
Copyright © 1995-2011, Dennis J. Frailey Software Safety 1 

Introduction to Software 
Safety  

Dennis J. Frailey 
Frailey@Lyle.SMU.EDU 

 



2 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 2 

What This Talk is All About 

 This is an introduction to the topic of 
software safety 

 It is based on existing government and 
commercial standards 

 It is intended to explain what software 
safety means, how software can 
contribute to safety problems, and what 
techniques are used to deal with safety-
critical software 



3 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 3 

Why Be Concerned about Software 
Safety 

 Can Software Harm Anyone? 

 

 Eeek!!! 
It’s 

Software! 

Software by itself seems 
pretty innocuous – but … 



4 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 4 

Ways that Software can Harm 
Someone 

 It can Control the 
Behavior of 
Dangerous Devices 

– Robots 

– Weapons 

– Security Doors at 
Building entry 

– Medical Devices 

– Chemical 
Experiments 

– Factory 
Manufacturing Lines 

– … 

 It can Send 
Information to 
People who do 
Potentially 
Dangerous Things 

– Location of Airplanes 
for ATC 

– Identification of 
Intruders 

– … 

 It can Deceive 

– Internet scams 

 And on and on … 



Copyright © 1995-2011, Dennis J. Frailey Software Safety 5 

Software is often used for tasks that 
once called for human judgment 



6 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 6 

Software Safety Starts with 
System Safety 

 Software is always part of a system 

– A data base  

– A network 

– A vehicle 

– … 

 If the system can harm someone, then 
the software may be a factor in whether 
the system harms someone 

 So we have to start by analyzing the 
safety issues of the system 



7 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 7 

Basic Terminology 

 Hazard – Any real or potential condition 
that can cause injury, illness, or death [to 
a person] or damage to … or loss of … 
[property or the environment] 

 Mishap – An unplanned event or series of 
events resulting in death, injury, … 

 Safety – Freedom from … conditions that 
can cause injury, illness, … 

Mil-STD 
882D 



8 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 8 

Examples 

 Hazard: the power plant might catch fire 

 

 Mishap:  

– an incorrect temperature reading may cause  

– a heater to go on, resulting in  

– overheating of a chemical mixture, leading to 

– a chemical reaction, producing 

– excessive pressure, causing 

– an explosion in the fuel storage area, producing 

– a major fire in the power plant  



9 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 9 

The Safety Process 

Determine 
System 
Hazards 
(Hazard 

Analysis) 

Identify 
Potential 

Mishaps & 
Safety Critical 
Components 

Determine 
Probability or 

Level of Control 
(for each 

component) 

Take 
Appropriate 
Steps During 
Development 

& Testing 

S
y
s
te

m
 

A
n

a
ly

s
is

 
S

o
ftw

a
r
e
 

A
n

a
ly

s
is

 



10 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 10 

Basic System Safety Process 
in More Detail 

1. Identify the potential hazards 

2. Decompose hazard threads (potential 

mishaps) through subsystem components, 

including software 

3. Link/trace to requirements  

4. Generate appropriate mitigation strategy 

5. Implement the mitigation 

6. Verify that the mitigation is implemented 

and that it functions as expected 

7. Document safety artifacts 

 



11 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 11 

Fault Tree Concept 

Haz
ard 

Potential 
Cause of 
Hazard 

Potential 
Cause of 
Hazard 

Potential 
Cause of 
Hazard 

Contributor 
to Potential 

Cause 

Contributor 
to Potential 

Cause 
 

Contributor 
to Potential 

Cause 
 

Contributor 
to Potential 

Cause 
 

Contributor 
to Potential 

Cause 
 

Contributor 
to Potential 

Cause 
 

Contributor 
to Potential 

Cause 
 

Contributor 
to Potential 

Cause 
 

Contributor 
to Potential 

Cause 
 

Keep going down until you reach a point 
where you can do something about it. 



12 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 12 

An Example of a 
System Level Hazard List 

 Uncontrolled 
explosion 

 Uncontrolled fire 

 Injury and/or illness 

 Blockage of 
ingress/egress paths 

 Structural failure 

 Collision 

 Uncontrolled 
activation of 
ordinance 

 Electromagnetic 
interference 

 Hazardous/reactive 
materials 

 Electrical energy 

 Improper engagement 
control (Fratricide) 

 Surface/air 
contamination 

 Corrosion resulting in 
loss of strength or 
integrity of exposed 
surfaces 

 Batteries (exposure to 
toxic material, 
explosion) 

 Radiation (ionizing and 
non-ionizing) 

 Uncontrolled/unsupervi
sed robotic operations 

Haz
ard 



13 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 13 

A Safety Critical Component is 
… 

… a component that might 
contribute to a hazard if it 
fails 

 

 Note that in most 
hazardous systems there 
are many components 
that can contribute to a 
safety hazard 

 Some components may be 
software 

 

 

Identify 
Safety Critical 
Components 



Copyright © 1995-2011, Dennis J. Frailey Software Safety 14 

Software is often used to replace 
mechanical or human controls. 

 

 When software controls something 
it is often potentially safety critical. 

 

But that’s not the only way 
software can be safety critical. 



15 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 15 

Some Software Functions 
that May be Safety Critical 

 Assessment of overall system health (e.g, power-up 
and run-time monitors, heartbeat, program memory 
CRCs, range checks, CPU health) 

 Enforcement of critical timing 

 Exception trapping and handling including, failure 
/malfunction detection, isolation, and containment 

 Functions that execute the system’s response to 
detected failures/malfunctions 

 Functions that enhance the system’s survivability 
(preservation of core functionality) 

 Data quarantine/sanitization 

 Range and reasonableness (sanity) checking 

 Tamper and cyber-attack proofing 

 Authentication for lethal actions 

 Inhibiting functions and interlocks 

Potential 
Cause of 
Hazard 



16 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 16 

Example Software Contribution 
to a Mishap (1/3) 

Example SW 
Contribution 

Symptom 
Example Potential 

Cause 

Incorrect 
Safety-Critical 
Alerts and 
Warnings.  

Safety Critical alerts 
are incorrect, or are 
not triggered by Safety 
Critical Events. Alerts 
fail to warn the user of 
an unsafe condition, 
and or an Unsafe 
System State.  

Software fails to alert 
the operator to unsafe 
condition and/or 
state. Alerts can be 
audio, visual, or in 
text format in a log, 
etc..  

Incorrect 
Data Transfer 
Messages 
(transmit and 
receive).  

Data transferred in the 
wrong format and the 
Safety Critical Data are 
interpreted incorrectly.  

Failure to validate 
data transfer with the 
appropriate parity, 
check sums to validate 
Safety Critical data.  



17 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 17 

Example Software Contribution 
to a Mishap (2/3) 

Example SW 
Contribution 

Symptom 
Example Potential 

Cause 

Data Storage 
Failures 
(Safety 
Critical Data 
corrupted and 
or lost)  

Safety-Critical 
Displays are 
confusing, and/or 
incorrect in 
presenting Safety 
Critical Data.  

Safety critical data were 
not properly check-
summed; data 
overwritten by mistake 

Incorrect 
data transfer 
between 
processors 

Incorrect message 
received 

Failure to perform 
verification checks in both 
processors prior to 
transferring Safety 
Critical data.  



18 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 18 

Example Software Contribution 
to a Mishap (3/3) 

Example SW 
Contribution 

Description 
Example Potential 

Cause 

Timing and 
Interrupt 
failures  

Interrupts occur at the 
wrong time and 
potentially interrupt a 
Safety Critical process, 
or introduce a potential 
hazard.  

Interrupts are out of 
synch with system 
time, and/or 
interrupt a Safety 
Critical Process/Path 
which introduces a 
potential hazard.  

Incorrect 
Modes 

Software signals the 
system to fire a weapon 
when it should not. 

Switch from training 
to “live” mode is not 
correctly reflected in 
the “mode” variable.  



Copyright © 1995-2011, Dennis J. Frailey Software Safety 19 

So What Should We Do About 
Safety Critical Software? 

Mitigate the Risks 

In other words, make them 
less likely to happen 

and/or  

less harmful if they do 
happen 



20 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 20 

Potential Software 
Mitigation Strategies 

 Wrappers to Constrain 
Inputs/Outputs 

 Timers/Heartbeats/ 
Counters 

 Fault Trapping 

 Error Trapping 

 Command Retry 

 Parity/Checksums/ 
CRCs 

 Redundancy/Voting 

 Monitoring 

 Synchronization/Timing 

 Timeout 

 Reasonableness 
Procedures 

 

 Interlocks/Inhibits 

 Range/Sequence 
Checking 

 Transition Checking 

 Hysteresis for Man-
Machine Interactions to 
allow time for Human 
Interpretation 

 Partitioning/Isolation 

 Redundant but 
Dissimilar Algorithms 

 Functional Separation 

 Failsafe Strategies 

 Fault/Error Tolerant 
Strategies 

Not a 

Comprehensive List 



21 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 21 

How Seriously Must we Treat 
Potential System Safety Issues? 

Severity 
of Mishap 

(how 
much 

damage 
can be 

caused?) 

Mishap Probability (how 
likely is the mishap?) 

Mishap Response Level 
or Risk Index 

 (how extensively our 
product development 
techniques must be 

enhanced) 

Mil-
STD 

882D 



22 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 22 

 This can be a very subjective 
evaluation 

 Any mishap should be avoided, but 
some are worse than others 

 The safety community for any 
application domain will, by and large, 
agree on a set of severity categories 
(see next slide) 

Severity of Mishap (how much 
damage can be caused?) 



23 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 23 

Mishap Severity Categories 
Commonly Used in Major Commercial 
and Military Safety Standards 

 Catastrophic – could result in death, permanent 
total disability, loss exceeding $1M, or severe 
environmental damage violating law or regulation 

 Critical – could result in permanent partial 
disability, injuries or illness affecting at least 3 
people, loss exceeding $200K, or reversible 
damage to environment violating law or regulation 

 Marginal – could result in injury or illness 
resulting in loss of 1 or more work days, loss 
exceeding $10K, or mitigatable environmental 
damage without violation of law or regulation 
where restoration activities can be accomplished 

 Negligible – could result in injury or illness not 
resulting in lost workdays, loss exceeding $2K, or 
minimal environmental damage not violating law or 
regulations 



24 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 24 

How Seriously Must we Treat 
Potential System Safety Issues? 

Severity 
of Mishap 

(how 
much 

damage 
can be 

caused?) 

Mishap Probability (how 
likely is the Mishap?) 

Mishap Response Level 
or Risk Index 

 (how extensively our 
product development 
techniques must be 

enhanced) 

Mil-STD 
882D 



25 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 25 

Typical Mishap Probabilities 

Level Description Description Probability 

A Frequent Will Occur 1 in 100 

B Probable Likely to Occur 1 in 1000 

C Occasional Unlikely but 
Possible 

1 in 10,000 

D Remote Very Unlikely 1 in 100,000 

E Improbable Can Assume 
Will Not Occur 

1 in 1,000,000 

Probability Level is Used to Select Appropriate Mitigation Actions 

Mishap Probability (how 
likely is the Mishap?) 



26 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 26 

Mishap Risk Index Combines 
Severity and Probability 

Typical Mishap Risk Index Calculation 

Probability A B C D E 

Severity Frequent Probable Occasional Remote Improbable 

I - Catastrophic U U M M N 

II - Critical U U M N N 

III - Marginal U M N N N 

IV - Negligible M N N N N 

U - Unacceptable Mitigate at High Cost 

M – Marginal 
Risk 

Mitigate at Moderate Cost 

N – No 
Significant Risk 

Mitigate at Low Cost 



27 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 27 

 One can deduce the probability of 
hardware failure by examining the 
properties of materials, laws of physics, 
data on material fatigue, etc. 

 But one cannot deduce the probability of 
software failure in such a manner. 

 So for software, most safety experts use a 
different approach (next slide). 

The Problem with Probability for 
Software 

Mishap Probability (how 
likely is the Mishap?) 



28 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 28 

How Seriously Must we Treat 
Potential Software Safety Issues? 

Severity 
of Mishap 

(how 
much 

damage 
can be 

caused?) 

Level of Control (to what 
degree is software 

responsible?) 

Software Level of Rigor 
(how extensively our 

software development 
techniques must be 

enhanced) 



29 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 29 

 The Software Level of Control is a 
measure of the degree to which 
software is responsible for the 
behavior of a system or of a specific 
system action that may lead to a 
safety mishap 

 

 The higher the level of control, the 
more rigorous the process for 
software development  

 

Level of Control (to what 
degree is software 

responsible?) 



30 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 30 

An Example of Software Levels 
of Control (1/4) 

 I – Autonomous/Time Critical - Software 
exercises autonomous control over potentially 
hazardous hardware systems, subsystems, or 
components without the possibility of intervention 
to preclude the occurrence of a mishap. Failure of 
the software or a failure to prevent an event leads 
directly to a mishap's occurrence. This implies no 
other failure is required to cause the mishap. 

 



31 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 31 

An Example of Software Levels 
of Control (2/4) 

 IIa - Autonomous/Not Time Critical - Software 
exercises control over potentially hazardous hardware 
systems, subsystems, or components and allows time 
for intervention by independent safety systems to 
mitigate the mishap. This implies that corrective action 
is possible and a second fault or error is required for 
this mishap to occur. 

 

 IIb Information Time Critical - Software displays 
information requiring immediate operator action to 
mitigate a hazard. Software failures will allow or fail to 
prevent the occurrence of a mishap. This implies that 
the operator is made aware of the existence of the 
mishap and intervention is possible. 

 



32 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 32 

An Example of Software Levels 
of Control (3/4) 

 IIIa Operator Controlled - Software issues 
commands over potentially hazardous hardware 
system subsystems or components requiring 
human action to complete the control function. 
There are several redundant, independent safety 
measures for each hazardous event. 

 

 

 

 

 IIIb Information Decision - Software generates 
information of a safety-critical nature used to 
make safety-critical decisions. There are several 
redundant, independent safety measures for each 
hazardous event. 

 



33 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 33 

An Example of Software Levels 
of Control (4/4) 

 IV Not Safety Software - Software does not 
control safety-critical hardware systems, 
subsystems, or components and does not 
provide safety-critical information. 

 



34 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 34 

Summary of Software Levels of 
Control 

A software fault may: 

  

(1)result directly in a mishap (LOC I),  

(2)significantly impact the margin of safety 
(LOC IIa or IIb), but not result directly in a 
mishap, or  

(3)have a minor impact on the margin of 
safety for a mishap (LOC IIIa or IIIb).  

 



35 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 35 

Mishap 

Severity 

Software Level of Control 

I – 

Autonomous

/ Time 

Critical 

IIb – 

Information 

/ Time 

Critical 

IIa - 

Autonomou

s/ Not Time 

Critical 

IIIa - 

Operator 

Controlled 

IIIb - 

Information 

Decision 

IV - Not 

Safety 

Software 

I - 

Catastrophic LOR-3 LOR-3 LOR-2 LOR-2 LOR-2 N/A 

II - Critical 

LOR-3 LOR-3 LOR-2 LOR-2 LOR-2 N/A 

III - Marginal 

LOR-2 LOR-2 LOR-2 LOR-1 LOR-1 N/A 

IV - 

Negligible LOR-1 LOR-1 LOR-1 LOR-1 LOR-1 N/A 

Software Level of Rigor (how 
extensively our SW development 
techniques must be enhanced) 



36 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 36 

Examples of 
Appropriate 
Actions 

Phase Actions LOR 1 LOR 2 LOR 3 

Requirements Safety Requirements Documented 

Hazard Analysis 

Trace Hazards to Requirements 

 

 

 

 

 

 

 

 

 

Design Trace Hazards to Design   

Code Check Code for Safety Issues during 

Code Inspections or Walkthroughs 

 

Test Functional Testing 

Stress Testing 

Stability Testing 

100% Branch Testing 

 

 

 

 

 

 

 

 

 

During All 

Phases 

Change Requests must be Evaluated 

for Impact on Safety Critical Software 

Maintain Hazard Control Records 

 

 

 

 

 

 

 

 

 

Take Appropriate Steps 
During Development & 

Testing 



Copyright © 1995-2011, Dennis J. Frailey Software Safety 37 

Most of the Techniques 
Described Make Sense in a 
Waterfall Type of Development 
Process 

What about Agile Development, 
Incremental Development, etc.? 



38 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 38 

Challenges for Agile and 
Incremental Development 

 Changes are constantly and frequently 
being made, so things you do to assure 
safety, such as comprehensive tests and 
verifications, may need to be done over 
and over again and may slow development 
down significantly 



39 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 39 

SW Safety Strategy for Agile & 
Incremental Development (1/2) 

 Experimental and prototype functionality 
cannot be used in critical applications until 
formally developed and verified 

– partitioning must be used to segregate 
prototype/experimental functionality from 
mainstream functionality 

 Place limitations on the use of functions that 
have not yet met all safety criteria  

– e.g., allow only non-critical applications to use 
capabilities until all safety criteria are satisfied 



40 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 40 

SW Safety Strategy for Agile & 
Incremental Development (2/2) 

 Lift restrictions when functions have 
successfully exited formal development and 
verification 

 Consider the economics of developing a 
robust, scaled-down version of a function for 
safety critical applications 

 Partition critical functions from non-critical 
functions 

– a failure/ malfunction in a non-critical function must 
not cause a failure/ malfunction in a critical function   



Copyright © 1995-2011, Dennis J. Frailey Software Safety 41 

All of the Above Assumes You 
Write the Software 

(and therefore control the 
development process) 

What if Somebody Else Writes It? 



42 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 42 

Challenges for COTS Software 

 COTS (Commercial Off-the-Shelf) 
software examples 

– Operating systems (VXworks, Windows) 

– “standard” I/O drivers or interfaces 

– Board support packages  

 COTS has these challenges: 

– You don’t control the software development 
process, standards, etc. 

– You may not be allowed to examine the source 
code 

 



43 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 43 

Techniques for Safety Critical 
COTS Software 

 Safety Certification – there are organizations 
that will certify the safety or security of a 
software package. 

 Wrappers - that control the inputs and outputs of 
COTS software to inhibit likely failure modes. 

 Analyses – to assess the reliability and failure 
modes of COTS software. 

 Extensive Tests – covering a wide range of 
operational conditions under limited resources, 
including stress testing, stability testing, and 
others. 

 Limit use - to limited-complexity applications 
where reliability can be readily and accurately 
assessed. 

 Redesign - to eliminate COTS from the design. 



44 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 44 

Challenges for FOSS Software 

 FOSS (Free or Open Source Software) 
examples 

– Many components of a GUI 

– Compilers 

– … 

 FOSS has these additional challenges 
beyond COTS: 

– You may be legally required to report changes 
back to the originator 

– The code may change over time with little 
notification or configuration control 

– You don’t know who wrote the code or what 
traps they might have embedded in the code 

 



45 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 45 

Other Software Safety Issues 

 Software development is rapidly 
changing as we learn of new and faster 
ways to develop software 

– Faster development techniques often bypass 
the safeguards needed to address safety 
concerns 

 Software is often used in applications 
well beyond what was originally intended 

– How do you know the software is suitable for a 
safety critical application? 

 System safety is often not seriously 
addressed 

– So software safety may not even be considered 



46 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 46 

Future Issues with Software 
Safety 

 Certifications or licensing for developers 
of “safe” software 

– CISSP – Certified Information Systems Security 
Professional 

 Teaching safety issues in software 
engineering courses 

 Legal liabilities for those who develop 
software that has safety implications 

 … 



47 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 47 

Certification vs Licensing 
Certification 

 A certificate is a document whereby some 
organization attests that you meet certain 
qualifications 

– A college diploma 

– A certificate for completion of a course 

– Microsoft certified system engineer 

– Cisco certified network architect 

 You get a certificate to show that you have some 
capability, skill, or education 

– ASQ CSQE - Certified SW Quality Engineer 

– IEEE CSDP – Certified SW Development Professional 

 Any given certification is only as good as the 
organization it’s from 

 Some employers require certifications for specific 
types of jobs 



48 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 48 

Certification vs Licensing 
Licensing 

 A license is a legal authorization to practice, usually 
in a field involving public safety, health or welfare 

– A medical license 

– A license to practice law 

– A plumbing license 

– A licensed professional engineer 

 Licenses are granted by government agencies 

– Usually based on experience and examinations 

– Sometimes also based on other factors, such as 
allowing only so many taxi licenses in a given city 

 Some organizations require that contractors have 
licensed employees 

– For example, licensed civil engineers for highway 
construction projects 

 



49 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 49 

Software Engineering 
Licensing 

 Can you be licensed? 

– Texas currently licenses software engineers but the 
process for further licenses is on hold until an 
examination is prepared at the national level 

– A national examination is in preparation, sponsored 
by several organizations and under the technical 
guidance of IEEE-USA 

– Many states are expected to start licensing SW 
engineers once the examination is available 

– An ABET accredited SW engineering degree is likely 
to be preferred but not required 

 Must you be licensed? 

– If SW licensing is ever required, it will likely be only 
for safety critical software applications, such as 
control of power plants, medical applications, etc. 



50 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 50 

To Summarize 

 As software is used to control more of the 
systems that we rely on, software safety 
will continue to grow in importance 

 

 As society recognizes the role of software 
in these systems, there is likely to be more 
pressure for training, certification and 
licensing in software safety 

 

 At the same time, the software research & 
development communities must improve 
methods of dealing with software safety  



51 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 51 

Some Useful Reference 
Material (1/2) 

 EIA SEB6-A – System Safety Engineering in 
Software Development 

 FAA System Safety Handbook, Appendix J: 
Software Safety 

 Holzmann, Gerard J., The Power of 10: Rules for 
Developing Savety-Critical Code, IEEE Computer, 
June, 2006. 

 IEEE 1228 – IEEE Standard for Software Safety 
Plans 

 Leveson. Nancy G., Safety-Critical Software 
Development. In T. Anderson, editor, Safe and 
Secure Computing Systems, pages 155-162. 
Blackwell Scientific Publications, 1989. 

 Leveson, Nancy G., Safeware: System Safety and 
Computers, Addison-Wesley, 1995, ISBN-13: 
978-0201119725 



52 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 52 

Some Useful Reference 
Material (2/2) 

 MIL-STD-882D – Standard Practice for System 
Safety – US Department of Defense 

 NASA-STD-8719.13A – Software Safety 

 Patrick R.H. Place & Kyo C. Kang, Safety-Critical 
Software: Status Report and Annotated 
Bibliography, Software Engineering Institute, 
June 1993 

 RTCA, Inc., DO-178B, Software Considerations in 
Airborne Systems and Equipment Certification 

 RTCA, Inc., DO-248B, Final report for Clarification 
of DO-178B 

 The DACS Software Reliability Sourcebook Data & 
Analysis Center for Software 



53 
Copyright © 1995-2011, Dennis J. Frailey Software Safety 53 

Questions? 


