
Improving Software Testing Education
via Industry Sponsored Contests

W. Eric Wong, Linghuan Hu, and Haoliang Wang,
Department of Computer Science

University of Texas at Dallas, USA
{ewong, linghuan.hu, haoliang.wang}@utdallas.edu

Zhenyu Chen
State Key Laboratory for Novel Software Technology

Nanjing University, China
zychen@nju.edu.cn

Abstract— This Innovative Practice, Work in Progress Paper
presents how we improve software testing education via industry
sponsored contests. Over the past decades, we have built software
to improve our efficiency, reliability, and safety in production,
business, daily life, etc. These goals, however, cannot be
accomplished if the software is not properly tested. Some
universities provide classes to teach students the fundamental
knowledge and techniques of software testing. However, these
classes often ignore industry practices and can hardly offer real-
world testing experiences to students. To address this, we
partnered with industry sponsors to design and host several
software testing contests along with software testing tutorials.
Through the contests and tutorials, we brought real-world testing
and tool experience to the students and provided excellent
opportunities for them to practice their learned testing
techniques to overcome industry testing challenges.

Keywords—software testing, contest, code coverage, JUnit

I. INTRODUCTION
Software in many service and mission-critical systems has

played imperative roles and has even replaced humans in some
aspects to improve efficiency, reliability, and safety. However,
severe consequences such as property damage and life-loss
accidents can happen due to compromised and/or defective
software. In the industry, testing remains the most commonly
used technique to help engineers ensure the quality of software
and to prevent the accidents above from happening. A project
can invest a significant amount of resources on testing, but the
software produced may still suffer from low quality. The key
point is not how much is spent on testing, but how the testing is
conducted and who is conducting it. If we were to trace this
deficiency in software testing to its source, we would end up at
the educational institutions that are responsible for teaching
and training people on how software should be properly tested.
Thus, if today's software engineers are not sufficiently armed
with the knowledge required to test software cost-effectively, it
is most likely because they have not been adequately trained to
do so.

To fulfill these needs, UT Dallas along with many other
universities have provided software testing classes. However, if
these classes are generally lecture-oriented, only emphasizing
the oral discussion of different testing techniques while
ignoring the practical aspect of how these techniques with
appropriate tool support can be applied to test real-world
software, students might be unfamiliar with the industry
practice, and unable to apply the state-of-the-art techniques
learned in classrooms at work. In response, we have organized

the International Software Testing Contests (ISTC), sponsored
by the IEEE Reliability Society, to offer students an excellent
opportunity to catch up with industry practices and experience
the challenges that testing practitioners may face. Each
contestant is required to implement the entire software testing
process, starting from understanding the requirements of the
software being tested, to generation and execution of test cases,
as well as measurement and improvement of their quality.
Common adequacy criteria such as branch coverage and
mutation score are used. JUnit testing framework [1] and an
online testing platform developed by our industry partner are
also used. Through these contests, we bring together students,
teachers, researchers, and practitioners. It allows all
participants to share their ideas of how software testing should
be conducted and realize the deficiency of the current
pedagogical approach of software testing education. To our
best knowledge, we may be the only group in North America
that has organized multiple software testing contests to bridge
the gap between classroom education and industry practice on
such a large scale.

II. CONTEST OBJECTIVES
To address the limitations in software testing education

and further improve the testing skills of undergraduates and
graduate students, we partnered with our industry sponsors
and aim to provide the best opportunities for students to use
cutting-edge testing tools to overcome testing challenges that
they have never faced before. Among many software testing
techniques, such as regression testing, integration testing, etc.,
unit testing [2] has played a critical role in software
development life cycle in industry. It is also the lowest level of
testing, which is usually conducted first in the testing phase
[3]. A recent survey showed that automated unit testing is one
of the top five most important principles adopted in today’s
agile software development [4]. In this context, the contest
emphasizes two of the most important testing techniques: 1)
unit testing and 2) test case generation for achieving high code
coverage. In the future, we will explore the possibilities of
including other techniques.

A. Unit Testing
Unlike a decade ago when waterfall software development

life cycle was widely used in the industry, agile software
development is now adopted by most software companies.
One of the reasons is that the software requirements change
faster. In response, the developers must constantly revise their
software design and implementation. This brings a big
problem to the developers as software quality can hardly be

978-1-5386-1174-6/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 01,2023 at 21:20:14 UTC from IEEE Xplore. Restrictions apply.

assured. On one hand, the software was often developed under
a tight time constraint, which leads to insufficient testing
before the software is released. On the other hand, the constant
changes and enhancements on requirements, designs, and
implementations make it very difficult to detect the newly
introduced bug. To address these challenges, one of the most
used testing techniques is unit testing. By focusing on the
smallest software module, unit testing can efficiently help
detect bugs and, more importantly, easily reuse the generated
test cases. Due to these merits, it can significantly reduce
testing cost and improve its efficiency.

Although there could be different interpretations of the
smallest module, unit testing is often conducted at the class or
method level [5]. Figure 1 shows a sample unit testing code
using JUnit framework.

Figure 1. Sample unit testing code

It tests the “isTriangle” method of the “Triangle” class

using two test cases –triangle T1 with vertices of 2, 3, and 4,
and triangle T2 with vertices of -2, -1, and 4. In the test
method “testIsTriangle”, two asserts are used to verify the
execution results. In this case, if the “isTriangle” method
returns True for T1, and False for T2, the unit test will pass.

Based on our educational experience, most undergraduates
or even graduate students from computer science and software
engineering are not familiar with this useful testing technique.
As for the students who understand unit testing, many of them
have not used it. Because of this, we emphasize unit testing in
our contest to improve their unit testing skills.

B. Test case generation for achieving high code coverage
Although applying unit testing in real-world settings can

significantly reduce testing cost and improve the efficiency,
other testing techniques are also necessary to improve bug
detection effectiveness. In the industry, code coverage is a
commonly used metric to determine how thoroughly a
software is tested.

For example, statement coverage can be calculated as the
total number of statements exercised divided by the number of
executable statements in a program [6]. For example, referring
to the code shown in Figure 2, if the value of the input does
not equal 1, the statement coverage will be 0.4 (two divided
by five).

Figure 2. A code segment

The reason for its popular application can be implied by a

simple heuristic – “You might not be able to detect the bugs if
you execute the code. However, you definitely cannot detect
the bugs if you do not execute the code”. By including the
code coverage achievement, we want to motivate students to
apply their learned advanced testing techniques, such as
equivalent class partitioning, boundary value analysis [7,8],
combinatorial testing [9-11], etc., to generate high-quality test
cases that can achieve high coverage. Thus, we included code
coverage as one of the contest evaluation criteria.

III. CONTEST SETUP
To successfully bring real-world testing tools and

challenges to the students via the contest, we need to
appropriately select subject programs and design the ranking
criteria. We gained valuable experience from hosting several
testing contests at different venues, including an international
conference in Europe as well as universities in the USA and
China. In this section, we will present the details of subject
program selection and ranking criteria.

A. Subject Programs
For the software testing contest, we need to carefully select

appropriate subject programs since understanding the
requirements and implementation can be very challenging for
students under a strict time constraint. The subject programs
cannot be too simple, but their complexities need to be
carefully managed. If the subject programs are too complex
and too difficult to understand, it may frustrate students,
which might negatively impact our goals.

As most high schools and universities offer courses on
Java, we choose Java for our contest. We identify the contest
subject programs based on our teaching experience and
several complexity metrics, such as lines of code, the number
of branches, etc. For each open source subject program that
we identified online, we use PITest [12], a popular and
powerful mutation testing tool. With its eight default mutation
operators [13], as shown in Table 1, we can generate hundreds
of mutants. Some sample code before and after mutation
operators that are applied are shown in Table 2. The generated
mutants are used to measure the mutation scores. More details
are explained in Section III. B.

B. Ranking Criteria
The score of each contestant will be determined by two

criteria – achieved branch coverage and mutation score. As we
mentioned previously, code coverage is widely used in the
industry to determine the quality of the testing. During the
contest, contestants can measure the achieved code coverage
of their generated test cases and use this information as hints
to generate more test cases.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 01,2023 at 21:20:14 UTC from IEEE Xplore. Restrictions apply.

Table 1. Mutation operators used for mutant generation
Mutation Operator Description

Conditionals
Boundary

The conditionals boundary mutator replaces the
relational operators <, <=, >, >= with their
boundary counterpart as per the table below.

Increments

The increments mutator will mutate increments,
decrements and assignment increments and
decrements of local variables (stack variables). It
will replace increments with decrements and vice
versa.

Invert Negatives The invert negatives mutator inverts negation of
integer and floating-point numbers.

Math
The math mutator replaces binary arithmetic
operations for either integer or floating-point
arithmetic with another operation.

Negate Conditionals
The negate conditionals mutator will mutate all
conditionals found according to the replacement
table below.

Return Values
The return values mutator mutates the return
values of method calls. Depending on the return
type of the method another mutation is used.

Void Method Calls The void method call mutator removes method
calls to void methods.

Table 2. Sample code before and after mutation operators applied

Mutation Operator Before Mutation After Mutation

Conditionals Boundary

if (a < b) if (a <= b)
if (a <= b) if (a < b)
if (a > b) if (a >= b)

if (a >= b) if (a > b)
Increments i++; i--;

Invert Negatives -i; i;

Math

a + b a - b
a - b a + b
a * b a / b
a / b a * b

a % b a * b

Negate Conditionals

a == b a != b
a != b a == b
a <= b a > b
a >= b a < b
a < b a >= b
a > b a <= b

Return Values
return false; return true;
return true; return false;

return x; return x+1;

Void Method Calls
initial();

do();
cleanup();

initial();
cleanup();

In addition to branch coverage, we also include mutation

score as the second criterion to evaluate bug detection strength
of the contestants’ generated test cases. This is because, in
real-world settings, unless practitioners have observed the
unexpected exception thrown by the program or unexpected
execution failure, practitioners need to spend a large amount
of time on output verification to determine whether the test
cases detected any bugs. In our three-hour contest, it is not
feasible to require contestants to work on both test generation
and output verification. Mutation score is a good metric to
evaluate the bug detection strength of the test cases, and does
not require manual output verification. In mutation testing, a
mutant is considered to be killed if its output is different than
the output of the original program.

Consider the following code segments, where the code
shown in Figure 3 is the original and the code shown in Figure
4 is a mutant with the statement at line 4 that is changed. If an
input x of 3 is given, the outputs of both programs are
different. Therefore, we say the mutant is killed.

Figure 3. The original code segment

Figure 4. A mutant

The mutation score is computed by the number of killed
mutants divided by the number of all generated mutants. As
opposed to the code coverage, we do not provide the mutation
score measurement to contestants so that the contestants can
experience the real challenges faced by testing practitioners.
This is because, in real-world settings, testers estimate bug
detection strength of the generated test cases based on their
testing skills and their understanding of the subject program.

The aforementioned branch coverage achievement and
mutation score are measured by the Mooctest testing tool [14].
Mooctest testing tool is an easy-to-use online testing tool
developed by our industry sponsor, which integrates JUnit
library with several related software testing measurements,
such as code coverage, mutation score, etc.

C. Contest and Tutorial
The software testing contest has three sections: 1) the

tutorial 2) the contest, and 3) the experience sharing seminar.

To attend the contest, the contestants only need to have the
fundamental knowledge of Java programming, unit testing, and
mutation testing. Before the contest, we give contestants a brief
introduction to the ranking criteria and subject programs (no
source code or details are provided). Comprehensive tutorials
of JUnit, tools (Eclipse and Mooctest), and mutation testing are
also provided. After the tutorial, we will release a hands-on
exercise that includes several sample subject programs to each
contestant. Then, we will help each contestant install the
contest testing environment.

In the contest, each contestant needs to read and understand
three Java subject programs that are randomly selected from
our subject program pool and then generate and implement the
JUnit test cases. When the contest begins, a timer will appear
on their screen, and each contestant can use Eclipse IDE with
Mooctest testing platform to download and automatically
deploy three testing subject programs. During the contest, a
contestant can execute the program using their implemented
JUnit test cases and measure the achieved branch coverage. A
real-time updated leaderboard will anonymously show the top

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 01,2023 at 21:20:14 UTC from IEEE Xplore. Restrictions apply.

10 contestants’ scores. When the timer is up, the contestants
can no longer write or change any JUnit test cases, and the
contest is finished. After we update and validate their final
scores, we will then announce the top 3 contestants in the
award ceremony.

An experience sharing seminar will be hosted after the
contest so that the contestants can share their testing
experience.

IV. PREVIOUS CONTESTS
The two latest international software testing contests were

hosted at the IEEE International Conference on Software
Quality, Reliability, and Security at the Czech Technical
University in July 2017 (ISTC 17) and the University of Texas
at Dallas in January 2018 (ISTC 18).

In ISTC 17, 27 graduate students from different universities
participated in the contest. In ISTC 18, there were not only 158
undergraduates and graduates who participated in the contest,
but also 35 students from several high schools. High school
teachers said their students were very interested in the testing
contest, and that this can be an excellent opportunity for
students to access software testing rather than just
programming. We divided the contest into a college group and
a high school group. Based on our teaching experience at UT
Dallas, we had not observed a significant difference in the
software testing background between undergraduates and
graduate students. Therefore, both undergraduates and graduate
students are in the college group. The contests for the high
school group and college group are the same, except that the
subject programs for the high school group are smaller and less
complicated.

V. RELATED STUDIES
Software testing contest is a relatively new, but fast-

growing event. Nanjing University, which also partners with
Mooctest, hosted two national software testing contests for
college students, including mobile application testing,
integrated device testing, and web security testing in China in
2016 and 2017 [15,16]. There were a few other software
testing contests for industry practitioners hosted by companies
and organizations. The Software Testing World Cup is a series
of software testing contests hosted at different locations, such
as in Europe, South America, North America, Asia, etc., from
2014 to 2016 [17,18]. The contestants test a subject program
and write a testing report about the issues found with
severities and suggested fixes. The grade of each team was
evaluated by contest judges. The CAST Testing Competition
[19] was a software contest in 2011, hosted by Satisfice Inc.,
that ranked the contestants based on the performance w.r.t
testing, test report, bug report, developer relation, and
interviews. Inflectra Inc. hosted two software testing contests
[20,21] where contestants tested a subject program and
reported the found bugs. The rank was determined by the
found issues and test report. There were also other similar
contests such as BugDeBug [22], International Software
Testing Contest [23], and UNICOM Software Testing Contest
[24]. To the best of our knowledge, we may be the only group
in North America that has organized multiple software testing

contests for college and high school students on such a large
scale.

VI. CONCLUSIONS AND FUTURE DIRECTION
In this paper, we present how we improve the unit testing

skills of undergraduates, graduate, and high school students
via software testing contest. Details of industry tools, subject
programs selection and ranking criteria are presented. We
believe the software testing contest is the next step to take
students beyond the lecture-oriented, oral discussion of
software testing education. By joining the contests, students
can not only improve their testing skills, but also access the
latest industry tool support, experience the real-world testing
challenges and have the opportunity to apply their learned
techniques.

For future contests, we are carefully designing a controlled
experiment to quantitatively analyze the impact of the contest.
In addition, we will keep revising our ranking criteria and
include more programming languages. A team-based contest
will also be added in future contests. Additional sections will
also be included for students to experience different testing
scenarios and new challenges, such as regression testing,
performance testing, etc.

REFERENCES
1. JUnit 5, Available: https://junit.org/junit5/ [Accessed: June 18,

2018]
2. S. Acharya, “Mastering Unit Testing Using Mockito and JUnit,” Packt

Publishing Ltd, 2014.
3. P. Ammann and J. Offutt, “Introduction of software testing,”

Cambridge University Press, 2nd edition, 2016
4. L. Williams, “What agile teams think of agile principles,”

Communications of the ACM, vol. 55, no. 4, pp 71-76, April
2012

5. E. Dietrich, “Starting to Unit Test: Not as Hard as You Think,”
BlogIntoBook, May 2014

6. S. Desikan and R. Gopalaswamy, “Software Testing: Principles and
Practice,” Pearson, 1st edition, 2005

7. J. Eo, H. Choi, R. Gao, S. Lee, and W. Eric Wong, “Case Study of
Requirements-based Test Case Generation on an Automotive Domain,”
in Proceedings of IEEE International Conference on Software Quality,
Reliability, and Security – Companion, pp. 210-215, Vancouver,
Canada, August 2015.

8. R. Gao, J. Eo, W. E. Wong, X. Gao, and S. Lee, “An Empirical Study of
Requirements-based Test Generation on an Automobile Control
System,” in Proceedings of Annual ACM Symposium on Applied
Computing, pp. 1094-1099, Gyeongju, Korea, March 2014.

9. D. Li, L. Hu, R. Gao, W. E. Wong, D. R. Kuhn, and R. N. Kacker,
“Improving MC/DC and Fault Detection Strength Using Combinatorial
Testing,” in Proceedings of 2017 IEEE International Conference on
Software Quality, Reliability and Security Companion, pp. 297-303,
Prague, Czech Republic, July 25-29, 2017.

10. Ruizhi Gao, Linghuan Hu, W. Eric Wong, Han-Lin Lu, and Shih-Kun
Huang, “Effective Test Generation for Combinatorial Decision
Coverage,” in Proceedings of 2016 IEEE International Conference on
Software Quality, Reliability and Security Companion, pp. 47-54.
Vienna, Austria, August 1-3, 2016

11. Kuhn, D. Richard, Renee Bryce, Feng Duan, Laleh Sh Ghandehari, Yu
Lei, and Raghu N. Kacker. “Combinatorial testing: Theory and
practice,” Advances in Computers, vol. 99, pp. 1-66, 2015.

12. H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque,

"PIT: a practical mutation testing tool for Java (demo)," in

Proceedings of International Symposium on Software Testing and
Analysis, 2016, pp. 449-452

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 01,2023 at 21:20:14 UTC from IEEE Xplore. Restrictions apply.

13. Mutation Operators of PITest. http://pitest.org/quickstart/mutators/,

2018
14. Mooctest [Online], Available: http://www.mooctest.net/login2, 2018

[Accessed: June 18, 2018]
15. Mooctest [Online]. Available:

http://www.mooctest.org/cst2017/cst2016/
[Accessed: June 18, 2018]

16. Mooctest [Online]. Available:
http://www.mooctest.org/cst2017/cst2017/final.html
[Accessed: June 18, 2018]

17. Summary of the Software Testing World Cup 2014
Available: http://www.softwaretestingworldcup.com/stwc-
2014/ [Accessed: June 18, 2018]

18. STWC 2016 – Software Testing World Cup 2016
Available: http://www.softwaretestingworldcup.com/
stwc-2016/ [Accessed: June 18, 2018]

19. The CAST Testing Competition | Satisfice, Inc. Available:
http://www.satisfice.com/blog/archives/605
[Accessed: June 18, 2018]

20. 2nd Inflectra Hackathon – Software Testing Competition
Tickets, Available:

https://www.eventbrite.com/e/2nd-inflectra-hackathon-
software-testing-competition-tickets-44676313055#
[Accessed: June 18, 2018]

21. Social Testing – A Software Testing Competition | Inflectra
Available: https://www.inflectra.com/Company/Event/social-
testing--a-software-testing-competition-579.aspx
[Accessed: June 18, 2018]

22. BugDeBug Software Testing Competition at 99tests
Available: https://99tests.com/blog/bugdebug-
software-testing-competition-at-99tests/
[Accessed: June 18, 2018]

23. E. Alégroth, S. Matsuki, T. E. J. Vos, and K. Akemine,
“Overview of the ICST International Software Testing
Contest,” in Proceedings of IEEE International Conference
on Software Testing, Verification and Validation, pp. 550-
551, Tokyo, Japan, March 2017

24. Software Testing Contest, Available:
http://www.unicomlearning.com/software-testing-
contest.html
[Accessed: June 18, 2018]

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 01,2023 at 21:20:14 UTC from IEEE Xplore. Restrictions apply.

