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Abstract In response to the highly competitive market and the pressure to cost-effectively
release good-quality software, companies have adopted the concept of software product line to
reduce development cost. However, testing and debugging of each product, even from the
same family, is still done independently. This can be very expensive. To solve this problem, we
need to explore how test cases generated for one product can be used for another product. We
propose a genetic algorithm-based framework which integrates software fault localization
techniques and focuses on reusing test specifications and input values whenever feasible.
Case studies using four software product lines and eight fault localization techniques were
conducted to demonstrate the effectiveness of our framework. Discussions on factors that may
affect the effectiveness of the proposed framework is also presented. Our results indicate that
test cases generated in such a way can be easily reused (with appropriate conversion) between
different products of the same family and help reduce the overall testing and debugging cost.

Keywords Software product line . Genetic algorithm . Test generation . Debugging/fault
localization . Coverage . EXAMscore

1 Introduction

Software has become fundamental to our society and our everyday lives. Regardless of age,
gender, occupation, or nationality, each one of us depends on software, either directly or
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indirectly. Yet the disappointing truth is that software is far from defect-free and that very large
sums of money are spent each year only to fix and maintain defective software. According to a
National Institute of Standards and Technology report (NIST Report 2002), software bugs cost
the U.S. economy an estimated $59.5 billion annually. This situation has deteriorated because
not only is software larger and much more complicated than ever before, but the industry also
suffers from a tighter schedule and reduced cost. On the other hand, the same study also found
that more than one-third of these costs could be eliminated by an improved quality assurance
infrastructure.

The concept of software product line (SPL) (Clements and Northrop 2001; Pohl et al. 2005;
Bergey et al. 2010) has been adopted by companies such as NEC in order to improve the
overall quality of their products and reduce time and efforts needed to produce high quality
software. A selective suite of methods, tools, and techniques have been utilized to produce a
collection of similar software products from a shared set of assets such as source code,
programmers’ knowledge and experience, and documents. More precisely, a group of
software-intensive systems that share a common, managed set of features satisfying some
specific needs of a particular market segment can be developed from a common set of core
assets in a prescribed way (Clements and Northrop 2001). There are many advantages to using
this approach. One is that companies can significantly save their capital investments. The other
is that additional training and potential work time wasted on learning curve for new techniques
and tools can also be dramatically reduced.

However, saving the initial implementation cost by reusing assets only reduces the overall
cost to a certain extent. It is estimated that at least 60% of the cost of software development is
spent on testing and debugging (Dustin et al. 2009; Vessy 1985). Unfortunately, at this
moment, most of the techniques for testing and debugging software product lines are still
performed individually with respect to each product (McGregor 2001; Perrouin et al. 2012;
Perrouin et al. 2010; Pohl et al. 2005). In order to ensure the quality of products within a
product line, all possible uses of each generic component, and preferably all possible product
variants, need to be examined. This is neither efficient nor effective, as it requires the
generation of a large number of test cases of which some may be Bredundant^ from the testing
and debugging point of view. Additionally, the fact that the number of possible product
variants grows exponentially with the number of variation points makes such approach very
expensive (Engström and Runeson 2011).

Moreover, it is well-known that manual debugging is not only ineffective and inefficient but
also fault-prone (Goel 1985; Liu et al. 2006; Xie et al. 2013a). As a result, those approaches
that help automate the process of debugging have attracted the attention of both industry and
academia. Software fault localization techniques, which provide a ranking of suspicious
components (i.e. statements), have proven to be a promising branch of debugging activities
that guarantee the quality of software by making it more reliable and maintainable. However,
the techniques themselves have been recognized as some of the most expensive in debugging.
When our goal is to debug an SPL containing a large number of variants, the process is more
complicated and therefore even more expensive. Integrating various fault localization tech-
niques into software product line engineering (SPLE) would improve the quality of the whole
product family, however such integration has not yet been proposed in the literature.

To solve this problem, we use a genetic algorithm (GA)-based test generation technique
which integrates fault localization metrics with a focus on how test cases generated for one
product can be applied to test another product of the same family. Two different strategies using
Euclidean distance and K-Means clustering, respectively, are proposed in our technique to help
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generate new test cases. In our case study, we used four SPLs to demonstrate the effectiveness
of our proposed technique. It has been demonstrated that test cases generated by our proposed
technique achieve higher code coverage (statement, condition, and all-use coverage) and are
more effective in locating bugs compared to those generated by random testing.

Background knowledge is introduced in Section 2. Section 3 provides the methodology of
our proposed GA-based test generation technique. Section 4 presents two running examples
showing how the proposed technique works. The subject programs, data collection as well as
evaluation metrics are introduced in Section 5. Section 6 report our case studies along with
collected data and corresponding analyses. Performance date regarding the proposed frame-
work is presented in Section 7. Discussions on factors that may have an impact on the
effectiveness of the proposed technique is introduced in Section 8. Related studies and threats
to validity are presented in Section 9 and Section 10. Our conclusions and direction of future
work can be found in Section 11.

2 Background

2.1 A Genetic Algorithm

A genetic algorithm, also known as an evolutionary algorithm (Ahmed and Hermadi 2008;
Michael et al. 2001; Mitchell 1998; Sivanandam and Deepa 2008), mimics natural selection
via a randomized parallel search. Techniques based on genetic algorithms have been used to
solve problems in the areas of artificial intelligence, machine learning, and function optimi-
zation. An initial set of possible solutions is randomly or manually generated (in our frame-
work, a solution represents one test case). A fitness value of each possible solution with respect
to an objective function is computed. The higher the fitness value that a possible solution has,
the closer it is to the desired solution. Additional possible solutions can be generated based on
existing possible solutions with higher fitness values; then, the fitness values of all possible
solutions are updated. This process continues until a pre-defined stopping criterion is satisfied.

Two different evolutionary operators, crossover and mutation, can be applied in a GA to
generate new possible solutions (Ahmed 2010). The former interchanges values between two
existing possible solutions, while the latter maintains genetic diversity among different
possible solutions. Therefore, in our proposed framework, we apply both operators at the
same time to generate new test cases. More details on how to use the framework to generate
new test cases can be found from the running example given in Section 3 and Section 4.

2.2 Software Product Line

One of the most prominent approaches in software engineering is Software Product Line (SPL)
engineering, which aims to achieve systematic redeployment within the development of
similar software products. Domains such as the automotive industry have already applied
SPL engineering and have not only successfully ensured the quality of individual products but
have also reduced the cost of developing new products. As the number of product variations
rises, the number of component combinations likewise increases, resulting in millions of
different configurations. For this reason, the benefit of applying SPL to software development
is that a foundational set of assets can be used as the basis for building a variety of products
(Kakarontzas et al. 2008).
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During the development of a family of software products, SPL focuses on the extraction of
the product variabilities as well as the commonalities, which represent a set of common core
assets. Development for reuse as well as development with reuse can be identified as two key
stages of SPL (Mohamed Ali and Moawad 2010). The product line infrastructure constructed
in the former stage contains the assets that can be reused in the latter.

Testing for SPL aim to reduce the overall time and cost to guarantee the quality of the family of
software under test. Due to the two distinct stages of SPL development, testing SPL differs from
that of traditional software. Fully testing an SPL requires all possible product variants to be tested,
which is not only inefficient but also ineffective. However, as we mentioned in Section 1, most of
the techniques for testing SPL are still performed individually with respect to each product. Since
Breuse^ is the key point in SPL development, the test resource used for one product should also be
Breused^ when testing a new product in the same family. Such idea of Breuse^ should be
implemented in the testing for SPL, which is also the main contribution of this paper.

2.3 Structure-Based Coverage Criteria

In our study, we assess the effectiveness of the proposed framework by applying two categories
of structure-based criteria − control-flow and data-flow − to investigate execution of certain
structural components. Control-flow criteria examine the execution of logical expressions that
establish flow of control. Two types of control-flow criteria include statement coverage and
condition coverage. Statement coverage is fulfilled when every feasible statement in the
program has been executed at least once. Condition coverage, which subsumes statement
coverage, requires the invocation of both the true and false branches of every feasible condition.

In contrast, data-flow criteria evaluate execution through defined data (def) and their use
(use) within the program. Def refers to the specific line of code containing a certain value
assigned to a variable while use refers to the line of code in which the variable is used. Within
the use criteria, c-use represents usage of a datum in a computational operation or as output of
a function, while p-use represents usage of a datum in a predicate. All-def-use coverage (all-
use coverage) uses both c-use and p-use in the investigation.

The coverage percentage that a test set achieves can be calculated as:

Coverage Percentage ¼ Nc

Ne−Ni
ð1Þ

In Eq. (1), Nc represents the number of certain structural components (statements, true/false
branches, all-use pairs in this paper) covered (executed)1 by a test set, Ne represents the total
number of certain structural components in a program, and Ni represents the number of
infeasible structural components. In this paper, we determine the value of Ni as the number
of certain structural components that are not executed by a test set with 100,000 randomly
generated test cases. A similar approach is used in (Chen et al. 2013).

2.4 Fault Localization Techniques

Fault localization techniques calculate the suspiciousness of program components (i.e. state-
ment) based on a coverage matrix and a result vector. Assume that we have a program P which

1 In the rest of this paper, Ba structural component is covered^ and Ba structural component is executed^ are
equivalent.
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contains n statements and a test set T with m test cases. With respect to the coverage matrix,
each row represents a program component while each column represents a test case. Each
entry cij in the matrix is 1 if the ith component is covered by the jth test case; otherwise, cij
equals 0. The result vector is also binary such that each entry ri is 1 if the ith test case results in
failure, and 0 if it does not.

Of the fault localization techniques in the published literature, we select eight techniques for
our case studies based on the following criteria: the techniques should have been demonstrated
to be effective by other publications; the amount of data required by each technique is the same
to avoid the possible unfairness.

Assume that a program P contains n statements.2 Let s be a statement of P. Also, a test set Twith
m test cases has been executed against program P. Notations used in this section are listed as below:

NCF number of failed test cases that cover the statement
NUF number of failed test cases that do not cover the statement
NCS number of successful test cases that cover the statement
NUS number of successful test cases that do not cover the statement
NC total number of test cases that cover the statement
NU total number of test cases that do not cover the statement
NS total number of successful test cases
NF total number of failed test cases
tf a failed test case
ti a test case in T

Tarantula (Jones and Harrold 2005), which is a simple yet effective technique in many
cases, roots in the intuition that statements mainly covered by failed test cases are more likely
to contain faults than those covered by successful test cases. The suspiciousness of s can be
computed using the following formula:

susp sð Þ ¼ NCF sð Þ
N F

. NCF sð Þ
N F

þ NCS sð Þ
NS

� �
ð2Þ

As a more effective fault localization technique than Tarantula (Abreu et al. 2009), Ochiai
calculates the suspiciousness of s as:

susp sð Þ ¼ NCFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N F � NCF þ NCSð Þp ð3Þ

O and OP are two fault localization techniques defined in (Naish et al. 2011). Naish et al.
suggested that for single-bug programs, O shows better performance while OP is better in
dealing with programs with multiple bugs. With respect to programs containing exactly one
bug, the faulty statement’s NUF remains 0 the entire time. As a result, those with a positive NUF

are not faulty; suspiciousness of any other statement is proportional to its NUS. The O
technique defines the suspiciousness of s as:

susp sð Þ ¼ −1; if NU F > 0
NUS ; otherwise

�
ð4Þ

2 Without loss of generality, program components are considered to be statements for the rest of the paper.
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With respect to programs with multiple bugs, OP shows better performance since it pushes the
statements with largerNCF and smaller NCS to the top of the ranking using the following formula:

susp sð Þ ¼ NCF −
NCS

NS þ 1
ð5Þ

Cross tabulation (Everitt 1977; Freeman 1987; Goodman and Duncan 1984), a.k.a.
crosstab, is a method that studies the relationship among several categorical variables. A fault
localization technique based on crosstab is proposed in (Wong et al. 2012b). By constructing
two column-wise categorical variables (covered and not covered) and two row-wise categorical
variables (successful and failed), crosstabs aid in analyzing the association degree between the
failed (or successful) execution result and the coverage of each statement with null hypothesis
that they are independent given beforehand. The degree of association will then be utilized to
calculate the suspiciousness value for each statement.

H3b and H3c are proposed in (Wong et al. 2010) with the focus on how additional failed (or
successful) test cases help locate faults. It is concluded that the contributions of failed
(successful) test cases sequentially decrease. In other words, the first failed test case contributes
greater than or equal to the second, while the second contributes greater than or equal to the
third, and so on. The suspiciousness of each statement is calculated as [(1.0) × nF,1 + (0.1) ×
nF,2 + (0.01) × nF,3]–[(1.0) × ns,1 + (0.1) × ns,2 +α ×χF/S × ns,3], where nF,i and nS,i are the num-
ber of failed and successful tests in the ith group, and χF/S is the ratio of the total number of
failed to the total number of successful tests with respect to a given fault. The technique is
named H3b when α = 0.001 and H3c with α = 0.0001.

Wong et al. proposed DStar (D*) (Wong et al. 2012a, 2014) based on Kulczynski
coefficient. The suspiciousness of each statement is computed as:

susp sð Þ ¼ NCF sð Þð Þ*
NU F sð Þ þ NCS sð Þ ð6Þ

The effectiveness of D* increases as * grows before * exceeds a critical value. Since this
paper is not focusing on the effectiveness of a specific fault localization technique, we set * as
3 and the technique is denoted as D3 for the rest of the paper.

3 GA-Based Test Generation for SPL

In this section, we demonstrate the framework of the proposed GA-based test generation for
SPL. In Section 3.1, we describe the mechanism by which test cases are converted to binary
forms. Next, in Section 3.2, we present the detailed procedure used to apply our framework to
generate a test set for a product of an SPL, which includes two approaches: test generation
using Euclidean distance (EC) as well as using K-Means clustering (KM). Finally, Section 3.3
explores how to apply the test sets generated for one product to future products.

Figure 1 illustrates the basic procedure of our framework. The cycle marked with blue
arrows represents the test generation process for one product in a specific software product line
(Section 3.2), while the orange cycle displays how test cases generated for one product can be
reused to test another product of the same product family (Section 3.3). In addition, a detailed
process of how new test cases are generated based on the current test set is demonstrated with
the dashed green cycle. Two approaches, EC (Section 3.2.1) and KM (Section 3.2.2) have been
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proposed to calculate the fitness values of each test case. These values help decide to which test
cases the genetic operators (crossover and mutation) should be applied to generate new ones.

3.1 Encoding of Test Cases

Before a genetic algorithm can guide the test generation process, a mechanism should be
established to convert each test case to a unique binary string.3 In this binary string, each digit
is either 0 or 1 such that the evolutionary operators (crossover and mutation) discussed in
Section 2.1 can create new test cases by modifying existing test cases. Below, we introduce
how to convert different primitive data types (i.e. Integer, Floating point number, Boolean,
Character, String, and Enumeration) of input parameters to binary form.

& Integer:
Each Integer can easily be presented as a binary string. For example,

(60)10 = (111100)2. However, in order to limit the search space of GA, sometimes we
need to define the maximum (or minimum) possible value for a specific Integer parameter.
This also helps us define the maximum number of digits used to represent this parameter.

For example, with respect to an Integer input parameter α, the maximum possible value is
100 while the minimum is −100. As a result, the parameter can be converted to an 8-bit string
as follows: since (100)10 = (1100100)2, seven bits are required to represent its absolute value

4;
the eighth bit shows whether the value is positive (if the bit is 1) or negative (if the bit is 0).

Suppose that the input parameterα = 60. Based on our previous description, the value will
be converted to {01111001}:

0111100|fflfflfflffl{zfflfflfflffl}
60 in binary form

1|{z}
positive

Note also that during the test generation process, invalid input values are likely to be
created. For example, based on the assumption above, string {11101001} which represents

Fig. 1 Procedure of GA-based test generation for SPL

3 Several other encoding approaches exist, such as permutation encoding, value encoding, and tree encoding. In
this paper, we focus on binary encoding.
4 If the absolute values of the upper bound and lower bound differ, we choose the one with greater absolute value
to determine the number of bits needed.
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(116)10 can also be produced. In order to simplify the test generation process, we abandon
these productions and generate new test cases until they satisfy the specifications.

& Floating point number:
With respect to input parameters that accept Floating point numbers, we divide the

number into two parts: the integer part and the decimal part. Each part can be presented as
an individual integer. Similar to Integer, an additional bit is required to represent whether it
is positive or negative. For instance, with respect to (11.11)10, the integer part is converted
as (1011)2 while the decimal part is (0001011)2 because we need at least seven bits to
represent (.99)10 as (99)10 = (1100011)2.

5 As a result, (11.11)10 is converted as:

1011|ffl{zffl}
integer

0001011|fflfflfflffl{zfflfflfflffl}
decimal

1|{z}
positive

& Boolean:
If an input parameter accepts Boolean data type, we use B1^ for BTrue^ and B0^ for

BFalse^.
& Character:

Each Character will be converted to its corresponding ASCII code.
& String:

A String can be presented as a sequence of characters. Similar to the encoding of Integer
type, we define the maximum number of characters with respect to a specific String type
input parameter. As a result, strings can be converted to a sequence of ASCII codes.

& Enumeration:
Each possible value of an Enumeration type can be presented as a unique binary string.

Assume that input parameter β accepts four possible values, BA^, BB^, BC^, and BD^.
Table 1 can be used to convert a test case into binary form.

Under certain circumstances, the number of possible values for a parameter may not be 2n,
where n represents the number of bits needed to represent the parameter. In these cases, binary
codes assigned to each input value can be modified based on the experience of testers or the
operational profiles. Now assume the input parameter β accepts only three possible values,
BA^, BB^, and BC^. Assume also that the function corresponding to BC^ is usedmore often than
those corresponding to BA^ and BB^. For this reason, the BC^ function should be tested more
thoroughly than the BA^ and BB^ functions. Table 2 contains the updated input values for β.

For other existing data types (especially composite data types such as Time, List, and
Graph), we first divide the data into the above primitive data types. This implies that a
complex data type can be represented by several primitive types. For example, with respect
to Time, it is divided into six Integer data (year, month, day, hour, minute, and second). In
addition, with respect to a specific data structure that also contains structural information (such
as array, list, graph, etc.), we keep a complete record of the sequence of all the data within the
structured data element to prevent any loss of information.

Consider the following scenario. Assume an array is used as a test case for a program P. The
values of three integer input parameters, X, Y, and Z, are stored in this array. Without loss of
generality, we assume that 10 bits are needed for each input parameter (as discussed above).
Instead of only transforming the values of X, Y, and Z into binary strings, we also record the

5 We assume that the upper bound and lower bound of the parameter are 15.00 and −15.00, respectively. Since
(15)10 = (1111)2, we only need four bits to represent the integer part of the parameter.
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index of these three parameters and their offsets. As shown in Table 3, the input parameter X
has an index 0, implying that it is the first parameter in the input array. Its offset is 10,
indicating that this parameter needs 10 bits. The same applies for Y and Z.

With respect to other data structures such as graph, tree, and linked list, we also store the
relationships between different input parameters. By doing so, we can assure that various input
values of a complex data type can be represented as a binary string without any information losses.

3.2 Two GA-Based Test Generation Approaches

Let us assume that we need to generate a test set T for a program (say P with n lines of code) of
an SPL. Without loss of generality, suppose the generation stops if T achieves certain statement
coverage on P. Other stopping criteria, such as a maximum number of test cases for T, can also
be used. The following provides the necessary steps:

1) Initialization ofT. If there are test cases fromother products to be reused,T is initialized to contain
these test cases. Otherwise, T has a small number (say k) of randomly generate test cases for P.

2) Coverage measurement of each test case in T. Let ci = (ci1, ci2, ci3, ci4,…, cin), i ≤ k, be the
statement coverage vector of the ith test case, where cij (j ≤ n) has a value of 1 or 0,
indicating whether the jth statement is covered by the ith test case or not. If cij = 1, it is
covered; otherwise, it is not.

3) Computation of a fitness value fi for each test case. This value can be computed using two
approaches, EC and KM, discussed later.

4) Generation of new test cases. The proportional roulette wheel selection (Mitchell 1998) is
applied to determine which test case(s) in T will be used to generate new test cases. The

probability of the ith test case being chosen is f i=∑
k

i¼1
f i. Crossover andmutation operators

are then applied on the chosen test cases to get two new test cases. The probability of each
bit being mutated (mutation rate) is 0.30. If the newly generated test cases already exist in
T, repeat step (4) until we have a predefined number of test cases not in T.

5) Addition of new tests to T. New test cases generated at step (4) are incorporated into T.
The cumulative statement coverage on P achieved by all the tests in T is measured.

6) Coverage measurement of newly generated test cases. Similar to step (2), the statement
coverage vectors of the new test cases are collected.

Table 1 Example for enumeration
type Input values for β Binary string

A 00
B 01
C 10
D 11

Table 2 Example for enumeration
type with less than 2n (in this case
n = 2) possible values

Input values for β Binary string

A 00
B 01
C 10,11
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7) Decision on whether test generation should continue. If the predefined statement coverage
is satisfied, test generation stops; otherwise, the next iteration begins from step (3).

With respect to step (3), two approaches, EC and KM, are presented in Section 3.2.1 and
Section 3.2.2 to calculate the fitness value of each test case.

For step (4), the efficiency of test generation process could vary due to the number of test
cases generated in each iteration, especially for KM approach. As a result, we apply the
following method to improve its efficiency. If T contains fewer than 100 test cases, two test
cases are generated in each iteration; If T contains more than 100 test cases but less than 500
test cases, 5 test cases are generated in each iteration; In addition, if T contains more than 500
test cases, 20 test cases are generated in each iteration.

3.2.1 Using the Euclidean Distance (EC) to Calculate the Fitness Value of Each Test
Case

Inmathematics, the Euclidean distance (or metric) is the Bordinary^ distance (such as a straight line)
between two data points in Euclidean space. Assume we have two data points, p= (p1, p2,…, pn)
and q = (q1, q2,…, qn), in Cartesian coordinates. Then the Euclidean distance between p and q is:

EC p; qð Þ ¼ p−qk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

pi−qið Þ2
vuut ð7Þ

Intuitively speaking, if the Euclidean distance between the coverage vectors of two test
cases is short, it suggests that the two test cases are likely to cover similar parts of the program.
On the other hand, if the distance is large, the two test cases could cover different parts of the
program. As a result, test cases with larger Euclidean distances tend to have different execution
traces when compared to those with shorter distances. This also implies that new test cases
generated based on tests that have larger (instead of shorter) Euclidean distances with current
tests will have a higher probability to cover statements that are not executed by current test
cases. The threat to validity of this assumption will be discussed in Section 10.

With the understanding of Euclidean distance, we now explain how to compute the fitness
value fi for the ith test case. The following steps are employed to assign different fitness values
to test cases: assume we have the coverage vectors c1, c2… ck for t1, t2…tk. The fitness value of
the ith test case in T is assigned using the steps listed below:

1) Computation of an objective vector c as

�c ¼ c11 þ c21 þ⋯þ ck1
k

;
c12 þ c22 þ⋯þ ck2

k
;…;

c1n þ c2n þ⋯þ ckn
k

� �
ð8Þ

2) Compute the Euclidean distance between ci and c, EC(ci, c).

Table 3 Record for sequence
information Input parameter Index Offset

X 0 10
Y 1 10
Z 2 10
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3) EC(ci, �c) is assigned to the ith test case as its fitness value

f i ¼ EC ci; c
� �

ð9Þ

3.2.2 Using K-Means Clustering (KM) to Calculate the Fitness Value of Each Test Case

K-Means clustering is a popular and effective method for cluster analysis in data mining. It
aims to partition data points based on their similarity. In other words, data points within the
same cluster are more similar than those in other clusters. In order to have a better under-
standing of the proposed approach, this section provides a brief introduction to K-Means
clustering and an example illustrating how it works.

The idea of K-Means clustering was first proposed by Stuart Lloyd in 1957 and published
in 1965 by E. W. Forgy (1965). As a result, the method is also referred to as Lloyd-Forgy. In a
1967 paper, MacQueen (1967) coined the term BK-Means^. The algorithm was improved by
Hartigan and Wong in 1979 (1979).

Given a set of data points (x1, x2,…, xn), in which each data point is a d-dimension vector,
K-Means clustering aims to group the n data points into K (K ≤ n) clusters S = {S1,S2,…,Sk}
such that the following objective is fulfilled:

argmin
S

XK
i¼1

X
x∈Si

x−μik k2 ð10Þ

where μi is the mean of data points in Si.
An iterative optimization algorithm, which is referred to as a K-Means algorithm, can be used to

determine the K centroids and corresponding clusters. The algorithm contains the following steps:

1) Determine K and randomly select K data points as initial centroids.
2) Include each data point into the cluster such that the squared Euclidean distance between

the data point and the corresponding centroid is less than or equal to that between this
point and any other centroids.

3) The updated centroids are:

c jð Þ
i ¼ 1

S j−1ð Þ
i

			 			
X
x∈S j−1ð Þ

i

x ð11Þ

where ci
(j) is the centroid of the ith cluster at the jth iteration and |Si

(j − 1)| is the number of
data points in the ith cluster at the (j-1)th iteration.

4) If the centroids remain unchanged between two consecutive iterations, the clustering
procedure completes. If not, the next iteration begins at step (2).

A simple example is provided for a better understanding of the algorithm above, which is
essential to the comprehension of the proposed approach using K-Means clustering to calculate
the fitness value of each test case.

Four data points are listed in Table 4. Without loss of generality, we choose K = 2 and c1
(0) =

x1, c2
(0) = x2 as the two initial centroids. See Fig. 2a, in which squares represent four data points

while hollow diamonds represent the centroids.
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Based on these initial values, as c1
(0) = x1 and c2

(0) = x2, x1 will be assigned to the cluster of c1
(0)

and x2 to the cluster of c2
(0). For x3, because the squared Euclidean distance between x3 and c2

(0) is
obviously less than that between x3 and c1

(0), x3 is assigned to the cluster of c2
(0). Similarly, x4 is

also assigned to the cluster of c2
(0). As a result, we have two clusters which are S1

(0) = (x1) and
S2
(0) = (x2, x3, x4).
We then compute the updated centroids using Eq. (11):

c 1ð Þ
1 ¼ 1

S 0ð Þ
1

			 			
X
xi∈S

0ð Þ
1

xi ¼ 1; 1ð Þ

c 1ð Þ
2 ¼ 1

S 0ð Þ
2

			 			
X
xi∈S

0ð Þ
2

xi ¼ 11

3
;
8

3

� �

The updated centroids and four data points are displayed in Fig. 2b. Because the centroids
changed in this iteration, the process must continue.

In Iteration 2, x1 will be assigned to the cluster of c1
(1) since c1

(1) = x1. According to Fig. 2b, we can
clearly identify that the squared Euclidean distance between x2 and c1

(1) is less than that between x2
and c2

(1). Therefore, x2 will be assigned to the cluster of c1
(1). Following the same procedure, x3 and x4

are assigned to the cluster of c2
(1). The two clusters are S1

(1) = (x1, x2) and S2
(1) = (x3, x4).

The centroids are then updated again and illustrated in Fig. 2c

c 1ð Þ
1 ¼ 1

S 1ð Þ
1

			 			
X
xi∈S

1ð Þ
1

xi ¼ 3

2
; 1

� �

c 2ð Þ
2 ¼ 1

S 1ð Þ
2

			 			
X
xi∈S

1ð Þ
2

xi ¼ 9

2
;
7

2

� �

If we proceed to the next iteration, we find the centroids and the clusters remain unchanged
from Iteration 3 and conclude that the first cluster contains data points (x1, x2) and the second
cluster has (x3, x4).

Table 4 Data points for K-means
clustering Data point Attribute 1 Attribute 2

x1 1 1
x2 2 1
x3 4 3
x4 5 4

(a) Iteration 0  (b) Iteration 1 (c) Iteration 2 

Fig. 2 Three iterations for the example
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The rationale behind the KM approach is that if the execution trace of one test case is
similar to that of a failed test case, then the former is also likely to be a failed test and provides
more hints on the bug location. As a result, if either a failed test case or a test case similar to a
failed test is selected, it is more likely that new test cases generated can help us better
determine the location of bugs in the program being tested. The potential threat to validity
of this approach will be discussed again in Section 10. The same idea has also been used in a
recently published paper (Gao et al. 2015).

With this introduction, we now explain the procedure to compute the fitness value fi for the
ith test case based on K-Means clustering. Assume we have the coverage vectors c1, c2… ck for
t1, t2…tk.

1) Determine K and the initial centroids. The following three scenarios should be considered:

a) If T contains only successful test cases, K equals 2 and the coverage vector cr of a
randomly selected test case tr is assigned as c1

(0). Identify a test case tp such that EC(cp, cr)
is not less than EC(ci, cr),∀ ti ∈ T. cp is assigned as c2

(0);
b) If only one failed test case tf is in T, K equals 2 and the coverage vector cf of tf is
assigned as c1

(0). Identify a test case tl such that EC(cf, cl) is not less than EC(cf, ci),∀ ti ∈
T. cl is assigned as c2

(0);
c) If in T there exist two or more failed test cases, the steps listed below are employed to
determine K and the initial centroids. Assume in Twe have λ failed test cases denoted as
(tf1, tf1,…, tfλ); consequently, (ts1, ts2,…, ts(k − λ)) represents all the successful test cases.

i. Compute the Euclidean distances between the coverage vector of a failed test case
and that of any successful test case EC(tfi, tsj), 0 < i ≤ λ, 0 < j ≤ n − λ;

ii. Set a similarity threshold θ =α ×maxall(i,j)EC(tfi, tsj) where α is a constant between
0 and 1. For the rest of the paper we use α = 0.1 unless otherwise stated;

iii. Compute the Euclidean distance between any pair of the coverage vectors of failed
test cases. For 0 < i < j ≤ λ, if EC(tfi, tfj) < θ, these two failed test cases belong to the
same group, otherwise, they belong to different groups;

iv. Assume after step (iii), we have ω groups of failed test cases. K equals ω, and we
randomly select one coverage vector from each group of failed test cases as the
initial centroids. However, if ω = 1, then K equals 2 instead.

2) Apply K-Means clustering to partition all the test cases.
3) Compute the Euclidean distance between each test case and its corresponding centroid.
Assume for the rth iteration, the ith test case is partitioned into the jth cluster Sj and the
coverage vectors of tp and tq have the largest and smallest Euclidean distance, respectively, to
the corresponding centroid cj

(r) within the cluster. Assume also that Nj represents the number of
data points in the jth cluster. Then the fitness value of the ith test case is:

f i ¼

EC cp; c
rð Þ
j

� �
EC ci; c

rð Þ
j

� � ; wi ≠ c j; N j > 2

EC cp; c
rð Þ
j

� �
EC cq; c

rð Þ
j

� � ; wi ¼ c j; N j > 2

ξ; wi ¼ c j;N j≤2

8>>>>>>>>><
>>>>>>>>>:

ð12Þ
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With respect to the value of ξ, if the ith test case is successful, ξ = 1; otherwise,
ξ ¼ maxtυ∈T ;υ≠i f υ; δ > 0.

We also include the discussion on the possible impact of α on the effectiveness of KM
approach in generating test cases in Section 7.

3.3 Test Cases Reuse Based on Fault Localization Techniques

With the test cases generated for one product in the product family, the test cases can be reused
to test another product in that family. In software product line engineering, the essential
concept is Breuse^, which means that the development of different products within the same
product family is based on the Bcore^ components of a specific SPL. Furthermore, a significant
number of modules/components, referred to as commonalities, are shared by different prod-
ucts. As a result, the same or similar bugs could reside in several products in a product family.
Intuitively, fault localization techniques can be employed to determine which test cases should
be reused. With the help of statement rankings generated by fault localization techniques, test
cases which cover statements with higher suspiciousness values are more beneficial to testers
and help debug the product with less effort.

Due to the difference between products, some of the test cases for one product may not be
applicable for another. For example, suppose we have an SPL for drawing. One product
contains functions to calculate the areas of five geometric figures, namely square, circle,
triangle, rectangle, and ellipse. However, another product in the same family only provides
the functions for four figures: square, circle, triangle, and rectangle. As a result, those test cases
focusing on calculating the area of ellipse are not applicable in testing the new product and
cannot be reused. A more detailed example is included in Section 4.

Supposewe have completed the test generation for one productP1 andwould like to reuse the test
set T1 with k test cases generated to test another product P2. According to Section 3.2, the coverage
matrix of T1 consisting of k coverage vectors (c1, c2,…, ck) are achieved from the test generation
process. The following provides the necessary steps to determine which test cases should be reused:

1) Remove test cases in T1 which are not applicable in T2.
2) Compute the suspiciousness values of each statement in P1.

Fault localization techniques described in Section 2.4 (H3b, H3c, Crosstab, Tarantula,
Ochiai, D3, O and OP) can be applied based on the coverage matrix and result vector.

3) Compute the sum of suspiciousnesses values of statements covered by each test case in T1.

SumSusp tið Þ ¼
Xn
j¼1

susp s j

 �� ci j ð13Þ

4) The reusability of each test case is computed by using SumSusp(ti) and fi achieved in
Section 3.2

RE tið Þ ¼ β � SumSusp tið Þ
maxAll iSumSusp tið Þ þ γ � f i

maxAll i f i
ð14Þ

where β and γ are constants and β + γ = 1. For the rest of the paper, β = 0.5 and γ = 0.5
unless clarified otherwise.
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5) Arrange the test cases in a decreasing order based on the RE values. Two steps will be
performed to select the test cases for reuse:

i. Include those failed test cases in T1 into the test set T2 for P2;
ii. Select test cases from the remaining test cases in T1 based on the ranking generated in

step (5). Choose those with the highest RE values until the size of T2 reaches the
maximum number of test cases for reuse.

Similarly, the values of β and γ could have possible impact on the effectiveness of our reuse
approach. As a result, sensitivity analyses are performed in Section 7 regarding this concern.

4 Running Examples

In this section, we go through the proposed framework with two sample programs, say P1 and
P2, from an SPL for car insurance companies. In Section 4.1, P1 with only one bug is used to
illustrate how to generate test cases using EC or KM approach. In Section 4.2, the procedures
of test case reuse as well as test generation for P2 with multiple bugs are displayed.

4.1 Using EC and KM Approaches to Generate Test Cases

As shown in Fig. 3, P1 helps employees of an insurance company to determine the insurance
plans for various customers. It gives customers quotes based on the price (no more than
$100K,6 e.g. $45K) and model (compact, full, sports, or luxury) of their cars. There is a bug at
s5 which does not give users the correct insurance plan. A test set with two test cases t1
(BSports^, B$45K^) and t2 (BLuxury ,̂ B$40K^) is also provided as the initial test set. The black
dot indicates that the corresponding statement is covered by a specific test case. The execution
results of the two test cases are also included.

Before the two initial test cases can be used to generate more test cases, the encoding for
these test cases must be done. Based on the description in Section 3.1, we use the first two bits
to represent the parameter model (Enumeration type) and the following eight bits to represent
price (Integer type). For the first two bits, {00} stands for BCompact^, while {01}, {10}, and
{11} stand for BFullsize^, BSports^, and BLuxury ,̂ respectively.

Take t1 as an example. The value of model is represented by {10}, which means BSports^.
For the parameter price, according to Section 3.1, as maximum value for price is 100, eight
bits are required for each test case (seven bits for the numerical value and one bit for positive/
negative). Since (45)10 = (101101)2, we use the {01011011} to represent the value B$45K^
with the last bit B1^ (positive) appended.

Therefore, the two test cases can be converted as:

& t1 ¼ 1001011011f g→ “Sports”; “$45K”f g
& t2 ¼ 1101010001f g→ “Luxury”; “$40K”f g

6 For the purposes of illustration, we assume this is guaranteed by the input verification module, which is not
included in the source code.
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Suppose our goal is to generate a test set that achieves 100% statement coverage. By now,
we only have two test cases. Since in each iteration we select two test cases to generate two
more, t1 and t2 will be selected. Referring to step (4) in Section 3.2, the crossover operator will
first be applied to the two test cases by swapping the bits of t1 with those of t2 between two
randomly selected positions. In our case, bits between position 4 and position 6 are swapped,
and we get the following two interim signatures:

& tc1 ¼ 1101011011f g
& tc2 ¼ 1001010001f g

The mutation operator is then applied by mutating its bits (1 to 0 or 0 to 1) at randomly
selected positions. Without loss of generality, suppose bits of t1

c at positions 1, 3, 4, 6, and 7 are
mutated to generate a new test case t3:

& t3 ¼ 0110000011f g→ “Fullsize” “$65K”f g

Similarly, by swapping five bits of t2
c from positions 2 to 6, we can get another new test case t4:

& t4 ¼ 1110100001f g→ “Luxury”; “$80K”f g

After executing the two new test cases, our stopping criterion (100% statement
coverage) is not fulfilled. As a result, the test generation process continues. Either EC
or KM approach can be utilized to calculate the fitness values of the four test cases.
We first use Eqs. (9) and (12) to calculate the fitness value of each test case shown in
Table 5.

Among the four test cases, t1 has the highest fitness value using either EC or KM,
which means that its possibility of being chosen to generate new test cases is higher
than the other three test cases. However, this does not indicate that test cases with

Coverage

Stmt. #. Program t1 t2

s1 read(model, price);

s2 if ((model Compact || model Fullsize ) && price    50)

s3 type   Plan   A;
s4 else if (model Sports && price    50) 

s5 type    Plan_C; // Correct: type    Plan_B;

s6 else if (model Luxury && price    50)

s7 type    Plan  C;

s8 else if ((model Compact || model Fullsize ) && price      50)

s9 type    Plan  D;

s10 else type    Plan  E;

s11 if (type ! Plan  D && type ! Plan  E )

s12 quote_price    500    price * 0.01 * 1000;

s13 else if (type  Plan_D )

s14 quote_price    1000    price * 0.01 * 1000;

s15 else quote_price    1000    price * 0.02 * 1000;

s16 print(type, quote_price);

Execution Results (1   failed; 0   successful) 1 0

Fig. 3 A product with a single bug, a set of 2 test cases, and their execution traces
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low fitness values cannot be selected. Suppose that in this iteration, two more test
cases are generated based on t1 and t3:

& t5 ¼ 0000101001f g→ “Compact”; “$20K”f g
& t6 ¼ 0001111001f g→ “Compact”; “$60K”f g

The updated fitness values of the six test cases are listed in Table 6. Also, the fitness values
of the six test cases as well as the ranking of statements based on Ochiai are updated in Fig. 4.

4.2 Test Case Reuse

After completing the test generation for P1, we move on to test P2. While P1 helps determine
insurance plans for customers who own cars with a value of no more than $100K, the highest
car value accepted by P2 is $60K.

7 P2 also requires an additional input parameter of Boolean
data type, isUsed, which represents whether the car is used or brand new: customers with a
used car will get a 10% discount on the quote price. The program is illustrated in Fig. 5.

We injected two faults into P2. One fault is in s5 and another in s17. The former is the same
as the fault existing in P1 while the latter is newly injected. The reason is that similar bugs
could exist in several products within an SPL since part of the source code in P1 is reused in
developing P2. Also, implementing new functions could bring in new faults, such as the fault
in statement s17.

Due to the difference between P1 and P2, the encoding of test cases for P2 are different from
that for P1. Now we only need seven bits instead of eight to represent the value of price since
the maximum car value accepted by P2 is 60.8 For example, with respect to
t1 = {1001011011}, the last eight bits, {01011011} will be converted to {1011011} by deleting
the first bit B0^.

Because P2 requires another input parameter, isUsed, the binary strings for P2 should
include an additional bit: B1^ represents a Bused^ car (BTrue^ for isUsed) while B0^ represents
a Bnew^ car (BFalse^ for isUsed). As a result, a randomly generated bit is appended
representing the value of isUsed. As a result, t1 = {100101101} will be converted to τ1 as:

& τ1 ¼ 1010110111f g→ “Sports”; “$45K”; “True”f g

An additional consideration is that not all the test cases for P1 can be reused to test P2. For
example, with respect to t3 and t4, as the car price values in both test cases are more than 60,
they are no longer applicable for P2.

7 For the purposes of illustration, we assume this is guaranteed by the input verification module, which is not
included in the source code.
8 (111111)2 = (63)10

Table 5 Fitness values for t1 to t4
using EC and KM approaches Test cases EC fitness value KM fitness value

t1 1.69 2.11
t2 1.19 1.00
t3 0.69 1.11
t4 1.09 1.11
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As a result, only four test cases, t1, t2, t5, and t6 from Section 4.1 can be reused to test P2.
These four test cases are converted based on the previous description and denoted as τ1, τ2, τ3,
and τ4, respectively:

& τ1 ¼ 1010110111f g→ “Sports”; “$45K”; “True”f g
& τ2 ¼ 1110100011f g→ “Luxury”; “$40K”; “True”f g
& τ3 ¼ 0001010011f g→ “Compact”; “$20K”; “True”f g
& τ4 ¼ 0011110010f g→ “Compact”; “$60K”; “False”f g

Using Eq. (14), we can determine the reusability of each test case as listed in Table 7:
According to Table 7, the order of test cases based on EC Reusability is τ1, τ3, τ2, and

τ4; when using KM Reusability, the order is τ1, τ2, τ4, and τ3. Referring to step (5) in
Section 3.3, τ1 is selected regardless of the approach used as τ1 is a failed test case in the
test generation for P1. τ2, τ3, and τ4 are chosen based on their respective ranking listed in
Table 7 and the intended maximum number of test cases for reuse. For example, if the
maximum number is 2, then only τ1 and τ3 would be selected using EC approach while
τ1 and τ2 would be selected using KM approach.

Table 6 Fitness values for t1 to t6
using EC and KM approaches Test cases EC fitness value KM fitness value

t1 1.45 2.11
t2 1.33 1.00
t3 1.45 1.11
t4 1.56 1.11
t5 1.67 1.00
t6 1.45 1.11

Coverage Ochiai

Stmt. #. Program t1 t2 t3 t4 t5 t6 Rank susp

s1 read(model, price); 4 0.41

s2 if ((model Compact model Fullsize ) && price    50) 4 0.41

s3 type    Plan  A; 8 0

s4 else if (model Sports && price    50) 3 0.45

s5 type    Plan C; // Correct: type    Plan  B; 1 0.71

s6 else if (model Luxury && price    50) 8 0

s7 type    Plan   C; 8 0

s8 else if ((model Compact || model Fullsize ) && price 50) 8 0

s9 type    Plan   D; 8 0

s10 else type    Plan  E; 8 0

s11 if (type ! Plan  D && type ! Plan  E ) 4 0.41

s12 quote  price    500    price * 0.01 * 1000; 2 0.5

s13 else if (type Plan  D ) 8 0

s14 quote  price    1000    price * 0.01 * 1000; 8 0

s15 else quote  price    1000    price * 0.02 * 1000; 8 0

s16 print(type, quote  price); 4 0.41

Execution Results (1   failed; 0   successful) 1 0 0 0 0 0

EC Fitness Value 1.45 1.33 1.45 1.56 1.67 1.45

KM Fitness Value 2.11 1.00 1.11 1.11 1.00 1.11

Fig. 4 Suspiciousness of each statement in the product, as well as the execution traces and fitness values of each
test case
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Without loss of generality, suppose the maximum number of test cases for reuse is 4. In this
scenario, all four test cases are included in the initial test set T2 for P2. Figure 5 shows the
coverage results following execution of the test cases.

Assume the stopping criterion is the same as that in Section 4.1, which is 100% statement
coverage. Following the same procedure, we can generate two more test cases:

& τ5 ¼ 1110011111f g→ “Luxury”; “$55K”; “True”f g
& τ6 ¼ 1001100110f g→ “Sports”; “$25K”; “False”f g

The fitness values using EC and KM approaches as well as the ranking based on Ochiai is
updated in Fig. 6.

5 Experimental Setup

In this section, we provide the experimental setup of our case studies. Section 5.1
includes a brief introduction of the four SPLs as well as all the variants of each SPL
used in this paper. The data collection and evaluation metrics are presented in
Sections 5.2 and 5.3, respectively.

Coverage

Stmt. #. Program 1 2 3 4

s1 read(model, price, isUsed);

s2 if ((model Compact model Fullsize ) && price    50)

s3 type    Plan  A;

s4 else if (model Sports && price    50) 

s5 type  Plan C; // Correct: type    Plan_B;

s6 else if (model Luxury && price    50)

s7 type    Plan  C;

s8 else if ((model Compact model Fullsize ) && price      50)

s9 type    Plan  D;

s10 else type    Plan  E;

s11 if (type ! Plan  D && type ! Plan  E )

s12 quote  price    500    price * 0.01 * 1000;

s13 else if (type Plan  D )

s14 quote  price    1000    price * 0.01 * 1000;

s15 else quote  price    1000    price * 0.02 * 1000;

s16 if (isUsed)

s17
quote  price    quote  price * 0.8;
// Correct: quote  price   quote  price * 0.9;

s18 print(type, quote  price);

Execution Results (1   failed; 0   successful) 1 0 0 1

EC Reusability (    0.5,    0.5) 1.87 1.58 1.65 1.50

KM Reusability (    0.5,    0.5) 2.00 1.25 1.12 1.16

Fig. 5 A product with two bugs, as well as the execution traces and fitness values of 4 test cases

Table 7 Reusability of τ 1 to τ 4
Test case SumSusp EC reusability KM reusability

τ 1 = {1010110110} 3.30 1.87 2.00
τ 2 = {1110100010} 2.59 1.58 1.25
τ 3 = {0001010010} 2.14 1.65 1.12
τ 4 = {0011110011} 2.09 1.50 1.16
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5.1 Subject Programs

For our experiments, we applied the proposed framework as well as RT on four different
product lines:

& Photo Editing Line (PEL) is an SPL for photo editing, which performs various photo
editing tasks, such as photo batch processing, skin smoothing, advanced color adjustment,
etc. Each product within PEL contains more than 3 K lines of C code.

& E-Mail (EM) is based on the email systemmodel developed byHall (Hall 2015). In addition
to the original four features, we added seven to make the system more practical. The least
lines of code a product within EM has is 1,094, while the most contains more than 2 K.

& Public Health Complaint (PHC) is implemented based on the model provided by Lee et al.
(Lee et al. 2002). The SPL contains features such as food complaint, animal complaint,
drug complaint, etc. Every product in PHC has more than 2 K lines of C code.

& JFreeChart (JFC) is a library that supports the display of a rich set of charts. The original
library contains 91,174 lines of Java code. We modified the source code to get four unique
products with different features.

The detailed information of the subject programs is included in Table 8.
For the rest of the paper, products within PEL are denoted as P1, P2, P3, P4, P5, and P6,

respectively. Similarly, E1 to E6 are used to represent the six products within EM, H1 to H6 for
PHC, and J1 to J4 for JFC.

Coverage Ochiai

Stmt. #. Program 1 2 3 4 5 6 Rank susp

s1 read(model, price, isUsed); 5 0.707

s2 if ((model Compact model Fullsize ) && price 50) 5 0.707

s3 type Plan A; 15 0
s4 else if (model Sports && price 50) 3 0.775

s5 type Plan C; // Correct: type Plan B; 1 0.820

s6 else if (model Luxury && price 50) 13 0.408

s7 type Plan C; 15 0

s8 else if ((model Compact | model Fullsize ) && price 50) 13 0.408

s9 type Plan D; 9 0.577

s10 else type Plan E; 15 0

s11 if (type ! Plan D && type ! Plan E ) 3 0.775

s12 quote price 500 price * 0.01 * 1000; 9 0.577

s13 else if (type Plan D ) 9 0.577

s14 quote price 1000 price * 0.01 * 1000; 9 0.577

s15 else quote price 1000 price * 0.02 * 1000; 15 0

s16 if (isUsed) 5 0.707

s17
quote price quote price * 0.8;
// Correct: quote price quote price * 0.9;

2 0.816

s18 print(type, quote price); 5 0.707

Execution Results (1 failed; 0 successful) 1 0 0 1 0 1

EC Fitness Value 1.13 1.65 1.98 2.43 2.46 2.02

KM Fitness Value 3.36 1.28 1.53 3.58 3.25 3.38

Fig. 6 Suspiciousness of each statement in the product, aswell as the execution traces and fitness values of each test case

Table 8 Subject programs
SPLs Programming language Lines of code

Photo Editing Line C 3,087 ~ 3,589
E-Mail C 1,094 ~ 2,143
Public Health Complaint C 2,056 ~ 2,378
JFreeChart Java 62,485 ~ 91,174
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In this paper, we also created faulty versions of each product by applying mutation-based
fault injection. Studies such as (Andrews et al. 2005; Do and Rothermel 2006; Liu et al. 2006;
Namin et al. 2006) have shown that mutation-based fault injection is an effective simulation of
real faults and provides trustworthy experimental results. The following two sets of mutation
operators are employed in generating faulty versions:

& Replacement of an arithmetic, relational, logical, increment/decrement, or assignment
operator by another operator from the same class

& Decision negation in an if or while statement

Studies, including (Offutt et al. 1996; Wong and Mathur 1995a, b) cited in this paper, have
shown that test cases with the capacity to kill mutants generated by replacement of a relational
or logical operator, the possibility that they kill other mutants is high. Moreover, these test
cases also achieve high code coverage. Although the focus of this paper differs from these
studies, the conclusions can still be applied here.

5.2 Data Collection

For each product (P1 to P6, E1 to E6, H1 to H6, and J1 to J4), we use our proposed framework as
well as random test generation (RT) to generate multiple test sets with respect to a fixed size or a
fixed coverage (statement coverage, condition coverage, and all-use coverage (Mathur 2008)).
Note that RT randomly generates test cases based on the same specifications used by EC and
KM to ensure the comparison between RTand EC/KM is fair. For a fixed size, test sets of size 2,
3… 10, 20… 100, 200… 1000, respectively, are generated.9 On the other hand, test sets that
achieve 85%, 90%, and 95% of all three types of coverage are generated for a fixed coverage.10

Multiple test sets are necessary because a large number of test sets will likely satisfy a given
size or a given coverage achievement for each product. Therefore, selecting only one of these
may lead to false conclusions. To alleviate this concern, we apply the following steps to ensure
the statistical stability of the observed values (coverage achievements or number of test cases
that achieve a specific coverage threshold):

1) With respect to a specific stopping criterion for test generation (i.e. 100 test cases, 70% statement
coverage), we repeat the test generation procedure using EC, KM, or RT for a predefined
number of times (say Np) and achieve Np independent test sets. In this paper, we set Np= 30;

2) According to central limit theorem (Tijms 2004), we use Eq. (15) to calculate the
estimated number of repetitions N needed to ensure that the observed values (i.e. coverage
achieved by test sets of fixed size, number of test cases to get a predefined coverage) are
statistically stable within a predefined confidence level of (1 −α) × 100% and accuracy
range of ± r%

N ¼ 100� Φ−1 2−α
2


 �� σ

r � μ

 !2

ð15Þ

9 For any general GA-based technique, at least two initial test cases are needed to generate new test cases. As a
result, the minimum size of test sets is 2.
10 For JFreeChart, we only include statement coverage and condition coverage due to the lack of tools in
collecting data regarding all-use coverage.

Empir Software Eng (2018) 23:1–51 21



where μ and σ represent the mean value and the standard deviation of the observed
values, respectively. In the rest of the paper, we set α = 0.05 and r = 5.

3) If N >Np, the number of test sets is statistically reliable; Otherwise, generate (N −Np) test
sets, let Np =N, and return to step (2) to update N.

In this study, the coverage collection for C programs is supported by χSuds tool suite
developed by Telcordia Technologies (Bellcore 1998). With respect to control-flow coverage,
we employed χSuds to measure the Bblock coverage^, which is equivalent to Bstatement
coverage^, and Bdecision coverage^, which is equivalent to Bcondition coverage^. As for data-
flow coverage, Ball-use coverage^, which subsumes both c-use and p-use, is quantified. For
Java programs, we use CodeCover (2016) to measure the coverage of test cases.

5.3 Evaluation Metrics

In this paper, we evaluate the effectiveness of the proposed framework using the following
metrics. X and Y represent two test generation techniques.

& Average coverage achievement
With respect to a test set size, if test sets with the same size generated by X achieve generally

higher coverage than those generated by Y, then X is more effective than Y. For example,
suppose that test sets generated by EC with a size of 10 achieve 60% statement coverage on
averagewhile those generated by RTonly achieve 55%.Given these results, EC is considered to
be better thanRT (as relatively higher coverage can be achievedwith same number of test cases).

& Average test set size
With respect to a predefined coverage achievement (i.e. 85% statement coverage), X is

more effective than Y if test sets generated by X are of smaller sizes than those generated
by Y. For example, 85% statement coverage is fulfilled with 50 test cases generated by EC
on average, while the number is 60 if using RT, therefore EC is more effective than RT (as
fewer test cases are needed to achieve specific coverage achievements).

& The EXAM score
The EXAM score (Wong et al. 2010, 2012b, 2007; Xie et al. 2013b) represents the

percentage of statements within a program that need to be examined to locate the first bug.
The higher EXAM score a technique has, the less effective it is.

& Average number of statements examined
For test sets generated using a particular technique, the effectiveness of locating bugs

can also be represented by calculating the average number of statements that need to be
examined in order to locate the bug in every faulty version. Suppose the program P being
debugged contains n faulty versions. This value can be computed as ∑i = 1

n χ(i)/n where χ(i)
represents the number of statements that need to be examined to locate the bug within the
ith faulty version of P.

In the computation of average number of statements examined, we have to confess that
in most of the cases multiple statements may share the same suspiciousness value. In other
words, statements may be tied with same position in the ranking. In this paper, we apply
two different level of effectiveness: best effectiveness (best case) and worst effectiveness
(worst case). In the former, we examine the faulty statement first, while in the latter we
examine all the statements without faults before examining the faulty statement.
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6 Results

In this section, we demonstrate the experimental results of our case study. Section 6.1 shows
the average coverage achievement of test sets generated by different approaches with respect to
a fixed size. Average size of test sets with respect to fixed coverage is reported in Section 6.2.
Section 6.3 presents the fault localization effectiveness using test sets generated by EC, KM,
and RT (both programs with a single bug and with multiple bugs are considered).

6.1 Coverage Achievement With Fixed Test set Size

In this section, we examine the coverage achievements (statement, condition, and all-use) by
test sets generated by EC, KM, and RT. The coverage achievements on the three products of
PEL, P1 to P3, are illustrated from Fig. 7 through Fig. 9. The reason for only including these
figures is purely in the interests of clarity and readability. In these figures, the horizontal axis
represents the size of test sets in the logarithmic scale, while the vertical axis represents the
average coverage percentage achieved by each approach.

For P1 (Fig. 7), under each of the three coverage criteria, the average coverage achievement
of test sets generated by EC is distinguishable from those generated by KM and RT. Take test
sets with a size of 20 as an example, in Fig. 7a, test sets generated using EC achieve an average
statement coverage of 93.01%, while the percentages for KM and RT are 90.01% and 90.03%,
respectively. Of all the 84 scenarios (28 different test set sizes and three coverage criteria), KM
exceeds EC in only five of them – test set size being 300, 400, 600, 700, and 800 with respect
to all-use coverage. The largest difference between the coverages is 0.3%, in which case test
sets with size of 300 by KM achieve an average of 97.80% all-use coverage and those by EC
achieve 97.50%. In addition, RT performs better than EC in only one scenario: with test set
size of 400, test sets by RT achieve an average of 98.11% all-use coverage, while those by EC
achieve 98.00%. In summary, EC outperforms KM and RT significantly in generating test
cases for P1.

Also in Fig. 7, we observe that KM and RT are comparable in most of the scenarios. The
average coverage achievements of test sets by KM and RT are identical. In Fig. 7a, for
example, the average statement coverages for the test sets with 10 test cases are 87.38% with
KM and 87.21% with RT. As the test set size increases, these values also increase and become
96.23% and 96.31%, respectively, for test sets of size 100. Similar results are observed in
Fig. 7b and c.

When the test cases are reused (P2 to P3), however, the test sets generated by GA-based test
generation approaches differ favorably from those generated by RTwith respect to the average
coverage achievement. For example, as seen in Fig. 8, RT achieves consistently lower
coverage than the GA-based approaches. Similar results can also be observed in Fig. 9.

Differences can also be observed between EC and KM. The coverage achieved by KM for
each of the three coverage criteria is generally lower than that achieved by EC. In Fig. 8, for
example, KM underperforms EC for 92.9% (78 out of 84) of the experimental scenarios with
respect to the three coverage criteria.

In addition to average coverage achievement, we also review detailed data of ten randomly
selected test sets for each test set size. As shown in Fig. 10, for example, condition coverage
for those ten test sets of size 60 for P3 are presented.

In this figure, all test sets generated using GA-based approaches achieve higher coverage than
those generated by RTwith only one exception (test set 6, in which RT performs slightly better than
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KM). Also, it can be observed that test sets generated using EC generally achieve higher statement
coverage than those generated byKM,which is consistent with our findings in Fig. 7 through Fig. 9.

6.2 Test Set Size With Fixed Coverage

Table 9 presents the average number of test cases observed to reach a predefined coverage
percentage for GA-based test generation approaches (EC and KM) and for RT. Instead of using
P1 to P6, we present the results regarding J1 to J4 in order to make our observations more
convincing. For example, based on Table 9, with respect to J1, an average of 40.8 test cases
achieves 85% statement coverage by using EC.

For each product, test sets generated by GA-based test generation approaches achieve the
same level of coverage with smaller test sizes than those generated by RT. For each of the six
scenarios (two coverage thresholds for each of three coverage criteria) for J2 to J4, the GA-
based test generation approaches reach the given threshold with fewer test cases than RT.
Similar results can also be observed in J1 as well with only one exceptions: 90% condition
coverage. The difference between RT and KM is less than 1%.

The impact of test case reuse between products is also significant. For example, with
respect to J1, EC requires an average of 40.8 test cases to achieve 85% statement coverage
while RT needs 60.7. When it comes to J2, the number for EC decreases to 25.7; however, RT
still needs 67.4 test cases to reach the same level of statement coverage which increases the
original value by 11%.

Differences can also be observed between EC and KM. For most of the scenarios (18 out of
24), EC has an advantage over KM, while KM performs better in the other 6 scenarios.

Figure 11 reports, for ten randomly selected test sets generated using different approaches,
the number of test cases needed to achieve 85% statement coverage for J3.
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Fig. 7 Coverage achievements of GA-based test generation framework and RT on P1
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Fig. 8 Coverage achievements of GA-based test generation framework and RT on P2
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It is apparent in this figure that the sizes of test sets generated by RT are larger
than those generated by GA-based approaches. In addition, EC performs better than
KM for all scenarios.

6.3 Fault Localization Effectiveness

In this section, we present the fault localization effectiveness by using test sets generated by GA-
based test generation framework and by RT with respect to the eight fault localization techniques
described in Section 2.4. In Section 6.3.1, we focus on products with a single bug; in Section 6.3.2,
multi-fault products are considered. X-RT, X-EC, and X-KM represent a specific fault localization
technique discussed in Section 2.4 with the test sets generated by RT, EC, and KM, respectively.

6.3.1 Products With a Single bug

For most of the scenarios in Table 10, EC and KM outperform RT significantly. RT is more
effective than either EC or KM in merely eight of the 96 scenarios. Note also that RT’s
enhancement in these eight scenarios is insignificant with the largest difference being less than
5%: with respect to P2, Crosstab-RT requires the examination of 158.18 statements in the worst
case, while Crosstab-KM requires 165.55.
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Fig. 9 Coverage achievements of GA-based test generation framework and RT on P3

Fig. 10 Condition coverage of test sets with 60 test cases for P3
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Differences can also be observed between EC and KM. KM exceeds EC in 64.6% of all
scenarios (62 of 96 scenarios). For example, with respect to P5, Tarantula-KM exceeds
Tarantula-EC in both the best case (65.67 vs 80.35) and the worst case (151.10 vs 172.03).

With respect to different fault localization techniques, results also vary:

& When using H3c and OP, KM exceeds EC in more than 80% of the scenarios. For example,
with respect to the 12 scenarios using OP, KM shows better performance over EC in 10 of
them, while EC exceeds KM only in the best case and worst case for P5;

& When using Crosstab, EC exceeds KM in 8 out of the 12 scenarios.

Experiments are also performed to evaluate the proposed framework using EXAM score. For
discussion purposes, the EXAM scores with respect to E1 to E2 in EM using H3b, Tarantula, and
Crosstab are presented in Figs. 12 and 13. The horizontal axis represents the percentage of
statements examined while the vertical axis represents the cumulative percentage of faulty versions
where faults can be located by examining the corresponding percentage of statementsmarked on the
horizontal axis. For example, with respect to Fig. 12a, by examining 10% of the code, H3b-EC can
locate 83.33% of the faults in the faulty versions of E1 in the best case and 76.67% in the worst case.
In contrast, for H3b-RT, the best case is 79.89%, and the worst case is 70.89%.

Based on these figures, we observe the following:

& For E1, the EXAM scores of EC outperforms KM and RT in most of the scenarios with
only one exception in Fig. 12d, where Tarantula-EC, Tarantula-KM, and Tarantula-RT are
comparable in the worst case;

& For E2, EC and KM show significant improvements over RT. For example, in Fig. 13, the
curves of H3b-KMandK3b-EC in the best case diverge significantly from theH3b-RTcurve;

& For E1 and E2, the curves for RT show no obvious changes (because no test cases were
reused); however, with respect to EC and KM, the effectiveness of reuse is significant
when test cases for E1 are reused for E2.

Due to space limit, only the figures for E1 and E2 are presented. However, results
for other programs and techniques (H3c, Ochiai, D3, O, and OP) also support the

Table 9 Average number of test cases that achieve specific coverage for J1 to J4

Approach Statement coverage Condition coverage

85% 90% 95% 85% 90% 95%

J1 EC 140.8 148.0 167.3 168.4 198.3 289.4
KM 149.2 156.8 166.9 165.3 217.5 298.3
RT 160.7 172.8 185.6 188.3 216.7 308.8

J2 EC 125.7 135.2 157.1 135.1 167.2 250.1
KM 132.6 145.8 155.2 150.6 170.5 265.8
RT 167.4 178.6 190.3 197.4 245.8 310.3

J3 EC 122.5 130.4 159.8 132.5 155.6 240.7
KM 133.8 144.7 153.9 145.8 154.8 262.6
RT 170.2 187.2 182.4 202.7 252.4 299.6

J4 EC 127.5 135.3 155.7 135.5 152.3 288.1
KM 124.8 139.7 159.4 137.8 157.7 289.9
RT 168.8 180.5 187.3 189.6 248.1 345.8
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conclusion that EC and KM outperform RT in most of the scenarios. In addition, test
sets generated by KM also show better performance in locating bugs than those by
EC.

6.3.2 Products With Multiple Bugs

In the previous section, we apply our framework as well as RT to programs with
exactly one fault. In this section, we move on to illustrate the effectiveness of our
framework when dealing with programs with multiple bugs. Aside from the average
number of statements that need to be examined to find the first bug, we also adopt
two evaluation methods in this section, namely one-fault-at-a-time approach and
Expense score-based approach.

The one-fault-at-a-time approach is an iterative method. In each iteration, one fault
is located, and then the test set is re-executed to detect subsequent failures in order to
locate and fix the next fault. The process continues until no failure is observed using
the current test set. The Expense score-based approach concentrates on calculating the
percentage of code that needs to be examined in order to locate the first bug. The
authors of (Yu et al. 2008) argue that the first located bug is where programmers
begin to fix and therefore the focus should be placed on locating the first bug.
According to the description in Section 5.3, the expense score is equivalent to the
EXAM score used in this paper.

Product versions with multiple faults are generated by combining several single-fault versions
in various ways. For example, five distinct faults are taken from five randomly selected, single-
fault versions and injected into the original product version to form a five-fault version. To avoid
possible bias in creating products with multiple faults, 40 distinct faulty versions containing 4, 5,
6, and 7 faults, respectively, are created for H1 to H6. Altogether we have 960 product versions
with multiple faults.

In order to make a more realistic experimental setup for SPLs, between two
successive products, for example, H1 to H2, we randomly select one or several faults
existing in H1 to be injected into H2. However, this does not indicate that at least one

Fig. 11 Number of test cases that achieve 85% statement coverage for J3
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fault in H1 will necessarily be injected into H2. Of all the 800 faulty versions for H2

to H6, 15.50% (124 of 800 versions) do not share the same faults with its corre-
sponding predecessor, while the rest have at least one fault from its corresponding
predecessor injected.

Tables 11 and 12 represent the average number of statements that need to be
examined to locate the first bug for the best and worst case, respectively. For
example, in the best case, by using H3b-KM, an average of 78.50 statements need
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Fig. 12 EXAM score-based comparison among X, X-EC, and X-KM on E1. (a) Best case using H3b, (b) Worst
case using H3b, (c) Best case using Tarantula, (d), Worst case using Tarantula, (e) Best case using Crosstab, (f)
Worst case using Crosstab
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to be examined in order to locate the first bug for the 6-bug versions of H2. On the
other hand, the number is 149.03 in the worst case.

The following observations can be made based on the two tables:

& For the best case (Table 11), KM outperforms RT in 177 out of 192 scenarios (92.2%). EC
is more effective than RT in 161 scenarios (83.9%). In addition, KM outperforms EC in
151 scenarios (78.6%).
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& For the worst case (Table 12), KM outperforms RT in 179 out of 192 scenarios (93.2%).
EC is more effective than RT in 155 scenarios (80.7%).

& Differences can also be observed between KM and EC. In the best case (Table 11), KM
shows better performance than EC in 151 scenarios (78.6%); in the worst case (Table 12),
KM defeats EC in 153 scenarios (79.7%).

Next, Figs. 14 and 15 present the comparison among EC, KM, and RT based on
EXAM score, which can also be referred to as Expense score when dealing with
products with multiple faults. For example, referring to Fig. 15, for H4, by examining
2% of the code, H3b-EC can locate the first bug in 75.58% of versions with multiple
faults in the best case; in contrast, the number is for H3b-RT we can only locate the
first bug in 68.80% of multiple-fault versions.

Due to space limit, we present here only the figures for H3 and H4 using H3b, Tarantula,
and Crosstab. However, we examine figures for other products using all eight fault localization
techniques and make the following observations:

& For most of the scenarios, KM shows better performance than RT in locating the first bug
within a program with multiple bugs;

& For most of the scenarios, EC also outperforms RT;
& KM also shows an advantage over EC in most of the scenarios.

Finally, we examine the effectiveness of our proposed framework using the one-
fault-at-a-time approach. A multi-fault version with five faults is randomly selected
from the 5-bug versions of J4. To avoid biased conclusion, 40 test sets of size 100 are
then generated for this version using EC, KM, and RT, respectively. Table 13 presents
the average number of statements that need to be examined in each iteration to locate
all the faults sequentially.

From Table 13, we observe that in most of the scenarios, the cumulative total of average
number of statements that need to be examined by KM is less than EC and RT. Only two
exceptions are found: in the best case, Crosstab-KM requires 220.90 statements examined to
locate all five bugs while Crosstab-EC needs 219.01; in the worst case, the number for H3b-
KM is 251.36 while 249.07 for H3b-EC.

In addition, with respect to each iteration, KM also outperforms EC and RT, which indicates
that test sets generated using KM are more effective in locating bugs for multi-fault programs
when compared to EC and RT.

7 Performance of EC and KM

In this section, we present the time needed to generate a number of test cases by
using EC and KM. Without loss of generality, we employ J2, which consists of
64,857 lines of code, to demonstrate the efficiency of our proposed framework. For
a given test set size (as shown by the x-axis of Fig. 16), 30 distinct test sets are
generated and the average time to generate these test cases are collected. The
experiments are performed on a desktop with Intel Core i7-3770 and 16G Memory,
running Ubuntu 16.04.
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According to Fig. 16, little time is needed to generate these test sets when their
sizes are samll (less than 100) by using EC and KM. For example, with respect to the
KM approach, an average of 4.617 s are used to generate a set of 50 test cases. In
contrast, EC only needs 2.358 s.

With the increase of test set size, the average time to generate these sets also increases. For
example, with respect to the KM approach, the time increases from 43.597 s for a set of 200
test cases to 1,434.842 s for a set of 1,000 test cases. Nevertheless, since the entire framework
can be automated (in fact it has already been done in our studies) and the potential saving of
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Fig. 14 EXAM score-based comparison among X, X-EC, and X-KM on H3. (a) Best case using H3b, (b) Worst
case using H3b, (c) Best case using Tarantula, (d), Worst case using Tarantula, (e) Best case using Crosstab, (f)
Worst case using Crosstab
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time and human effort in debugging by using test cases so generated, the proposed framework
is applicable to real-life SPLs.

8 Discussion

In this section, we discuss some interesting factors that may affect the effectiveness of the
proposed framework.
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8.1 Impact of Similarity Threshold on KM Approach

In our case study in Section 6, we set α = 0.1 to compute the similarity threshold θ when using
KM approach. Obviously, with various value of α, the effectiveness of the KM approach may
vary. For instance, with the increase of α, the K-Means clustering results may be changed as
the number of clusters varies. Consequently, the coverage achievement and fault localization
effectiveness of test sets generated by KM could be affected.

As introduced in Section 3.2.2, the value of α has an impact on the determination for the
number of clusters in calculating the fitness values of each test case. A larger α would decrease
the number of clusters in each iteration of generating new test cases and increase the number of
coverage vectors within a cluster. Consequently, the Euclidean distance between each coverage
vector and its corresponding centroid increases. Since the above distance is negatively related
to the fitness value of test cases, the fitness value assigned to each test case would decrease,
especially for those with relatively high fitness values. As a result, the possibility of selecting
test cases that are likely to create Bgood^ test cases is lowered, which may weaken the
effectiveness of KM approach.

To study the possible impacts, experiments were conducted on the 160 multi-fault versions
of H3 discussed in Section 6.3.2. The values of α are 0.10, 0.15, 0.20, 0.25, and 0.30.

To eliminate the possible impacts due to test case reuse, in this subsection, instead of
following the procedure described in Section 3, we exclude the test case reuse process (test
cases for H2 are not reused for H3).

First, we examine the possible impacts of α on coverage achievements. With respect to
each version, multiple test sets are generated with size of 100 based on the three steps
described in Section 5.2. Table 14 presents the average coverage achievements with respect
to three coverage criteria (statement, condition, and all-use coverage). We observe that
different values of α show no significant impact on coverage achievements.

Next, we examine the possible impacts of α on the fault localization effectiveness of KM.
Tables 15 and 16 gives the average number of statements that needs to be examined in order to
locate the first bug. We observe that the effectiveness of KM downgrades with α increases. For
example, with respect to 5-bug versions, the average number of statements that need to be examined
in the best case by H3c-KM increases with α increases. However, some exceptions also exist. For
example, with respect to 5-bug versions, when increases from 0.15 to 0.20, the average number of
statements that need to be examined in the best case by Ochiai-KM decreases from 13.25 to 9.85.

Though some exceptions exist, generally speaking, we observe that the effectiveness of KM
reduces with α increases. Further study will concentrate on figuring out the optimal value of α.

Fig. 16 Average time to generate 30 distinct test sets of a given size (the corresponding x-value) using EC and
KM
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8.2 Impact of Parameters β and γ

In Section 6, we assign 0.5 to both β and γ. In this subsection, we conduct experiments on the
impacts due to different values of β and γ. First, we generate 30 test sets with a size of 200 for a
randomly selected 5-bug version of H2 using EC and KM, respectively. Then during the test case
reuse process, different values of β and γ are assigned ranging from 0 to 1. The values of β are 0,
0.05, 0.10…0.90, 0.95, and 1.00; the corresponding values of γ are 1.00, 0.95, 0.90…0.10, 0.05,
and 0. 10% of the test cases within each test set are reused to test H3 based on Eq. (14) with
different values of β and γ. The average statement coverage achievements as well as the
effectiveness in locating bugs of these test cases are evaluated to explore the impacts of β and γ.

Figure 17 presents the average statement coverage achieved by the reused test cases using
different values of β and γ. From the figure, we observe that the average statement coverage
increases with β increases. For example, with β = 0.2, by using EC approach, the average
statement coverage is 80.08%; with β = 0.9, the value increases to 86.88%. In addition, the
coverage achievements increases significantly with β increases from 0 to 0.5; however, the
coverage stabilizes with β larger than 0.5.

Note also that the impact of β and γ is more significant for EC approach. For KM approach,
though similar trend can be observed, the differences are slight.

Figure 18 shows the average number of statements that need to be examined to locate the
first bug using the 30 groups of 20 reused test cases. For discussion purposes, only figures for
Tarantula-EC and Tarantula-KM are provided, though we also collected data using other
metrics to make the following observations:

& The impact of β and γ on the effectiveness in locating bugs is insignificant for KM
approach;

& For EC, with the increase of β, the average statements that need to be examined to locate
the first bug also increases. For example, in Fig. 18a, with β = 0.20, the average number of
statements that need to be examined by Tarantula-EC is 30.07 in the best case and 57.60 in
the worst case; however, with β = 0.90, the number is 36.87 in the best case and 66.40 in
the worst case. In other words, the effectiveness in locating bugs slightly reduces.

9 Related Studies

Software product line testing is a relatively new, but intense field of research since product line
engineering has shown significant benefits in both academia and industry (Wang et al. 2012).

In (McGregor 2001), McGregor presented a set of activities which focus on testing the SPL
assets (e.g. inconsistency between the requirements and implementation) and testing other

Table 14 Coverage achievements on H3 using different α

α

0.10 0.15 0.20 0.25 0.30

Statement coverage 95.89% 96.21% 96.17% 95.19% 95.01%
Condition coverage 94.02% 93.67% 94.27% 93.98% 94.87%
All-use coverage 93.98% 95.09% 94.57% 94.89% 94.34%
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artifacts (e.g. test-case derivation and test suite design), which represent complete products in
the context of product line. In (Pohl and Metzger 2006), Pohl and Metzger explored six
principles for SPL system testing to deal with the challenges when developing test strategies
for SPL engineering. These principles discussed not only the obstacles in testing SPL but also
provided possible solutions for engineers to thoroughly perform different techniques to assure
the quality of an SPL.

Model-based test generation techniques using functional (Mohamed Ali andMoawad 2010;
Nebut et al. 2003) and non-functional (Reis et al. 2006; Sinha et al. 2011) requirements for
SPL have been proposed. The study by Nebut et al. (2003) focused on automated generation of
functional test cases using requirements expressed in UML. Mohamed Ali and Moawad

Fig. 17 Statement coverage on H3 using different β and γ
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Fig. 18 Average number of statements that need to be examined by Tarantula-EC and Tarantula-KM using
different β and γ. (a) Tarantula-EC. (b) Tarantula-KM
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(2010) proposed an improved test generation based on two model-based techniques, PLUTO
(Bertolino and Gnesi 2003) and V-Activity Diagram. In (Reis et al. 2006), Reis et al. described
a technique that supports the development of reusable performance test case scenarios in
domain engineering and the reuse of these scenarios in application engineering. In another
paper (Lopez-Herrejon et al. 2015), Lopez-Herrejon et al. reported a systematic mapping study
on applying combinatorial interaction testing to SPLs. In a more recent publication (Beohar
et al. 2016), Beohar et al. discussed basic behavioral models for SPLs and proposed notions of
SPL testing in order to precisely capture product derivations. In (Fischer et al. 2016), Fischer
et al. conducted an empirical assessment of combinatorial interaction testing for SPLs.
Mutation testing has also been applied to the field of model-based SPL testing. The idea of
(Henard et al. 2014b) is mainly on generating test cases in order to find simulated faults in
feature models.

Search-based test generation techniques have also been proposed to the area of SPL testing.
In Harman et al. (2014), Harman et al. surveyed recent research activities for search-based
software engineering for SPL and pointed out the future directions in this research area. A
choice to testing a software product line is to use combinatorial interaction testing, first
introduced by McGregor in (McGregor 2001). Later, other publications including (Henard
et al. 2014a, 2013; Perrouin et al. 2012, 2010) introduced techniques to generate combinatorial
tests for SPLs, as well as mechanisms to prioritize these test cases and tool support. Genetic
algorithms have also been applied to the area of search-based SPL testing (Ensan et al. 2012;
Guo et al. 2011). Authors of (Ensan et al. 2012) proposed an approach based on genetic
algorithms to explore the configuration space of a software product line feature model, while
work by Guo et al. in (2011) investigated a possible solution to optimize the feature selection
in SPLs with resource constraints. Authors of (Wang et al. 2015) proposed a test suite
minimization approach to reduce the number of test cases needed to test SPLs. In (Xu et al.
2013), Xu et al. proposed a test suite augmentation technique to generate new test cases for
SPLs based on the uncovered branches in newly developed products.

Even though several approaches have been proposed with respect to testing of SPL, our
approach is significantly different from related work. First of all, to the best of our knowledge,
no existing publications integrate fault localization techniques into the test generation and
reuse process to help better debug products of an SPL. Also, given the fact that most test
generation approaches for SPL are based on a feature model, they suffer from limited practical
value. Our approach, on the other hand, focuses on the effective reuse of test cases generated
for one product in the newly developed product as well as the measurement of quality of the
test cases, which benefits the process of developing a family of software products and further
helps reduce the time and cost involved in testing and debugging of an SPL.

10 Threats to Validity

With respect to the proposed framework, we concede that the two approaches, EC and KM, are
based on the following two assumptions, respectively:

& By using EC to generate test cases, we assume that the execution traces of test cases with
larger Euclidean distances to other paths tend to be Bfar away^ from those with smaller
distances. The region around these paths is less likely to be covered by the current test
cases. Therefore, if we select these test cases to generate new ones, we increase the chances
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of covering the unexecuted regions. However, our approach does not guarantee we can
always get the Boptimal^ test cases in each iteration which increase the coverage to the
largest extent. In our case studies, the EC approach works very effectively in achieving
high coverage with less test cases than RT.

& By using KM to generate test cases, the assumption is that if the execution trace of one test
case is similar to that of a failed test case, it is likely to be a failed one and provide more
hints on the bug location. As a result, we assign these test cases higher fitness values so
that they are more likely to be chosen to generate new test cases. Similar assumption is also
made in our recently published paper (Gao et al. 2015).

Per discussion presented in Section 6, when dealing with statements with same suspicious-
ness value, two different levels of effectiveness, namely, the best effectiveness and worst
effectiveness, are utilized. However, other studies may follow different approaches to evaluate
the effectiveness of a fault localization technique. For example, in (Jones and Harrold 2005),
the authors used only the worst case to compare different techniques. Though reasonably
conservative, we have to confess that by using only the worst effectiveness does not provide
any insight on the actual effectiveness, since in most scenarios the number of statements that
need to be examined is some point between the best and worst.

Then some might argue that we can instead present the arithmetic mean of the best and
worst effectiveness to illustrate the actual effectiveness. However, the approach suffers from
the concern that even if two techniques share the same mean of best and worst effectiveness,
the actual performance may vary significantly when used in practice. Consider the following
scenario: by using technique, say X, the best and worst effectiveness are five and seven,
respectively, which means the bug can be located by examining six statements on average.
Another technique, say Y, achieve the same level of average effectiveness whose best
effectiveness is one and worst effectiveness is eleven. Can we say the two techniques perform
equally in this scenario? The answer is a definite no since the variability by using X is much
smaller than that of Y. To avoid such loss of information, we adopted both best and worst
effectiveness in our study.

The final threat lies in the subject programs used in our study. As for studies for SPLs
(Bertolino and Gnesi 2003; Burdek et al. 2015; Ensan et al. 2012; Guo et al. 2011; Mohamed
Ali and Moawad 2010; Nebut et al. 2003; Perrouin et al. 2012; Perrouin et al. 2010; Reis et al.
2006) in literature, one common concern is the lack of appropriate programs available for
analysis. As a result, most of the papers focus on building feature models for different SPLs.
Those techniques lack in practicability and show limited applicability in industry. In a most
recent paper (Burdek et al. 2015), the authors utilized only two SPLs, each of which contains
less than 300 lines of code. In contrast, the smallest program used in our study contains more
than 1 K lines of code, and the largest has more than 90 K line of code. Although this does not
guarantee that our technique applies everywhere in industry, the empirical studies provided in
this paper increase our confidence in the validity of our technique.

11 Conclusion and Future Works

In this paper, we have demonstrated the use of a genetic algorithm-based framework to
generate test cases for an SPL with the integration of fault localization technique. Two different
approaches, EC and KM, are presented as well as the strategy in reusing test cases from one
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product to another. Our framework, which can be fully automated, can save a significant
amount of time in generating test cases of good quality for SPLs.

The proposed framework was applied on four SPLs as case studies. Analysis of our results
suggest that, with appropriate conversion, test cases generated in such a way can be easily
reused between different products of the same family, which will help reduce the overall
testing cost and provide more information from fault localization point of view. The frame-
work which automates the process has been implemented and the quality of the test cases
generated has been evaluated in terms of structure-based coverage criteria (e.g. statement,
condition, all-use) and fault localization effectiveness.

In general, the feasibility of the proposed framework is sufficiently presented in this paper.
Though some noise may exist in the case studies, this does not affect our conclusion that the
proposed framework is effective in generating test cases of good quality for SPLs.

In the next phase, we propose to apply our framework on more SPLs to further evaluate its
effectiveness. In addition, to meet the needs of companies in various areas, the methodology
which can be better customized is currently being developed based on the current framework.

References

Abreu R, Zoeteweij P, Golsteijn R, Van Gemund AJC (2009) A practical evaluation of spectrum-based fault
localization. J Syst Softw 82(11):1780–1792

Andrews JH, Briand LC, Labiche Y (2005) Is mutation an appropriate tool for testing experiments? In:
Proceedings of the 27th International Conference on Software Engineering (ICSE ‘05), pp 402–411, St.
Louis, USA

Ahmed MA, Hermadi I (2008) GA-based multiple paths test data generator. Comp Operat Res 35(10):3107–
3124

Ahmed ZH (2010) Genetic algorithm for the traveling salesman problem using sequential constructive crossover
operator. J Biom Bioinformat 3(6):96–105

Beohar H, Varshosaz M, Mousavi MR (2016) Basic behavioral models for software product lines: expressivenss
and testing pre-orders. Sci Comput Program 123:42–60

Bergey JK, Chastek G, Cohen S, Donohoe P, Jones LG, Northrop L (2010) Software product lines: report of the
2010 U.S. Army software product line workshop. Technical report. CMU/SEI-2010-TR-014. Retrieved from
http://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_15236.pdf

Bertolino A, Gnesi S (2003) Pluto: a test methodology for product families, 5th Interantional Workshop on
Software Product-Family. Engineering 3014:181–197

Burdek J, Lochau M, Bauregger S, Holzer A, von Rhein A, Apel S, Beyer D (2015) Facilitating Reuse in Multi-
goal Test-Suite Generation for Software Product Lines, in Proceedings of the 18th International Conference
on Fundamental Approaches to Software Engineering (FASE), pp 84–99, April 11–18, 2015

Chen TY, Kuo F, Liu H, Wong WE (2013) Code coverage of adaptive random testing. IEEE Trans Reliab 62(1):
226–237

Clements P, Northrop L (2001) Software product lines: practices and patterns. Addison-Wesley Longman
Publishing Co., Inc., Boston

CodeCover (2016) Available via http://codecover.org. Accessed 17 Dec 2016
Do H, Rothermel G (2006) On the use of mutation faults in empirical assessments of test case prioritization

techniques. IEEE Trans Softw Eng 32(9):733–752
Dustin E, Garrentt T, Gauf (2009) Why automate? Automated software testing ROI explained, Inform IT, April

2009
Engström E, Runeson P (2011) Software product line testing – a systematic mapping study. Informat Softw

Technol 53(1):2–13
Ensan F, Bagheri E, Gašević D (2012) Evolutionary search-based test generation for software product line feature

models. In: Proceedings of the 24th International Conference on Advanced Information Systems
Engineering, pp 613–628, June 2012

Everitt BS (1977) The analysis of contingency tables. Chapman & Hall, Ltd., London

46 Empir Software Eng (2018) 23:1–51

http://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_15236.pdf
http://codecover.org


Fischer S, Lopez-Herrejon RR, Ramler R, Egyed A (2016) A preliminary empirical assessment of similarity for
combinatorial interaction testing of software product lines. In: Proceedings of the 9th International Workshop
on Search-Based Software Testing (SBST), pp 15–18, May 16–17, 2016

Forgy EW (1965) Cluster analysis of multivariate data: efficiency versus interpretability of classifications.
Biometrics 21:768–769

Freeman D (1987) Applied categorical data analysis. Marcel Dekker, Inc., New York
Gao R, Wong WE, Chen Z, Wang Y (2015) Effective software fault localization using predicated execution

results. Softw Qual J. doi:10.1007/s11219-015-9295-1, online since November 11, 2015
Goel AL (1985) Software reliability models: assumptions, limitations and applicability. IEEE Trans Softw Eng

11(12):1411–1423
Goodman LA, Duncan OD (1984) The analysis of cross-classification data having ordered categories. Harvard

University Press, Cambridge
Guo J, White J, Wang G, Li J, Wang Y (2011) a genetic algorithm for optimized feature selection with resource

constraints in software product lines. J Syst Softw 84(12):2208–2221
Hall RJ (2015) Fundamental nonmodularity in electronic mail. Automat Softw Eng 12(1):41–79
Harman M, Jia Y, Krinke J, Langdon WB, Petke J, Zhang Y (2014) Search based software engineering for

software product line engineering: a survey and directions for future work. In: Proceedings of the 18th
International Software Product Line Conference, Vol. 1, pp 5–18, September 2014, Florence, Italy

Hartigan JA, Wong MA (1979) Algorithm AS 136: a K-Means clustering algorithm. Appl Stat 28(1):100–108
Henard C, Papadakis M, Perrouin G, Klein J, Traon YL (2013) Towards automated testing and fixing of re-

engineered feature models. In: Proceedings of the 35th International Conference on Software Engineering,
pp 1245–1248

Henard C, Papadakis M, Perrouin G, Klein J, Heymans P, Le Traon Y (2014) Bypassing the combinatorial
explosion: using similarity to generate and prioritize t-wise test configurations for software product lines.
IEEE Trans Softw Eng 40(7):650–670

Henard C, Papadakis M, Traon YL (2014) Mutation-based generation of software product line test configura-
tions. In: Proceedings of the 6th Symposium on Search Based Software Engineering, pp 92–106, August
2014

Jones JA, Harrold MJ (2005) Empirical evaluation of the tarantula automatic fault-localization technique. In:
Proceedings of the 20th IEEE/ACM Conference on Automated Software Engineering, pp 273–282, Long
Beach, California, USA, December, 2005

Kakarontzas G, Stamelos I, Katsaros P (2008) Product Line variability with elastic components and test-driven
development. In: Proceedings of the 5th IEEE International Conference on Computational Intelligence for
Modeling Control and Automation, Vienna, Austria, pp 146–151, December

Lee K, Kang KC, Lee J (2002) Concepts and guidelines of feature modeling for product line software
engineering. In: Proceedings of the 7th International Conference on Software Reuse: Methods,
Techniques, and Tools. ICSR-7. pp 62–77, London, UK, 2002

Liu C, Fei L, Yan X, Han J, Midkiff SP (2006) Statistical debugging: a hypothesis testing-based approach. IEEE
Trans Softw Eng 32(10):831–848

Lopez-Herrejon RE, Fischer S, Ramler R, Egyed A (2015) A first systematic mapping study on combinatorial
interaction testing for software product lines. In: Companion of the Eighth IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW 2015), pp 1–10, Graz, Austria, April 13–
17, 2015

MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of
the 5th Berkeley Symposium on Mathematical Statistics and Probability. vol. 1, pp 281–297, June, 1967

Mathur AP (2008) Foundation of software testing. Addison-Wesley Professional, Indianapolis
Mohamed Ali M, Moawad R (2010) An approach for requirements based software product line testing. The 7th

International Conference on Informatics and Systems, pp 1–10, March 2010
McGregor JD (2001) Testing a software product line. Technical Report, CMU/SEI-2001-TR-022, December

2001
Michael CC, McGraw G, Schatz MA (2001) Generating software test data by evolution. IEEE Trans Softw Eng

27(12):1085–1110
Mitchell M (1998) An introduction to genetic algorithms. MIT Press, Cambridge
Namin AS, Andrews JH, Labiche Y (2006) Using mutation analysis for assessing and comparing testing

coverage criteria. IEEE Trans Softw Eng 32(8):608–624
Naish L, Lee HJ, Ramamohanarao K (2011) A model for spectra-based software diagnosis. ACM Trans Softw

Eng Method 20(3):11:1–11:32
Nebut C, Pickin S, Le Traon Y, Jezequel J (2003) Automated requirements-based generation of test cases for

product families. In: Proceedings of 18th IEEE International Conference on Automated Software
Engineering, pp 263–266, October 2003

Empir Software Eng (2018) 23:1–51 47



NIST Report (2002) Software errors cost U.S. Economy $59.5 Billion Annually, NIST Planning Report 02-3,
May 2002

Offutt AJ, Lee A, Rothermel G, Untch RH, Zapf C (1996) An experimental determination of sufficient mutant
operators. ACM Trans Softw Eng Method 5(2):99–118

Perrouin G, Oster S, Sen S, Klein J, Baudry B, le Traon Y (2012) Pairwise testing for software product lines:
comparison of two approaches. Softw Qual J 22(3–4):605–643

Perrouin G, Sen S, Klein J, Baudry B, le Traon Y (2010) Automated and scalable t-wise test case generation
strategies for software product lines. In: Proceedings of International Conference on Software Testing,
Verification and Validation, pp 459–468, Paris, France, April 2010

Pohl K, Böckle G, Linden FJ (2005) Software product line engineering: foundations, principles, and techniques.
Springer, Heidelberg

Pohl K, Metzger A (2006) Software product line testing. Commun ACM 49(12):78–81
Reis S, Metzger A, Pohl K (2006) A reuse technique for performance testing of software product lines. In:

Proceedings of the 11th International Software Product Line Conference, pp 5–10, Baltimore, MD, USA,
August 2006

Sinha S, Dasch T, Ruf R (2011) Governance and cost reduction through multi-tier preventive performance tests in
a large-scale product line development. In: Proceedings of 15th IEEE International Software Product Line
Conference, pp 295–302, Munich, Germany, August 2011

Sivanandam SN, Deepa SN (2008) Introduction to genetic algorithms. Springer, Heidelberg
Telcordia Technologies (formerly Bellcore) (1998) the user’s manual for the χSuds Toolsuite. Available via

http://www.utdallas.edu/~ewong/SE6367/01-Project/xsuds-user-manual.pdf. Accessed 17 Dec 2016
Tijms H (2004) Understanding probability: chance rules in everyday life. Cambridge University Press,

Cambridge
Vessy I (1985) Expertise in debugging computer programs: a process analysis. Int J Man Machine Stud 23(5):

459–494
Wang S, Ali S, Gotlieb A (2015) Cost-effective test suite minimization in product lines using search techniques. J

Syst Softw 103:370–391
Wang S, Gotlieb A, Ali S, Liaaen M (2012) Automated selection of test cases using feature model: an industrial

case study. Technical Report (2012-20), Simula Research Laboratory, 2012
WongWE, Debroy V, Choi B (2010) A family of code coverage-based heuristics for effective fault localization. J

Syst Softw 83(2):188–208
Wong WE, Debroy V, Li Y, Gao R (2012) Software fault localization using DStar (D*). In: Proceedings of The

6th IEEE International Conference on Software Security and Reliability (SERE), pp 21–30, Washington
D.C., June, 2012

WongWE, Debroy V, Li Y, Gao R (2014) The DStar method for effective software fault localization. IEEE Trans
Reliab 62(4):290–308

WongWE, Debroy V, Xu D (2012b) Towards better fault localization: a crosstab-based statistical approach. IEEE
Trans Syst, Man, Cybernet − Part C 42(3):378–396

Wong WE, Mathur AP (1995a) Fault detection effectiveness of mutation and data flow testing. Softw Qual J
4(1):69–83

Wong WE, Mathur AP (1995b) Reducing the cost of mutation testing: an empirical study. J Syst Softw 31(3):
185–196

Wong WE, Qi Y, Zhao L, Cai KY (2007) Effective fault localization using code coverage. In: Proceedings of the
31st Annual International Computer Software and Applications Conference (COMPSAC), pp 449–456,
Beijing, China, July, 2007

Xie X, Chen TY, Kuo FC, Xu B (2013) A theoretical analysis of the risk evaluation formulas for spectrum-based
fault localization. ACM Trans Softw Eng Method 22(4). doi:10.1145/2522920.2522924

Xie X, Wong WE, Chen TY, Xu B (2013b) Metamorphic slice: an application in spectrum-based fault
localization. Informat Softw Technol 55(5):866–879

Xu Z, Cohen MB, Motycka W, Rothermel G (2013) Continuous test suite augmentation in software product
lines. In: Proceedings of the 17th International Software Product Line Conference, pp 52–61, Tokyo, Japan,
August, 2013

Yu Y, Jones JA, Harrold MJ (2008) An empirical study on the effects of test-suite reduction on fault localization.
In: Proceedings of the International Conference on Software Engineering (ICSE), pp 201–210, Leipzig,
Germany, May, 2008

48 Empir Software Eng (2018) 23:1–51

http://www.utdallas.edu/~ewong/SE6367/01-Project/xsuds-user-manual.pdf


Xuelin Li graduated from Beihang University with a bachelor’s degree in Software Reliability Engineering. He is
currently on the PhD track under the supervision of Professor Eric Wong at the University of Texas at Dallas. His
research interests include software testing, software fault localization, and software complex networks.

W. Eric Wong received his received his M.S. and Ph.D. in Computer Science from Purdue University. He is a
full professor and the founding director of the Advanced Research Center for Software Testing and Quality
Assurance in Computer Science, University of Texas at Dallas (UTD). He also has an appointment as a guest
researcher with National Institute of Standards and Technology (NIST), an agency of the US Department of
Commerce. Prior to joining UTD, he was with Telcordia Technologies (formerly Bellcore) as a senior research
scientist and the project manager in charge of Dependable Telecom Software Development. In 2014, he was
named the IEEE Reliability Society Engineer of the Year. His research focuses on helping practitioners improve
the quality of software while reducing the cost of production. In particular, he is working on software testing,
debugging, risk analysis/metrics, safety, and reliability. He has very strong experience developing real-life
industry applications of his research results. Professor Wong is the Editor-in-Chief of IEEE Transactions on
Reliability. He is also the Founding Steering Committee Chair of the IEEE International Conference on Software
Quality, Reliability, and Security (QRS) and the IEEE International Workshop on Program Debugging (IWPD).

Empir Software Eng (2018) 23:1–51 49



Ruizhi Gao received his Bachelor’s degree in Software Engineering from Nanjing University and his Master’s
degree in Computer Science from the University of Texas at Dallas. He is currently a PhD student under the
supervision of Professor Eric Wong, focusing on software testing, fault localization, and program debugging.

Linghuan Hu received his Bachelor’s degree in Software Engineering from Chongqing University of Posts and
Telecommunications. He is currently working toward his Ph.D. at the University of Texas at Dallas under the
supervision of Professor Eric Wong. His research interests include software testing, symbolic execution, and
Internet of Things.

50 Empir Software Eng (2018) 23:1–51



Shigeru Hosono is an expert engineer at Service Business Development Division, NEC Corporation. He has
been engaged in software research and development for more than 20 years since he received his M.E. in
Mechanical Engineering and Applied Mathematics from Yokohama National University. He obtained his Ph.D.
in Service Engineering from TokyoMetropolitan University. His recent interests include design methodologies of
service system and methods for asset-based service development. Dr. Hosono has served as chair and program
committee member for IEEE Service Computing conferences (SERVICES, ICWS and SCC) since 2010. He was
the chair of Technical Committee on Service Computing of IEICE (Institute of Electronics, Information and
Communication Engineers) and the chair of Design and System Division of JSPE (Japan Society of Mechanical
Engineers).

Empir Software Eng (2018) 23:1–51 51


	Genetic Algorithm-based Test Generation for Software Product Line with the Integration of Fault Localization Techniques
	Abstract
	Introduction
	Background
	A Genetic Algorithm
	Software Product Line
	Structure-Based Coverage Criteria
	Fault Localization Techniques

	GA-Based Test Generation for SPL
	Encoding of Test Cases
	Two GA-Based Test Generation Approaches
	Using the Euclidean Distance (EC) to Calculate the Fitness Value of Each Test Case
	Using K-Means Clustering (KM) to Calculate the Fitness Value of Each Test Case

	Test Cases Reuse Based on Fault Localization Techniques

	Running Examples
	Using EC and KM Approaches to Generate Test Cases
	Test Case Reuse

	Experimental Setup
	Subject Programs
	Data Collection
	Evaluation Metrics

	Results
	Coverage Achievement With Fixed Test set Size
	Test Set Size With Fixed Coverage
	Fault Localization Effectiveness
	Products With a Single bug
	Products With Multiple Bugs


	Performance of EC and KM
	Discussion
	Impact of Similarity Threshold on KM Approach
	Impact of Parameters equation(IEq35)...

	Related Studies
	Threats to Validity
	Conclusion and Future Works
	References


