

Software Architecture
and Design Overview

I

 Mark C. Paulk, Ph.D.

 Mark.Paulk@utdallas.edu, Mark.Paulk@ieee.org

 http://mark.paulk123.com/

mailto:Mark.Paulk@utdallas.edu
mailto:Mark.Paulk@utdallas.edu
mailto:Mark.Paulk@ieee.org
http://mark.paulk123.com/
http://mark.paulk123.com/

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

2

What Is a Software Architecture?

 The software architecture of a system is the set

of structures needed to reason about the system,

which comprise software elements, relations

among them, and properties of both.
- some partition systems into implementation units

(modules), which are static

- some are dynamic, focusing on the way the elements

interact with each other at runtime to carry out the

system’s functions (component-and-connector)

- some describe the mapping from software structures

to the system’s organizational, developmental,

installation, and execution environments (allocation)

3

Every System Has an Architecture

 Architecture-indifferent design

• opens the door to complexity…

 Architecture-focused design

 Architecture hoisting

• design the architecture with the intent of

guaranteeing a goal or property of the system

• you will either find
- code that manages the goal or property

- a deliberate structural constraint (often with

reasoning or calculations) that ensures it

4

Structures and Views

 A view is a representation of a coherent set of

architectural elements, as written by and read by

system stakeholders.
- It consists of a representation of a set of elements

and the relations among them.

 A structure is the set of elements itself, as they

exist in software or hardware.

• module

• communication and coordination (C&C)

• allocation

 A view is a representation of a structure.

5

Early Design Decisions

 The architecture is a carrier of the earliest and

hence most fundamental, hardest-to-change

design decisions.

- Will the system run on one processor or be

distributed across multiple processors?

- Will the software be layered? If so, how many layers

will there be? What will each one do?

- Will components communicate synchronously or

asynchronously? Will they interact by transferring

control or data or both?

- Will the system depend on specific features of the

operating system or hardware?

- Will the information that flows through the system be

encrypted or not?

- What operating system will we use?

- What communication protocol will we choose?
6

Managing Change

 The decisions made in an architecture allow you

to reason about and manage change as the

system evolves.

 Roughly 80% of a typical software system’s total

cost occurs after initial deployment.

 Three categories of change: local, non-local,

architectural

 Architectural change affects the fundamental

ways in which the elements interact with each

other – will probably require changes all over the

system.
7

Enabling Quality Attributes

 An architecture will inhibit or enable a system’s

driving quality attributes.

 High performance… modifiability… security…

scalability… incremental subsets… reuseable…

 Poor downstream design or implementation

decisions can always undermine an adequate

architectural design.

8

Partioning, Knowledge,
and Abstractions

 Developers…

 partition a problem so that its parts are smaller

and more tractable

 apply knowledge of similar problems

 use abstractions to help them reason

 … combatting complexity and scale.

 Foote and Yoder: the most common software

architecture is a big ball of mud.

9

Architectural Patterns

 Compositions of architectural elements

 that solve particular problems

 have been found useful over time and different

domains

 documented

 disseminated

10

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

11

Quality Attribute

 A measurable or testable property of a system

that is used to indicate how well the system

satisfies the needs of its stakeholders.

 You can think of a quality attribute as measuring

the “goodness” of a product along some

dimension of interest to a stakeholder.

12

Functional Requirements

 State what the system must do, and how it must

behave or react to runtime stimuli.

 Are satisfied by assigning an appropriate

sequence of responsibilities throughout the

design.

 Assigning responsibilities to architectural

elements is a fundamental architectural design

decision.

13

Functionality

 Functionality does not determine architecture.
- If functionality were the only thing that mattered, you

wouldn’t have to divide the system into pieces at all;

a single monolithic blob with no internal structure

would do just fine.

 Although functionality is independent of any

particular structure, functionality is achieved by

assigning responsibilities to architectural

elements, resulting in one of the most basic of

architectural structures.

 The architect’s interest in functionality is in how

it interacts with and constrains other qualities.

14

Constraints

 A constraint is a design decision with zero

degrees of freedom.
- it’s a design decision that’s already been made

 Constraints are satisfied by accepting the design

decision and reconciling it with other affected

design decisions.

15

Restricting Choice

 By restricting design alternatives, architecture

channels the creativity of developers, reducing

design and system complexity.

 Engineering is about discipline, and discipline

comes in part by restricting the vocabulary of

alternatives to proven solutions.

16

Quality Attribute Requirements

 Qualifications of the functional requirements or

of the overall product.
- A qualification of a functional requirement is an item

such as how fast the function must be performed, or

how resilient it must be to erroneous input.

- A qualification of the overall product is an item such

as the time to deploy the product or a limitation on

operational costs.

 Are satisfied by the various structures designed

into the architecture, and the behaviors and

interactions of the elements that populate those

structures.

17

Categories of Quality Attributes

 Those that describe some property of the system

at runtime
- availability, performance, usability, …

 Those that describe some property of the

development of the system
- modifiability, testability, …

Almost every quality attribute negatively affects

performance.

18

Specifying Quality Attribute
Requirements

 Source of stimulus
- some entity (a human, a computer system, or any other

actuator) that generated the stimulus

 Stimulus
- a condition that requires a response when it arrives at a system

 Environment
- the stimulus occurs under certain conditions

 Artifact
- some artifact is stimulated: a collection of systems, the whole

system, or some piece or pieces of it

 Response
- the activity undertaken as the result of the arrival of the

stimulus

 Response measure
- when the response occurs, it should be measurable in some

fashion so that the requirement can be tested
19

Tactics

 A tactic is a design decision that influences the

achievement of a quality attribute response.

 The focus of a tactic is on a single quality

attribute response.

• Within a tactic, there is no consideration of

tradeoffs.

• Tradeoffs must be explicitly considered and

controlled by the designer.

• In this respect, tactics differ from architectural

patterns, where tradeoffs are built into the

pattern.

20

Categories of Design Decisions

 Allocation of responsibilities

 Coordination model

 Data model

 Management of resources

 Mapping among architectural elements

 Binding time decisions

 Choice of technology

21

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

22

Availability

 A property of software that it is there and ready

to carry out its task when you need it to be.

 Builds upon the concept of reliability by adding

the notion of recovery

 “Availability refers to the ability of a system to

mask or repair faults such that the cumulative

service outage period does not exceed a

required value over a specified time interval.”

 Availability is about minimizing service outage

time by mitigating faults.

23

Availability General Scenario -1

 Source

• Internal/external: people, hardware, software,

physical infrastructure, physical environment

 Stimulus

• Fault: omission, crash,incorrect timing, incorrect

response

 Artifact

• Processors, communication channels, persistent

storage, processes

 Environment

• Normal operation, startup, shutdown, repair mode,

degraded operation, overloaded operation

 24

Availability General Scenario -2

 Response

• Prevent the fault from becoming a failure

• Detect the fault
- log the fault

- notify appropriate entities (people or systems)

• Recover from the fault
- disable source of events causing the fault

- be temporarily unavailable while repair is being

effected

- fix or mask the fault/failure or contain the damage it

causes

- operate in a degraded mode while repair is being

effected

25

Availability General Scenario -3

 Response Measure

• Time or time interval when the system must be

available

• Availability percentage

• Time to detect the fault

• Time to repair the fault

• Time or time interval in which system can be in

degraded mode

• Proportion or rate of a certain class of faults

that the system prevents, or handles without

failing

26

27

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

28

Interoperability

 The degree to which two or more systems can

usefully exchange meaningful information via

interfaces in a particular context.

 Syntactic interoperability – the ability to

exchange data.

 Semantic interoperability – the ability to correctly

interpret the data being exchanged.

29

Exchanging Information via Interfaces

 Information may be exchanged even though

systems do not communicate directly with one

another.

 Expected behavior of the system

 Expected behavior of “information exchange”

partners

 Interface  the set of assumptions that you can

make safely about an entity.

30

Interoperability General Scenario

31

32

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

33

Modifiability

 Modifiability is about change, and our interest in

it centers on the cost and risk of making

changes.

 What can change?

 What is the likelihood of the change?

 When is the change made and who makes it?

 What is the cost of the change?

34

Modifiability General Scenario

35

36

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

37

Performance

 It’s about time and the software system’s ability

to meet timing requirements.

 When events occur, the system, or some element

of the system, must respond to them in time.

• real-time

• hard real-time

 Characterizing the events that can occur (and

when they can occur) and the system or

element’s time-based response to those events

is the essence is discussing performance.

38

Measuring System Response

 Latency
- the time between the arrival of the stimulus and the

system’s response to it

 Deadlines

 Throughput
- usually given as the number of transactions the

system can process in a unit of time

 Jitter of the response
- the allowable variation in latency

 The number of events not processed because

the system was too busy to respond.
39

Performance General Scenario

40

41

Performance Tactics on the Road

 Manage event rate.
- Lights on highway entrance ramps let cars onto the

highway only at set intervals, and cars must wait

(queue) on the ramp for their turn.

 Prioritize events.
- Ambulances and police, with their lights and sirens

going, have higher priority than ordinary citizens;

some highways have high-occupancy vehicle (HOV)

lanes, giving priority to vehicles with two or more

occupants.

 Maintain multiple copies.
- Add traffic lanes to existing roads, or build parallel

routes.
42

Some User Tricks on the Road

 Increase resources.
- Buy a Ferrari. All other things being equal, the fastest

car with a competent driver on an open road will get

you to your destination more quickly.

 Increase efficiency.
- Find a new route that is quicker and/or shorter than

your current route.

 Reduce computational overhead.
- You can drive closer to the car in front of you, or you

can load more people into the same vehicle (that is,

carpooling).

43

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

44

Security

 A measure of the system’s ability to protect data

and information from unauthorized access while

still providing access to people and systems that

are authorized.

 An action taken against a computer system with

the intention of doing harm is called an attack.

• an unauthorized attempt to access data or

services

• an unauthorized attempt to modify data

• intended to deny services to legitimate users

45

A Simple Approach to Security

 Confidentiality

• data or services are protected from

unauthorized access
- a hacker cannot access your income tax returns on a

government computer

 Integrity

• data or services are not subject to

unauthorized manipulation
- your grade has not been changed since your

instructor assigned it

 Availability

• the system will be available for legitimate use
- a denial-of-service attack won’t prevent you from

ordering book from an online bookstore
46

Other Characteristics: Authentication

 Authentication verifies the identities of the

parties to a transaction and checks if they are

truly who they claim to be.
- when you get an email purporting to come from a

bank, authentication guarantees that it actually

comes from the bank

47

Other Characteristics:
Nonrepudiation & Authorization

 Nonrepudiation guarantees that the sender of a

message cannot later deny having sent the

message, and that the recipient cannot deny

having received the message.
- you cannot deny ordering something from the

Internet, or the merchant cannot disclaim getting

your order

 Authorization grants a user the privileges to

perform a task.
- an online banking system authorizes a legitimate

user to access his account.

48

Security General Scenario -1

 Source

• Human or another system which may have

been previously certified (either correctly or

incorrectly) or may be currently unknown. A

human attacker may be from outside the

organization or from inside the organization.

 Stimulus

• Unauthorized attempt is made to display data,

change or delete data, access system services,

change the system’s behavior, or reduce

availability.

49

Security General Scenario -2

 Artifact

• System services, data within the system, a

component or resources of the system, data

produced or consumed by the system.

 Environment

• The system is either online or offline; either

connected to or disconnected from a network;

either behind a firewall or open to a network;

fully operational, partially operational, or not

operational.

50

Security General Scenario -3

 Response

 Transactions are carried out in fashion such that

• Data or services are protected from

unauthorized access.

• Data or services are not being manipulated

without authorization.

• Parties to a transaction are identified with

assurance.

• The parties to the transaction cannot repudiate

their involvements.

• The data resources and system services will

be available for legitimate use

51

Security General Scenario -4

 Response

 The system tracks activities within it by

• Recording access or modification

• Recording attempts to access data, resources,

or services

• Notifying appropriate entities (people or

systems) when an apparent attack is occurring

52

Security General Scenario -5

 Response Measure

 One or more of the following:

• How much of the system is compromised

when a particular component or data value is

compromised?

• How much time passed before an attack was

detected?

• How many attacks were resisted?

• How long does it take to recover from a

successful attack?

• How much data is vulnerable to a particular

attack?

53

54

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

55

Testability

 Refers to the ease with which software can be

made to demonstrate its faults through (typically

execution-based) testing.

 Refers to the probability, assuming that the

software has at least one fault, that it will fail on

its next test execution.

 Industry estimates indicate that between 30 and

50 percent (or in some cases, even more) of the

cost of developing well-engineered systems is

taken up by testing.

56

Testability General Scenario

57

58

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

59

Usability

 Concerned with how easy it is for the user to

accomplish a desired task and the kind of user

support the system provides.

 Usability comprises:

• Learning system features.

• Using a system efficiently.

• Minimizing the impact of errors.

• Adapting the system to user needs.

• Increasing confidence and satisfaction.

60

Usability General Scenario

61

62

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

63

Variability, Portability, and
Development Distributability

 Variability

• support the production of a set of variants that

differ from each other in a preplanned fashion

 Portability

• refers to the ease with which software that was

built to run on one platform can be changed to

run on a different platform

 Development distributability

• the quality of designing the software to

support distributed software development

64

Scalability

 Horizontal scalability (scaling out) refers to

adding more resources to logical units, such as

adding another server to a cluster of servers.

• In cloud environments, elasticity is a property

that enables a customer to add or remove

virtual machines from the resource pool.

 Vertical scalability (scaling up) refers to adding

more resources to a physical unit, such as

adding more memory to a single computer.

65

Deployability and Mobility

 Deployability

• concerned with how an executable arrives at a

host platform and how it is subsequently

invoked

 Mobility

• deals with the problems of movement and

affordances of a platform
- e.g., size, type of display, type of input devices,

availability and volume of bandwidth, and battery life)

- issues include battery management, reconnecting

after a period of disconnection, and the number of

different user interfaces necessary to support

multiple platforms

66

Monitorability and Safety

 Monitorability

• deals with the ability of the operations staff to

monitor the system while it is executing

 Safety

• about the software’s ability to avoid entering

states that cause or lead to damage, injury, or

loss of life to actors in the software’s

environment, and to recover and limit the

damage when it does enter into bad states
- concerned with the prevention of and recovery from

hazardous failures

- the architectural concerns with safety are almost

identical to those for availability
67

Conceptual Integrity of the Architecture

 Refers to consistency in the design of the

architecture

• contributes to the understandability of the

architecture

• leads to fewer errors of confusion

• demands that the same thing is done in the

same way through the architecture

68

Quality In Use

 Effectiveness

• building the system correctly (the system performs

according to its requirements) and building the

correct system (the system performs in the manner

the user wishes)
- Effectiveness is a measure of whether the system is correct.

 Efficiency

• the effort and time required to develop a system

 Freedom from risk

• degree to which a product or system affects

economic status, human life, health, or the

environment

69

Marketability

 The perception of an architecture can be more

important than the qualities the architecture

brings.

 Many organizations have felt they had to build

cloud-based systems (or some other technology

du jour) whether or not that was the correct

technical choice.

• also structured XXX

• also object oriented XXX

• also …

70

ISO/IEC 25010 SQuaRE

 Functional

suitability
- functional

completeness

- functional

correctness

- functional

appropriateness

 Performance

efficiency
- time behavior

- resource utilization

- capacity

 Compatibility
- coexistence

- interoperability

 Usability
- appropriateness

recognizability

- learnability

- operability

- user error prediction

- user interface

aesthetics

- accessibility

71

ISO/IEC 25010 SQuaRE -1

 Reliability
- maturity

- availability

- fault tolerance

- recoverability

 Security
- confidentiality

- integrity

- nonrepudiation

- accountability

- authenticity

 Maintainability
- modularity

- reusability

- analyzability

- modifiability

- testability

 Portability
- adaptability

- installability

- replaceability

72

Dealing with a New Quality Attribute

 Capture scenarios

 Assemble design approaches

 Model the new quality attribute

 Assemble a set of tactics

 Construct design checklists

73

Software Architecture Topics

 Introduction to Architecture

 Quality Attributes

• Availability

• Interoperability

• Modifiability

• Performance

• Security

• Testability

• Usability

 Other Quality Attributes

 Patterns and Tactics

 Architecture in Agile

Projects

 Designing an Architecture

 Documenting Software

Architectures

 Architecture and Business

 Architecture and Software

Product Lines

 The Brave New World

74

Architectural Pattern

 Is a package of design decisions that is found

repeatedly in practice

 Has known properties that permit reuse

 Describes a class of architectures

 Inspired by Christopher Alexander’s A Pattern Language:

Towns, Buildings, Construction (1977).

 The Gang of Four (GoF): E. Gamma, R. Helm, R. Johnson,

and J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, 1994.

 75

Discovering Patterns

 Patterns are by definition found in practice

• one does not invent them

• one discovers them

 Patterns spontaneously emerge in reaction to

environmental conditions

• as long as conditions change, new patterns

will emerge

76

Tactics vs Patterns

 Tactics typically use just a single structure or

computational mechanism.

• meant to address a single architectural force

(quality attribute)

• the “building blocks” of design

• comparable to atoms

 Patterns typically combine multiple design

decisions into a package.

• are constructed from several different tactics

• patterns package tactics

• comparable to molecules

77

Patterns Establish A Relationship

 A context
- A recurring, common situation in the world that gives

rise to a problem.

 A problem
- outlines the problem and its variants

- describes any complementary or opposing forces

- includes quality attributes that must be met

 A solution
- appropriately abstracted

- describes the architectural structures that solve the

problem

- how to balance the forces at work

78

The Solution for a Pattern

 A set of element types
- data repositories, processes, objects, …

 A set of interaction mechanisms or connectors
- method calls, events, message bus, …

 A topological layout of the components

 A set of semantic constraints covering topology,

element behavior, and interaction mechanisms

 Complex systems exhibit multiple patterns at

once.

79

Patterns Catalog Overview

 Module patterns

• layered

 Component-and-connector patterns

• broker

• model-view-controller

• pipe-and-filter

• client-server

• peer-to-peer

• service-oriented architecture

• publish-subscribe

• shared-data

 Allocation patterns

• map-reduce

• multi-tier
80

Layered Pattern -1

 Context

• all complex systems experience the need to

develop and evolve portions of the system

independently

• need a clear and well-documented separation

of concerns

 Problem

• The software needs to be segmented in such a

way that the modules can be developed and

evolved separately with little interaction

among the parts, supporting portability,

modifiability, and reuse.

 81

Layered Pattern -2

 Solution

• divide the software into units called layers

• each layer is a grouping of modules that offers

a cohesive set of services

• completely partition a set of software

• a public interface

• relations between layers must be

unidirectional
- if (A,B) is in this relation, we say that the

implementation of layer A is allowed to use any of the

public facilities provided by layer B

 Pattern Almanac 2000 by L. Rising lists over 100 patterns

that are variants of, or related to, Layers.

82

Stack of Boxes Notation

83

A

B

C

Allowed-to-use relation reads from top down

Finer Points of Layers

Bridging

 It is impossible to look at a stack of boxes and

tell whether layer bridging is allowed or not.
- add stairsteps or vertical layers to your notation

- adding a key is essential!

84

Z A

B

C

D

Finer Points of Layers

Arbitrary Allowed-to-Use

 Any old set of boxes stacked on top of each

other does not constitute a layered architecture.
- avoid arrows (allowed to use)

85

A

B

C

Finer Points of Layers

Sidecars

 “Sidecars” may contain common utilities

(sometimes imported).

• without a key, are you sure?

• implies bridging is not allowed…

86

A

B

C

D

Finer Points of Layers

Segments

 Segments may denote a finer-grained

decomposition of the modules.
- specify what usage rules are in effect among the

segments

87

A

B

C

X Y Z

U T

Finer Points of Layers

No Using Above

 The most important point about layering is that a

layer isn’t allowed to use any layer above it.

 A module “uses” another module when it

depends on the answer it gets back.
- a layer is allowed to make upward calls, as long as it

isn’t expecting an answer

- this is how the common error-handling scheme of

callbacks works

88

Advantages of the Layered Pattern

 Support design based on increasing levels of

abstraction

 Support enhancement

• affect at most two other layers

 Support reuse

• standard interfaces with multiple

implementations

89

Weaknesses of the Layered Pattern

 Adds up-front cost and complexity

 Contribute a performance penalty

 Bridging may prevent meeting portability and

modifiability goals

90

Example of the Layered Pattern

 ISO Open System Interconnection (OSI)

• physical

• data link

• network

• transport

• session

• presentation

• application

91

Patterns Catalog Overview

 Module patterns

• layered

 Component-and-connector patterns

• broker

• model-view-controller

• pipe-and-filter

• client-server

• peer-to-peer

• service-oriented architecture

• publish-subscribe

• shared-data

 Allocation patterns

• map-reduce

• multi-tier
92

Pipe-and-Filter Pattern -1

 Context

• many systems transform streams of discrete

data items,

• many types of transformations occur

repeatedly in practice

• create these as independent, reusable parts

 Problem

• divide into reusable, loosely coupled

components with simple, generic interaction

mechanisms

• can execute in parallel

93

Pipe-and-Filter Pattern -2

 Solution

• successive transformations of streams of data

Data

- arrives at a filter’s input port(s)

- is transformed

- is passed via its output port(s) through a pipe to the

next filter

• a single filter can consume data from, or

produce data to, one or more ports

94

Advantages of the Pipe-and-Filter
Pattern

 Pipes buffer data during communication.

• filters can execute asynchronously and

concurrently

 Overall computation can be treated as the

functional composition of the computations of

the filters, making it easier to reason about end-

to-end behavior.

 Independent processing at each step supports

reuse and parallelization.

95

Weaknesses of the Pipe-and-Filter
Pattern

 Typically not a good choice for an interactive

system
- disallows cycles, which are important for user

feedback

 Large numbers of independent filters can add

substantial amounts of overhead
- each filter runs as its own thread or process

 May not be appropriate for long-running

computations
- need checkpoint/restore functionality

96

Examples of the Pipe-and-Filter
Pattern

 Unix!

 Data transformation systems for sensor data

97

Relationships Between
Tactics and Patterns

 Tactics are the “building blocks” of design from

which architectural patterns are created.

 Most patterns are constructed from several

different tactics.
- these tactics might all serve a common purpose

- they are often chosen to promote different quality

attributes

 A pattern is a general solution.

 A documented pattern is underspecified with

respect to applying it in a specific situation.

98

99

Two Perspectives

 To make a pattern work…

 Inherent quality attribute tradeoffs that the

pattern makes
- Patterns exist to achieve certain quality attributes,

and we need to compare the ones they promote (and

the ones they diminish) with our needs.

 Other quality attributes that the pattern isn’t

directly concerned with
- but it affects…

- which are important in our application

100

Using Tactics Together

 Decided to employ ping/echo to detect failed

components 

 Security

• How to prevent a ping flood attack?

 Performance

• How to ensure that the performance overhead

of ping/echo is small?

 Modifiability

• How to add ping/echo to the existing

architecture?

101

Focus on Performance Tradeoff

102

103

104

Questions and Answers

