and package them together.

53

Examples of Quality Views -1

 Security view
- can show all of the architectural measures taken to

provide security

 Communications view
- for systems that are globally dispersed and

heterogeneous

- show all of the component-to-component channels,

the various network channels, quality-of-service

parameter values, and areas of concurrency

 Exception or error-handling view
- illuminate and draw attention to error reporting and

resolution mechanisms

54

Examples of Quality Views -2

 Reliability view
- model reliability mechanisms such as replication and

switchover a

- depict timing issues and transaction integrity

 Performance view
- include those aspects of the architecture useful for

inferring the system’s performance

- network traffic models, maximum latencies for

operations, and so forth

55

Choosing the Views

 At a minimum, expect to have at least one

module view, at least one C&C view, and for

larger systems, at least one allocation view in

your architecture document.

56

A Three-Step Method
for Choosing Views

 Build a stakeholder/view table.
- describe how much information the stakeholder

requires from the view

 Combine views.
- look for marginal views in the table: those that

require only an overview, or that serve very few

stakeholders

 Prioritize and stage
- the decomposition view is a particularly helpful view

to release early

- providing 80% of the information goes a long way,

- you don’t have to complete one view before starting

another
57

Combining Views

 All views in an architecture are part of that same

architecture and exist to achieve a common

purpose.

 Sometimes the most convenient way to show a

strong association between two views is to

collapse them into a single combined view.

• can be very useful as long as you do not try to

overload them with too many mappings

 Create an overlay that combines the information.

• works well if the coupling between the two

views is tight

58

Building the Documentation
Package -1

 Section 1: The Primary Presentation
- shows the elements and relations of the view

- most often graphical.

- lack of a key is the most common mistake that we

see in documentation in practice.

 Section 2: The Element Catalog
- elements and their properties

- relations and their properties

- element interfaces

- element behavior

 Section 3: Context Diagram
- shows how the system or portion of the system

depicted in this view relates to its environment
59

Building the Documentation
Package -2

 Section 4: Variability Guide
- shows how to exercise any variation points that are a

part of the architecture shown in this view

 Section 5: Rationale
- explains why the design reflected in the view came to

be

- explain why the design is as it is and provide a

convincing argument that it is sound

60

Documenting Behavior

 Traces – sequences of activities or interactions that

describe the system’s response to a specific stimulus

when the system is in a specific state

• use cases

• UML sequence diagram

• UML communication diagram

• UML activity diagram

 Comprehensive models show the complete behavior of

structual elements

• UML state machine diagram notation

• Architecture Analysis and Design Language (AADL)

• Specification and Description Language (SDL)

61

Architecture Documentation and
Quality Attributes -1

 Any major design approach will have quality

attribute properties associated with it.
- client-server is good for scalability, layering is good

for portability, …

- explaining the choice of approach is likely to include

a discussion about the satisfaction of quality

attribute requirements and tradeoffs incurred

 Individual architectural elements that provide a

service often have quality attribute bounds

assigned to them.
- quality attribute bounds are defined in the interface

documentation for the elements, sometimes in the

form of a service-level agreement

62

Architecture Documentation and
Quality Attributes -2

 Quality attributes often impart a ―language‖ of

things that you would look for.
- Security involves security levels, authenticated

users, audit trails, firewalls, and the like.

- Performance brings to mind buffer capacities,

deadlines, periods, event rates and distributions,

clocks and timers, and so on.

- Availability conjures up mean time between failure,

failover mechanisms, primary and secondary

functionality, critical and noncritical processes, and

redundant elements.

63

Architecture Documentation and
Quality Attributes -3

 Architecture documentation often contains a

mapping to requirements that shows how

requirements are satisfied.

 Every quality attribute requirement will have a

constituency of stakeholders who want to know

that it is going to be satisfied.
- provide a special place in the documentation’s

introduction that either provides what the

stakeholder is looking for, or tells the stakeholder

where in the document to find it (documentation

roadmap)

64

Documenting Fast-Changing
Architectures

 Document what is true about all versions of your

system.
- Record invariants as you would for any architecture.

- This may make your documented architecture more a

description of constraints or guidelines that any

compliant version of the system must follow.

 Document the ways the architecture is allowed to

change.
- usually mean adding new components and replacing

components with new implementations

- in the Views and Beyond approach, the place to do

this is called the variability guide

65

Documenting Architecture
in an Agile Environment

 Views and Beyond and Agile philosophies agree

– If information isn’t needed, don’t document.
- Adopt a template or standard organization to capture

your design decisions.

- Plan to document a view if (but only if) it has a

strongly identified stakeholder constituency.

- Fill in the sections of the template only if writing

down this information will make it easier (or cheaper

or make success more likely) for someone

downstream doing their job.

- Produce just enough design information to allow you

to move on to code.

- Don’t feel obliged to fill up all sections of the

template

- When documenting a view, the primary presentation

may consist of a digital picture of the whiteboard.

66

Architecture Reconstruction

 Obtaining the as-built architecture from an

existing system

 To document an architecture where the

documentation never existed or where it has

become hopelessly out of date

 To ensure conformance between the as-built

architecture and the as-designed architecture

 Reverse engineer from existing system artifacts

• (semi)automated extraction tools

• probe the original design intent of the architect

67

Architectures Are Abstractions

 Cannot be seen in the low-level implementation

details

 Tools aggregate abstractions

• not a pancea

• no programming language construct for layer

or connector or …

 Architecture reconstruction is an interpretive,

interactive, iterative process

 Workbench – open, integration framework

68

Architecture Reconstruction Process

69

Architecture Reconstruction Guidelines

 Have a goal and a set of objectives or questions

in mind before undertaking an architecture

reconstruction project.

 Obtain some representation, however coarse, of

the system before beginning detailed

reconstruction.

• e.g., identifying layers

 Disregard existing inaccurate documentation.

• may be useful for generating high-level views

 Involve people familiar with the system early.

70

Architecture Evaluation

 By the designer within the design process

 By peers within the design process

 By outsiders once the architecture has been

designed

71

ATAM

 Architecture Tradeoff Analysis Method

 Requires participation and cooperation of

• evaluation team

• project decision makers
- project manager

- customer

- architect

• architecture stakeholders
- state specific quality attribute goals the architecture

should meet to be considered successful

72

ATAM Evaluation Team Roles

73

ATAM Outputs -1

 Concise presentation of the architecture
- one-hour presentation

 Articulation of the business goals

 Prioritized quality attribute requirements

expressed as QA scenarios

 A set of risks and non-risks
- architectural decisions that may lead to undesirable

consequences in light of stated QA requirements

- safe architectural decisions

74

ATAM Outputs -2

 A set of risk themes
- overarching themes that identify system weaknesses

- in the architecture

- in the architecture process

- in the team

 Mapping of architectural decisions to quality

requirements

 A set of identified sensitivity and tradeoff points

75

ATAM Phases

76

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

77

Architecture Governance

 The practice and orientation by which enterprise

architectures and other architectures are managed and

controlled
- Open Group

 Implement a system of controls over the creation and

monitoring of all architectural components and activities

 Implement a system to ensure compliance with

internal/external standards and regulatory obligations

 Establish processes that support effective management of

the above processes within agreed parameters

 Develop practices that ensure accountabiliy to a clearly

identified stakeholder community

78

Architecture and Business

 Perhaps the most important job of an architect is

to be a fulcrum where business and technical

decisions meet and interact…

 What are the economic implications of an

architectural decision?

79

Cost/Benefit and Architecture

80

Utility Response Curves

 Each scenario’s stimulus-response pair provides

some utility (value) to stakeholders

 The utility of different possible values for the

response can be compared

 Absolute numbers are not necessary to compare

alternatives…

• human beings are better at comparative

estimation

81

82

Some Sample
Utility-Response

Curves

Determining Benefit

 For each architectural strategy i, its benefit Bi of j

scenarios (each with weight Wj) is

 Bi = Σj (bi,j x Wj)

 Each bi,j is calculated as the change in utility

brought about by the architectural strategy

 bi,j = Uexpected – Ucurrent

 Value for cost is the ratio of the total benefit to

the cost of implementing

 VFC = Bi / Ci
83

Best and Worst Cases

 Best-case quality attribute level – that above

which the stakeholders foresee no further utility

 Worst-case quality attribute level – the minimum

threshold above which a system must perform,

otherwise it is of no value to the stakeholders

 Current quality attribute level

 Desired quality attribute level

 Anchor the utility levels on a scale of 0-100 with

the worst and best cases

84

Cost Benefit
Analysis
Method
(CBAM)

85

CBAM 1-2

 1. Collate scenarios

• contribute new scenarios

• proritize scenarios

• choose the top third for further study

 2. Refine scenarios

• elicit worst, best, current, and desired cases

86

CBAM 3-5

 3. Prioritize scenarios

• distribute 100 votes by each stakeholder

among scenarios based on desired response

• choose half of scenarios for further analysis

 4. Assign utility

 5. Map architectural strategies to scenarios and

determine their expected QA response levels.

87

CBAM 6-7

 6. Determine the utility of the expected QA

response levels by interpolation.

 7. Caculate the total benefit obtained from an

architectural strategy.

• subtract the utility value of the current level

from the expected level

• normalize it using the votes from step 3

• sum the benefit due to a particular

architectural strategy across scenarios and

QAs

88

CBAM 8-9

 8. Choose architectural strategies based on VFC

subject to cost and schedule constraints.

• rank-order the architectural strategies

according to VFC

• choose the top ones until budget or schedule

is exhausted

 9. Confirm results with intuition.

• are the architectural strategies aligned with the

organization’s business goals?

89

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

90

Software Product Lines

 A set of software-intensive systems sharing a

common, managed set of features that satisfy

the specific needs of a particular market

segment or mission and that are developed from

a common set of core assets in a prescribed

way.

• SEI

 Core assets

• reusable assets based on a common

architecture and the software elements that

populate that architecture

• includes designs and their documentation,

user manuals, project management artifacts,

software test plans and test cases, … 91

Clone-and-Own

 Need a variant of an existing system…

 Copy the module (clone it)

 Make the necessary changes

 The new project owns the new version…

 Clone-and-own does not scale.

92

Potential for Reuse

 Requirements

 Architectural design

 Software elements

 Modeling and analysis

 Testing

 Project planning artifacts

93

Reuse – Promise Exceeds Payoff

 Reuse libraries

• too sparse – nothing of use to reuse

• too rich – hard to understand and search

(information retrieval problem)

• elements too small – easier to rewrite

• elements too large – difficult to understand, adapt

• hazy pedigree

• written for a different architectural model

 Software product lines make reuse work by establishing a strict

context for it. The architecture is defined; the functionality is

set; the quality attributes are known. Nothing is placed in the

reuse library (core asset base) that was not built to be reused in

that product line. Product lines work by relying on strategic, not

opportunistic, reuse.
94

Product Line Scope

 The problem in defining scope is not in finding

commonality – it’s finding commonality that can

be exploited to substantially reduce the cost of

constructing the systems that an organization

intends to build.

95

Architectural Variation Mechanisms

 Software product lines rely on identifying and supporting

variation points

• vary only in small, well-defined ways

 Inclusion or omission of elements

 Inclusion of a different number of replicated

elements

• e.g., adding more servers

 Selection of different versions of elements that

have the same interface but different behavioral

or quality attribute characteristics

• select at compile time, build time, or runtime

96

97

Common
Variation

Mechanisms

Computing Benefit for
Architectural Variation Points

 CBAM uses stakeholders to jointly work out

utility.

• subjective, intuitive, imprecise measures

 Product-line architectures have variation points

that allow tailoring in pre-planned ways.

 John McGregor’s formula for modeling the

marginal value of building an additional variation

point to the architecture

98

McGregor’s First Term

 Measures the expected cost of building variation

point I over a time period from now until time T

99

McGregor’s Second Term -1

100

 Evaluates the

benefit – measures

the marginal value

of the variation

point to the kth

product, minus the

cost of using the

variation point

McGregor’s Second Term -2

101

 Account for net

present value

of money

McGregor’s Second Term -3

 Sum over all products k in the product line and

multiply by the probability that the variation point

will be ready when needed

102

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

103

Essential Characteristics of
Cloud Computing

 On-demand self-service

 Ubiquitous network access

 Resource pooling

 Location independence

 Rapid elasticity

 Measured service

 Multi-tenancy

104

Cloud Economies of Scale

 Cost of power

 Infrastructure labor costs

 Security and reliability

 Hardware costs

 Use of equipment
- random access, time of day, time of year, resource usage

patterns, uncertainty

 Multi-tenancy
- reduction in costs for application update and management

105

Cloud Service Models

 Software as a Service (SaaS)
- consumer is an end user

 Platform as a Service (PaaS)
- integrated stack to develop and deploy applications

- consumer is a developer or system admin

- consumer controls deployed applications

 Infrastructure as a Service (IaaS)
- virtualized computation, networking, and file system

- consumer is a developer or system admin

- consumer deploys and runs arbitrary software

- virtual machine with hypervisor

106

Performance in the Cloud

 The cloud provides an elastic host.

• additional resources can be acquired as

needed

 Application should be aware of current and

projected resource usage.

107

Availability in the Cloud

 The cloud is always assumed to be available…

but everything can fail.

 Netflix example

• hosted on Amazon EC2 cloud service

• 99.95% guarantee of service – April 21, 2011,

had a four-day sporadic outage

• availability tactics used by Netflix
- stateless services

- data stored across zones

- graceful degradation (fail fast, fallbacks, feature

removal)

108

Edge-Dominant Systems

 Depend crucially on the inputs of users for

success

 Wikipedia, YouTube, Twitter, Facebook, Flickr, …

 Web 2.0

• The old web was about going to web pages for

static information.

• The new web is about participating in the

information creation and even becoming part

of its organization.

109

The Ecosystem of
Edge-Dominant Systems

 All successful edge-dominant systems (and the

organizations that develop and use these

systems) share a common ecosystem structure.

 The Metropolis structure

• not an architecture diagram

• represents three communities of stakeholders

110

The Metropolis Structure

111

 Customers and

end users

 Developers

 Prosumers
- consume and

produce

content

Architecture Implications of
Edge-Dominant Systems

 Successful edge-dominant systems bifurcate

• a core (kernel) infrastructure

• a set of peripheral functions or services built

on the core

 Core requirements deliver little or no end-user

value and focus on quality attributes and

tradeoffs.

 Periphery requirements are unknowable because

they are contributed by the peer network.

112

Core Implications

 The core needs to be highly modular.

• it provides the foundation for the achievement

of quality attributes

 The core must be highly reliable.

 The core must be highly robust with respect to

errors in its environment.

• the core will undoubtedly be supporting flawed

periphery components

113

114

Questions and Answers

