
Copyright 2022, Dennis J. Frailey Software Safety – Part 2 1

UT Dallas 

Introduction to
Software Safety

Part 2

What We Can Do About Software Safety

System Control Analysis

Software-specific Issues



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 2

Part 2 Agenda

Part 1

▪ Background, Introduction

▪ How Software Contributes to Safety and why we 
need to be concerned about it.

▪ The Safety Process

Part 2

▪ What We Can Do About Software Safety

▪ System Control Analysis (the emerging approach)

▪ Software-specific Issues

▪ Research Reports 

– (from Exercise 2 in Part 1)



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 3

Part 2 Agenda

➢What We Can Do About Software Safety

▪ System Control Analysis

▪ Some Software-specific Issues

▪ Research Reports



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 4

So What Should We Do About 
Safety Critical Software?

Mitigate the Risks

In other words, make the risks

less likely to 
happen

less harmful if 
they do happen

and/or



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 5

Potential Software Safety Risk 
Mitigation Strategies

▪ Wrappers to Constrain 
Inputs/Outputs

▪ Timers/Heartbeats/ 
Counters

▪ Fault Trapping

▪ Error Trapping

▪ Command Retry

▪ Parity/Checksums/ CRCs

▪ Redundancy/Voting

▪ Monitoring

▪ Synchronization/Timing

▪ Timeout

▪ Reasonableness Procedures

▪ Interlocks/Inhibits

▪ Range/Sequence Checking

▪ Transition Checking

▪ Hysteresis for Man-Machine 
Interactions to allow time for 
Human Interpretation

▪ Partitioning/Isolation

▪ Redundant but Dissimilar 
Algorithms

▪ Functional Separation

▪ Failsafe Strategies

▪ Fault/Error Tolerant Strategies

Not a 

Comprehensive List



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 6

How Seriously Must we Treat Potential 
System Safety Issues?

Severity 
of Mishap

(how 
much 

damage 
can be 

caused?)

Mishap Probability (how 
likely is the mishap?)

Mishap Response Level 
or Risk Index

(how extensively our 
product development 
techniques must be 

enhanced)



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 7

▪ This can be a very subjective evaluation

▪ Any mishap should be avoided, but some 
are worse than others

▪ The safety community for any 
application domain will, by and large, 
agree on a set of severity categories 
(see next slide)

Severity of Mishap (how much 
damage can be caused?)



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 8

Mishap Severity Levels Used in 
Automotive Safety

Controllability Acceptable Failure Rate

Uncontrollable Extremely improbable

Difficult to Control Very Remote

Debilitating Remote

Distracting Unlikely

Nuisance Reasonably possible

The key issue here is controllability: the ability of the 
vehicle occupants to control the safety of the situation 

following a failure.

Example: failure of power window and door locks after 
an accident may prevent exiting a car after an accident.



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 9

Severity Levels in IEC 62304 – Medical 
Device Software Standard

The key issue here is possible injury: the ability of the device 
to cause injury to a patient or operator following a failure.

Any potential software contribution to a hazard or mishap 
requires assessment of severity level.

The issue is how much damage could be caused.

▪ Class A – No injury or damage to health is possible

▪ Class B – Non-serious injury is possible

▪ Class C – Death or serious injury is possible

– Serious = life threatening, permanent impairment or damage, or 
requiring surgical intervention to prevent impairment or damage.



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 10

Mishap Severity Levels Commonly Used in 
Nuclear Power, Aircraft and Military Safety Standards

▪ Catastrophic – could result in death, permanent total 
disability, loss exceeding $1M, or severe environmental 
damage violating law or regulation

▪ Critical – could result in permanent partial disability, 
injuries or illness affecting at least 3 people, loss exceeding 
$200K, or reversible damage to environment violating law 
or regulation

▪ Marginal – could result in injury or illness resulting in loss 
of 1 or more work days, loss exceeding $10K, or mitigatable
environmental damage without violation of law or regulation 
where restoration activities can be accomplished

▪ Negligible – could result in injury or illness not resulting in 
lost workdays, loss exceeding $2K, or minimal 
environmental damage not violating law or regulations



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 11

Determine 
System 
Hazards 
(Hazard 

Analysis)

Identify 
Potential 

Mishaps & 
Safety Critical 
Components

Determine 
Probability or

Level of Control
(for each 

component)

Take 
Appropriate 
Steps During 

Development & 
Testing



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 12

How Seriously Must we Treat Potential System
Safety Issues?

Severity 
of Mishap

(how 
much 

damage 
can be 

caused?)

Mishap Probability (how 
likely is the Mishap?)

Mishap Response Level 
or Risk Index

(how extensively our 
product development 
techniques must be 

enhanced)



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 13

Typical Mishap Probabilities

Level Description Description Probability

A Frequent Will Occur 1 in 100

B Probable Likely to Occur 1 in 1000

C Occasional Unlikely but 
Possible

1 in 10,000

D Remote Very Unlikely 1 in 100,000

E Improbable Can Assume 
Will Not Occur

1 in 1,000,000

Probability Level is Used to Select Appropriate Mitigation Actions

Mishap Probability

(how likely is the Mishap?)



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 14

Mishap Risk Index 
Combines Severity and Probability

Typical Mishap Risk Index Calculation

Probability A B C D E

Severity Frequent Probable Occasional Remote Improbable

I - Catastrophic U U M M N

II - Critical U U M N N

III - Marginal U M N N N

IV - Negligible M N N N N

U - Unacceptable Mitigate at High Cost

M – Marginal 
Risk

Mitigate at Moderate Cost

N – No 
Significant Risk

Mitigate at Low Cost



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 15

▪ One can deduce the probability of hardware failure 
by examining the properties of materials, laws of 
physics, data on material fatigue, etc.

▪ But one cannot deduce the probability of software 
failure in such a manner.

▪ So for software, most safety experts use a different 
approach (next slide).

There’s a Problem with Probability for Software

Mishap Probability

(how likely is the Mishap?)



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 16

How Seriously Must we Treat Potential 
Software Safety Issues?

Severity 
of Mishap

(how 
much 

damage 
can be 

caused?)

Level of Control

(to what degree is 
software responsible?)

Software Level of Rigor
(how extensively our 

software development 
techniques must be 

enhanced)



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 17

The Software Level of Control is a measure of 

the degree to which software is responsible for 

– the behavior of a system

or 

– the behavior of a specific system action

that may lead to a safety mishap

➢ The higher the level of control, the more rigorous 
the process for software development 

Level of Control 

(to what degree is software 
responsible?)



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 18

An Example of Software Levels of Control
(1/6)

I – Autonomous/Time Critical –

Software exercises autonomous control over potentially 
hazardous hardware systems, subsystems, or components

Without the possibility of intervention to preclude the occurrence 
of a mishap. 

➢ Failure of the software or a failure to prevent an event leads 
directly to a mishap's occurrence. 

➢ This implies no other failure is required to cause the mishap.

Example: Software 
Controlled Airbag



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 19

An Example of Software Levels of Control
(2/6)

IIa - Autonomous/Not Time Critical –

Software exercises control over potentially hazardous 
hardware systems, subsystems, or components 

and allows time for intervention by independent safety 
systems to mitigate the mishap. 

This implies that corrective action is possible and a second 
fault or error is required for this mishap to occur.

Example: Backup Camera



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 20

An Example of Software Levels of Control
(3/6)

IIb Information Time Critical –

Software displays information 

Requiring immediate operator action to mitigate a hazard. 

Software failures will allow or fail to prevent the occurrence of 
a mishap. 

This implies that the operator is made aware of the existence 
of the mishap and intervention is possible.

Example: Collision Warning System

Indyautoblog.com



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 21

An Example of Software Levels of Control
(4/6)

IIIa Operator Controlled –

Software issues commands

Over a potentially hazardous hardware system, subsystem 
or component 

Requiring human action to complete the control function. 

There are several redundant, independent safety measures 
for each hazardous event.

Example: Air Traffic Control System 
warns pilot of nearby aircraft



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 22

An Example of Software Levels of Control
(5/6)

IIIb Information Decision –

Software generates information of a safety-critical nature 

Used to make safety-critical decisions. 

There are several redundant, independent safety 
measures for each hazardous event.

Example: Software in fire alarm system 
notifies fire department of a fire

www.itrads.com



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 23

An Example of Software Levels of Control
(6/6)

IV Not Safety Software –

Software does not control safety-critical hardware systems, 
subsystems, or components and 

does not provide safety-critical information.



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 24

Summary of Software Levels of Control

A software fault may:

I. result directly in a mishap (LOC I), 

II. significantly impact the margin of safety
(LOC IIa or IIb), but not result directly in a 
mishap, or 

III. have a minor impact on the margin of 
safety for a mishap (LOC IIIa or IIIb). 

IV. Have no impact on safety (LOC IV)



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 25

Mishap 

Severity

Software Level of Control

I –

Autonomous

/ Time 

Critical

IIb –

Information 

/ Time 

Critical

IIa -

Autonomou

s/ Not Time 

Critical

IIIa -

Operator 

Controlled

IIIb -

Information 

Decision

IV - Not 

Safety 

Software

I -

Catastrophic LOR-1 LOR-1 LOR-2 LOR-2 LOR-2 N/A

II - Critical

LOR-1 LOR-1 LOR-2 LOR-2 LOR-2 N/A

III - Marginal

LOR-2 LOR-2 LOR-2 LOR-3 LOR-3 N/A

IV -

Negligible LOR-3 LOR-3 LOR-3 LOR-3 LOR-3 N/A

Software Level of Rigor (how 
extensively our SW development 
techniques must be enhanced)



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 26

Determine 
System 
Hazards 
(Hazard 

Analysis)

Identify 
Potential 

Mishaps & 
Safety Critical 
Components

Determine 
Probability or

Level of Control
(for each 

component)

Take 
Appropriate 
Steps During 

Development & 
Testing



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 27

Examples of 
Appropriate Actions

Phase Actions LOR 1 LOR 2 LOR 3

Requirements Safety Requirements Documented

Hazard Analysis

Trace Hazards to Requirements

✓

✓

✓

✓

✓

✓

✓

✓

✓

Design Trace Hazards to Design ✓ ✓

Code Check Code for Safety Issues during 

Code Inspections or Walkthroughs

✓

Test Functional Testing

Stress Testing

Stability Testing

100% Branch Testing

✓

✓

✓

✓

✓

✓

✓

✓

✓

During All 

Phases

Change Requests must be Evaluated 

for Impact on Safety Critical Software

Maintain Hazard Control Records

✓

✓

✓

✓

✓

✓

Take Appropriate Steps 
During Development & 

Testing



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 28

Example of Appropriate Actions for IEC 62304 
- Medical Device Software Standard

Software Documentation 
Required

Possible Injury from Device

Class A
No Injury

Class B
No Serious 

Injury

Class C
Death or Serious 

Injury 

Software development planning X X X

Software requirements analysis X X X

Software architectural design X X

Software detailed design X

Software unit implementation and 
verification

X X X

Software integration and integration 
testing

X X

Software system testing X X X

Software release X X X

X - Required



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 29

Applying Level of Rigor in Automotive 
Applications

▪ Languages and Compilers

1. Independently certified compilers with formal syntax and 
semantics

2. Restricted subsets of standardized, structured languages 
with validated compilers

3. Standardized, structured languages

▪ Testing

1. 100% testing of all paths through the software at all 
development phases; semantic static analysis

2. White box module testing; stress testing; syntactic static 
analysis

3. Black box testing



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 30

Examples of Language Restrictions for C 
Language

▪ Basic Problems:

– C has weak type checking and allows error-prone programs to 
compile

– Little or no runtime error handling

▪ Restrictions (examples)

– No reliance on undefined or unspecified behavior

– No “commenting out” of any section of code

– Document all implementation-dependent code

– No reuse of identifier names in different modules

– Char data type only used for characters

– All typedefs should indicate size and signedness rather than 
using basic types or defaults



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 31

Requirements Analysis Phase Safety 
Actions (examples)

▪ Formal definition of requirements with rigorous 
checking of completeness, consistency, etc.

▪ Safety requirements must be defined

▪ Software Hazard Analysis

– Identify hazards associated with different states of the 
software

▪ Hazard Testing

– Determine possible faults and specify required actions and 
response times

– Develop safety requirements



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 32

Design Phase Safety Actions (examples)

▪ Formal design methods

▪ Safety critical functions must be isolated from non-
safety-critical functions

▪ All safety critical elements must be identified as 
“safety critical”

▪ All safety critical functions must provide:

– Error handling

– Fault containment (if fault occurs, it is detected and harm is 
limited)

– Proper sequencing of safety critical commands

▪ Termination of the software must result in a safe 
system state.



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 33

Design Phase Safety Actions (continued)

▪ Interfaces must be analyzed:

– Interdependent interfaces must be identified and all possible 
interactions must be analyzed

– Between-component interactions are more prone to safety 
problems than component failures

▪ Protocols must be analyzed:

– To assure that things like frequencies, location of parity bits, 
encoding algorithms, etc. are consistent

– Deadlock situations must be prevented

▪ Human factors analysis

– Human capabilities and limitations must be assessed 



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 34

Coding Phase Safety Actions (examples)

▪ Safe subsets of programming languages must be 
identified and coding standards must forbid use of 
features not in the safe subsets

– Unsafe features include uninitiated variables, dynamic 
memory allocation and de-allocation, side-effects of 
function calls on operands, transfer of control to arbitrary 
locations, …

▪ Range checking must be used

▪ Code logic analysis

▪ …



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 35

Testing Phase Safety Actions (examples)

▪ Independent testing by individuals not connected 
with development

▪ Failure modes and effects testing

▪ Safety-critical interface testing

▪ Testing for possible failures, not just testing to find 
all bugs

▪ Root cause analysis of failures

– Forward analysis – what other failures might we have 
missed from the same root cause?



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 36

Other Software Safety Actions (examples)

▪ Physical or logical partitioning, to keep safety 
critical software separate from non-safety-critical 
software

▪ Tracing from requirements to design to code to 
tests

▪ Redundancy in design / backup software for 
critical functions

▪ Detection and recovery from hardware failures

▪ …



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 37

Part 2 Agenda

▪ What we can Do About Software Safety

➢System Control Analysis

▪ Some Software-specific Issues

▪ Research Reports



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 38

Reminder

Hazard Analysis Approaches

Traditional - treat it as a 
reliability issue

▪ Identify the components that 
may fail and contribute to a 
hazard

▪ Use various approaches to 
make the failures less likely
or less harmful

▪ Much of the analysis occurs 
during or after the design 
step

Emerging - treat it as a 
system control issue

▪ Identify the ways the system
may fail and contribute to a 
hazard

▪ Create system requirements 
and constraints that forbid 
these conditions

▪ The analysis occurs before the 
design is started



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 39

System Control Analysis –
The Emerging Method of Analyzing Hazards

Look for Ways the System can Fail

For Reasons Other than Component Failure

Turn That Knowledge into Requirements and 
Constraints

[includes rigorous requirements specification 
and analysis]



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 40

Example of System Failures where no 

component fails

Airplane crashes into a mountain

– Pilot is listening for air traffic control instructions

– Two nearby controllers in different countries give conflicting 
instructions

➢ Both control stations have similar sounding names, so the 
pilot confuses which one he is listening to



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 41

Some Kinds of System Failures where no 

component fails  (1/3)

System is too complex for human operator to operate

– Human error is often a symptom of a system design problem

Source: flightdeck.ie.orst.edu/NextGen

➢ Example

– “NextGen air traffic control 
system is too complex for 
pilots to understand and 
operate safely and effectively.”



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 42

Some Kinds of System Failures where no 

component fails (2/3)

Components interact in a manner not anticipated in the 
system design

– When components are developed independently, not all 
interactions are anticipated

▪ Example

– When I select “connect bluetooth device” on 
my car’s audio system, the backup camera 
fails to work, even though I am backing up



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 43

Some Kinds of System Failures where no 

component fails (3/3)

Organizations assume they can make small changes 
to “safe” systems

– Any change may introduce error

– Systems migrate to high risk

➢ Example

▪ Australian 
helicopter pilot 
training system



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 44

Dealing with These Issues

Human Factors Analysis is Vital



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 45

Part 2 Agenda

▪ What we can Do About Software Safety

▪ System Control Analysis

➢Some Software-specific Issues



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 46

Most of the Techniques Described Make 
Sense in a Waterfall Type of Development 
Process

What about

• Agile 
Development,

• Incremental 
Development, 

• etc.?

Requirements
Analysis

Design

Code

Test

Integrate

Rqmts
Specs

Design 
Specs

Unit Tested 
Code

Tested 
Code

A Software Issue …

This is a sequential 
approach



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 47

Challenges for Agile and Incremental 
Development

➢ Changes are constantly and frequently being made

– so things you do to assure safety, such as comprehensive 
requirements analysis or designs or tests and verifications, 
may need to be done over and over again

➢ This may slow development down significantly



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 48

SW Safety Strategy for Agile & 
Incremental Development (1/3)

1. Use agile/incremental 
development for experimental and 
prototype functionality

– I.e, use only for developing prototypes

2. Then develop the final product in a 
more formal, sequential manner, 
including formal verification

– Partitioning the system to segregate 
prototype/experimental functionality 
from mainstream functionality



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 49

SW Safety Strategy for Agile & 
Incremental Development (2/3)

3. Place limitations on the use of functions that have 
not yet met all safety criteria 

– e.g., allow only non-critical applications to use capabilities 
until all safety criteria are satisfied

4. Lift restrictions when functions have successfully 
exited formal development and verification



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 50

SW Safety Strategy for Agile & 
Incremental Development (3/3)

5. Consider the economics of developing a robust, 
scaled-down version of a function for safety 
critical applications

6. Partition critical functions from non-critical 
functions

– a failure/malfunction in a non-critical function must not 
cause a failure/malfunction in a critical function  



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 51

All of the Above Assumes You
Write the Software

(and therefore control the 
development process)

What if Somebody Else Writes It?



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 52

Challenges for COTS Software

COTS (Commercial Off-the-Shelf) software examples

– Operating systems (VXworks, Windows)

– “standard” I/O drivers or interfaces

– Board support packages 

➢ COTS has these challenges:

– You don’t control the software development process, 
standards, etc.

– You may not be allowed to examine the source code



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 53

Techniques for Safety Critical COTS 
Software (1 of 2)

▪ Safety Certification – there are organizations that will 
certify the safety or security of a software package, 
such as an operating system.

www.ghs.com/products/rtos/integrity.html

Real-Time Operating System

Partitioning to separate 

safety critical from non-

safety critical functions.

http://www.ghs.com/


Copyright 2022, Dennis J. Frailey Software Safety – Part 2 54

Techniques for Safety Critical COTS 
Software (2 of 2)

▪ Wrappers - that control the inputs and outputs of COTS 
software to inhibit likely failure modes.

▪ Analyses – to assess the reliability and failure modes of 
COTS software.

▪ Extensive Tests – covering a wide range of operational 
conditions under limited resources, including stress 
testing, stability testing, and others.

▪ Limit use – limit use of COTS software to limited-
complexity applications where reliability can be readily 
and accurately assessed.

▪ Redesign - to eliminate COTS from the design.



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 55

“Free” and Open Source Software



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 56

More about “Free” Software

▪ FOSS examples

– Many components of a GUI

– Compilers

– Many popular applications such as Firefox, Open Office, Linux, 
Java. Ubuntu

➢ FOSS has certain advantages over COTS

- You are usually able to see the source code

– Most FOSS has been extensively used and tested

– In some cases, you may have access to design documentation



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 57

Challenges for “Free” Software

➢ FOSS has these additional challenges 
beyond COTS:

– You may be legally required to report 
changes back to the originator or the user 
community

– The code may change over time with little 
notification or configuration control

– You don’t know who wrote the code or what 
mistakes or traps they might have 
embedded in the code

➢ In other words, there is less control 
and potential risk

Source: best-infographics.com



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 58

SOUP
Software of Unknown Provenance

▪ Suppose you have software that was not originally 
developed for your purposes

▪ Or which was developed by unknown sources, using 
unknown standards, processes and procedures

▪ IEC 62304 requires these additional steps:

– Configuration management of all such software

– Extract and specify the functional and performance requirements

– Specify the system hardware and software required

– Include assessment in the software risk management process

– Thoroughly evaluate all anomalies or unexpected results

IEC 62304



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 59

Best Practices for
FOSS, COTS, or SOUP

▪ Strict requirements on supplier of software

– Must provide information on all known bugs

– Must allow audits of processes and procedures

– (others as deemed appropriate)

▪ Care in software licensing practices

– Establish licensing procedures within buyer’s organization

– Object to undesirable licensing provisions 

▪ Keep software under YOUR configuration control

May be deemed 

unacceptable by 

many suppliers.



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 60

Other Software Safety Issues

▪ Software development is rapidly changing as we 
learn of new and faster ways to develop software

– Faster development techniques often bypass the 
safeguards needed to address safety concerns

▪ Software is often used in applications well beyond 
what was originally intended

– How do you know the software is suitable for a safety 
critical application?

▪ System safety is not always seriously addressed

– So software safety may not even be considered



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 61

Future Issues with Software Safety

▪ Certifications or licensing for developers of “safe” 
software

– CISSP – Certified Information Systems Security 
Professional

▪ Teaching safety issues in software engineering 
courses

▪ Legal liabilities for those who develop software 
that has safety implications

▪ …



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 62

To Summarize

As software is used to 
control more of the 
systems that we rely on

software safety will 
continue to grow in 
importance

As society recognizes 
the role of software in 
these systems

there is likely to be more 
pressure for training, 
certification and licensing 
in software safety

In preparation, the 
software research & 
development 
communities

must improve methods 
of dealing with software 
safety



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 63

Some Useful Reference Material (1/3)

▪ DACS, The DACS Software Reliability Sourcebook, Data & Analysis 
Center for Software

▪ EIA SEB6-A – System Safety Engineering in Software Development

▪ (U.S.) FAA System Safety Handbook, Appendix J: Software Safety

▪ (U.S.) FDA Center for Devices and Radiological Health - Premarket 
Notification Submissions (510k), “General Principles of Software 
Validation”

▪ Herrman, Debra S. “Software Safety and Reliability”

▪ Holzmann, Gerard J., The Power of 10: Rules for Developing 
Safety-Critical Code, IEEE Computer, June, 2006.

▪ IEC 62304 – Medical Device Software – Software Life Cycle 
Processes (2015)



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 64

Some Useful Reference Material (2/3)

▪ IEEE 1228 – IEEE Standard for Software Safety Plans

▪ Leveson, Nancy G., Safety-Critical Software Development. In T. 
Anderson, editor, Safe and Secure Computing Systems, pages 
155-162. Blackwell Scientific Publications, 1989.

▪ Leveson, Nancy G., Safeware: System Safety and Computers, 
Addison-Wesley, 1995, ISBN-13: 978-0201419725

▪ Leveson, Nancy G., Engineering a Safer World: Systems 
Thinking Applied to Safety, MIT Press, 2014, ISBN-13: 978-
0262017629

▪ MIL-STD-882E – Standard Practice for System Safety – US 
Department of Defense

▪ NASA-STD-8719.13C – Software Safety



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 65

Some Useful Reference Material (3/3)

▪ Patrick R.H. Place & Kyo C. Kang, Safety-Critical Software: 
Status Report and Annotated Bibliography, Software 
Engineering Institute, June 1993

▪ RTCA, Inc., DO-178C, Software Considerations in Airborne 
Systems and Equipment Certification (This is the commercial 
aviation standard)

▪ RTCA, Inc., DO-248B, Final report for Clarification of DO-178B

▪ Society of Automotive Engineers - JA 1002 Software Safety and 
Reliability Program Standard



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 66

Part 2 Agenda

▪ What we can Do About Software Safety

▪ System Control Analysis

▪ Some Software-specific Issues

➢Research Reports



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 67

End of

Part 2



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 68

Appendix A

Notes on Certification and Licensing



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 69

Certification vs Licensing
Certification

▪ A certificate is a document whereby some organization attests 
that you meet certain qualifications

– A college diploma

– A certificate for completion of a course

– Microsoft certified system engineer

– Cisco certified network architect

▪ You get a certificate to show that you have some capability, 
skill, or education

– ASQ CSQE - Certified SW Quality Engineer

– IEEE CSDP – Certified SW Development Professional

▪ Any given certification is only as good as the organization it’s 
from

▪ Some employers require certifications for specific types of jobs



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 70

Certification vs Licensing
Licensing

▪ A license is a legal authorization to practice, usually in a field 
involving public safety, health or welfare

– A medical license

– A license to practice law

– A plumbing license

– A licensed professional engineer

▪ Licenses are granted by government agencies

– Usually based on experience and examinations

– Sometimes also based on other factors, such as allowing only so 
many taxi licenses in a given city

▪ Some organizations require that contractors have licensed 
employees

– For example, licensed civil engineers for highway construction 
projects



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 71

Software Engineering Licensing 
– Can You Be Licensed?

▪ Great Britain, Australia, & Canada have systems in 
place for licensing software engineers

▪ Other countries are considering similar systems

▪ The US National Society of Professional Engineers 
(NSPE) briefly had a way for software engineers to 
be licensed

– About 10 states instituted SW engineering licensing and 
others considered it

– But this was to be discontinued in 2010 due to limited 
participation.  Perhaps it was premature in the US.

➢ The exam could be resurrected in the future



Copyright 2022, Dennis J. Frailey Software Safety – Part 2 72

Software Engineering Licensing 
– Must You Be Licensed?

▪ Licensing is required in some countries for some kinds 
of software applications

– I have not kept up with what is required where

▪ If licensing of software developers is ever required in 
the US, it will likely be for safety critical and security 
critical software applications, 

– such as control of power plants, medical applications, etc.

▪ As more and more of our lives become dependent on 
software, don’t be surprised if politicians start requiring 
some sort of certification or licensing for safety critical 
software developers or even in other fields, such as 
financial and transportation applications.


