
An Analysis and Comparison of Mutation Testing Tools for Python

Kadiatou Diallo1, Zizhao Chen2,*, W. Eric Wong2, and Shou-Yu Lee3
1Lawson State Community College, Birmingham, Alabama, United States

2University of Texas at Dallas, Richardson, Texas, United States
3Department of Computer Science, Tunghai University, Taiwan

A02394683@alabama.edu, zxc190007@utdallas.edu, ewong@utdallas.edu, shouyu@thu.edu.tw
*corresponding author

Abstract—Software testing is a crucial phase in the software
development lifecycle, yet it often becomes a challenging
task for engineers who must ensure comprehensive test
coverage. While python unit testing frameworks like pytest
and unit test are widely used to validate code functionality,
passing these tests does not necessarily imply meaningful or
effective testing. Mutation Testing addresses this gap by
introducing deliberate faults, known as mutants, into the
program under test to assess the quality of its test suite. This
study evaluates five Python-based mutation testing tools:
MutPy, Mutmut, Mutatest, Poodle, and Cosmic Ray, by
applying them to two different open-source programs. The
tools’ performances were compared using mutation-specific
and tool-specific criteria to determine their strengths,
limitations, and analyze which tool created the most
competent mutants. In the end, Poodle created the most
competent mutants with a 50.9% competency score, Cosmic
Ray came next with 25.7% competency score, and Mutmut
was inconclusive due to incomplete mutation results.

Keywords-mutation testing; python; software testing

1. INTRODUCTION

Software testing plays a vital role in the software
development lifecycle, guaranteeing that programs perform
as expected, fulfill user requirements, and uphold high
quality standards [1]. The main goal of software testing is to
uncover bugs, and it is up to the developer to eliminate them.
Software testing can show programmers two things, the
existence of bugs, and an estimate of reliability [2]. As a
result, more advanced and tailored testing techniques have
been continuously developed to improve software quality
assurance.

Mutation testing originated in the 1970s, pioneered by
Richard DeMillo at the Georgia Institute of Technology, who
introduced the concept of generating artificial faults to
evaluate the effectiveness of software testing [4]. Early work
in mutation testing focused primarily on programming
languages such as Fortran with MOTHRA and C with
CREAM, where researchers implemented fundamental
mutation operators and began developing automated tools to
assist in the process [4]. The technique gained popularity in
academia due to its theoretical rigor and potential to advance
the field of software testing. However, mutation testing

remains largely a research-based technique [4], because it is
computationally expensive and time-consuming to execute
on larger codebases.

Over the years, as computing power increased and testing
tools became more sophisticated, mutation testing techniques
evolved. In the 1990s and 2000s, research expanded to
include object-oriented programming languages like Java,
where more advanced mutation operators were developed to
handle Object Oriented Programming [4]. With the rise of
dynamic programming languages like Python and Ruby,
researchers have continued to innovate, developing mutation
testing tools tailored to the unique characteristics of these
languages.

Despite the advancements and the increasing number of
mutations testing tools available for various programming
languages, mutation testing has not yet seen adoption in
industry [4]. The computational overhead of generating and
executing mutants for large codebases can be significant [1],
rendering mutation testing impractical for organizations
operating under strict time constraints—a challenge faced by
nearly all major software companies today. Mutation testing
and its many configurations also requires a deep understanding
of both the software being tested and the specifics of the
mutation testing technique itself [6], which can discourage
developers who are not familiar with the approach.

This research aims to emphasize the critical role of software
testing by demonstrating mutation testing as a powerful
approach for increasing test coverage. The study will conduct
a comprehensive analysis of recent Python mutation testing
tools to:

• Analyze and compare five different python mutation

testing tools focusing on both mutation-specific and tool-
specific criteria.

• Identify and discuss the most effective tool in terms of
performance, usability, and mutation capability.

• Provide practical recommendations to address the
shortcomings and improve the reliability of these tools.

By systematically evaluating these tools, this research will
offer valuable insights into their strengths and limitations,
contributing to the advancement of mutation testing
practices.

161

2024 11th International Conference on Dependable Systems and Their Applications (DSA)

2767-6684/24/$31.00 ©2024 IEEE
DOI 10.1109/DSA63982.2024.00030

20
24

 1
1t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
ep

en
da

bl
e

Sy
st

em
s a

nd
 T

he
ir

A
pp

lic
at

io
ns

 (D
SA

) |
 9

79
-8

-3
31

5-
32

39
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

D
SA

63
98

2.
20

24
.0

00
30

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on January 20,2025 at 21:43:36 UTC from IEEE Xplore. Restrictions apply.

This paper will go as follows, section 2 will include
background information about mutation testing, section 3
will be the experimental setup and necessary criteria listed to
compare the tools, section 4 will be the experimental results
of the mutation tools, and section 5 will detail the conclusion
and future directions for this research.

2. BACKGROUND

This section will give background information on mutation
testing and the tools under study.

2.1 Mutation Testing Theory

Mutation testing is based on two key hypotheses: the
Competent Programmer Hypothesis and the Coupling Effect
Hypothesis [8]. The Competent Programmer Hypothesis
suggests that while programmers may not write flawless
programs, the programs they write are nearly correct. The
Coupling Effect Hypothesis is when test data capable of
detecting faults like the original program (mutants) are also
likely to uncover more complex faults, indicating that
complex faults are linked to simple ones.

Mutation testing is a fault-based technique designed to
enhance the quality of test suites. The resulting versions of
the program, called mutants, are executed against the test
suite to compare outputs [6]. If a test case causes a mutant to
fail, the mutant is considered "killed"; if not, the mutant
"survives" and indicates a deficiency in the test suite's fault
detection ability. The effectiveness of a test suite is quantified
by the mutation adequacy score [6], which is the ratio of
killed mutants to the total number of generated mutants.

Mutation operators introduce errors to a program under test
to evaluate the strength of a test suite [9]. These operators
simulate common coding mistakes by modifying code
elements, such as changing arithmetic operations, logical
expressions, or control flow. As shown in Table 1, each
mutation testing tool may implement operators differently
based on programming language constraints and developer
design choices. In dynamic languages like Python, mutation
operators must account for the flexibility of runtime type
changes and variable behavior [9]. Recently, mutation testing
has expanded to include object-oriented mutation operators
that alter class structures and behaviors, making it especially
useful for testing object-oriented designs.

Table 1. Python Mutation Testing Tools discussed in this paper

In python-based mutation testing, two main approaches are
used to introduce faults into a program: Source Code
mutators and Abstract Syntax Tree (AST) mutators. Source
code mutators [10] directly alter the human-readable code.
This approach is straightforward for developers, making it
easy to understand and debug the mutations. However, it can
be time-consuming because each mutation requires
recompilation of the source code. AST mutators [11]
manipulate the abstract syntax tree, an intermediate

representation of the code structure. By modifying the AST,
these mutators can apply more sophisticated changes that
respect the language's syntax and semantics. However,
implementing and maintaining AST-based tools can be
complex.

Tool-Specific Criteria

Tools

Mutmut

Poodle

Cosmic Ray

Mutpy

Mutatest

Creation Date Dec 1, 2016 Dec 12, 2023 July 11, 2014

Feb 6, 2014

Jan 6, 2019

Last Update
v2.5.0
May
2024

v1.3.3
February

2024

v8.3.15
July
2024

v0.6.1

November
2019

V3.1.0

February
2022

Interface CLI CLI CLI CLI CLI

Documentation GitHub,
readthedocs

GitHub,
readthedocs

GitHub
readthedocs

GitHub GitHub,
readthedocs

Test Libraries Unittest,
pytest

Unit test,
pytest

Unit test,
pytest

Unit test,
pytest

Unit test,
pytest

Configuration yes yes yes

yes

yes

162

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on January 20,2025 at 21:43:36 UTC from IEEE Xplore. Restrictions apply.

2.2 Existing Mutation Testing Tools

The tools below were chosen based on two key criteria: the
presence of relevant information in published research and
the availability of comprehensive documentation on GitHub
or ReadtheDocs. These five Python tools met these criteria,
leading to their selection for experimentation. Every tool has
a command line Interface, and is compatible with both pytest
and unit test frameworks.

• MutPy

MutPy [12] is a mutation testing tool specifically designed
for Python applications to assess and improve their test suites.
This is one of the oldest mutation tools developed for python
(Est. 2012) and has not been updated since 2019. Mutpy
applies mutations on the AST level and allows for custom
mutation operator creation, as shown in Table 2.

Table 2. Mutpy Mutation Operators [12]
Mutpy Mutation Operators: AST Level
AOD - arithmetic
operator deletion

Removes an arithmetic operator

AOR - arithmetic
operator
replacement

Replaces an arithmetic operator
/ to -

ASR- assignment
operator
replacement

Replaces assignment operators
= to +=

BCR-break
continue
replacement

Replaces break with continue or vice
versa

COD-conditional
operator deletion

Removes a conditional operator

COI-conditional
operator insertion

Inserts a conditional operator

CRP-constant
replacement

Replaces a constant
True to False

DDL-decorator
deletion

Removes a decorator from a function

EHD-exception
handler deletion

Deletes an exception handler block form a
try catch structure

EXS-exception
swallowing

Modifies exception handling to ignore the
exception

IHD-hiding
variable deletion

Removes a variable that hides another
variable with the same name in a parent
scope

IOD-overriding
method deletion

Deletes a method that overrides a method
in a parent class

IOP-overridden
method-calling
position change

Changes the position or way an
overridden method is called

LCR-logical
connector
replacement

Replaces logical connectors
and to or

LOD-logical
operator deletion

Deletes logical operators

LOR-logical
operator
replacement

Replaces logical operators
&& to ||

ROR-relational
operator
replacement

Replaces relational operators
 >To =

SCD-super calling
deletion

Deletes a call to a superclass method
within a subclass

SCI-super calling
insert

Inserts a call to a superclass method
within a subclass

SIR-slice index
remove

Removes an index from a slice operation
in an array or list

• Mutmut

Mutmut [13] is a powerful mutation testing tool designed to
mutate Python test suites. It simplifies the mutation testing
process by allowing programmers to apply found mutants
directly to the source code files with a straightforward
command. After generating mutations, Mutmut automates
the execution of the current test suite against these altered
code versions. Mutmut applies mutations on the source code
level and allows for configurations such as whitelisting line
by line, as shown in Table 3.

Table 3. Mutpy Mutation Operators [13]
Mutmut Mutation Operators:
number_mutation Alters numeric values by

incrementing them by one
string_mutation Modifies string literals by

inserting 'XX' near the start
and end

partition_node_list_mutation Identifies a split point in a list
of nodes based on a specified
value

lambda_mutation Changes lambda expressions
by mutating the result to
either 0 or None

Argument_mutation Alters arguments of
dictionary-style calls by
appending 'XX' to the name
of the argument

arglist_mutation Removes selected arguments
from argument lists

Keyword_mutation Switches specific keywords
(is, not, in, etc.) to their
opposites

Operator_mutation Alters arithmetic, bitwise,
comparison, and assignment
operators to their opposites

And_or_mutation Changes logical operations
between and and or.

Expression_mutation Alters assignment
expressions by changing
assigned values to None or
empty strings

Decorator_mutation Mutates decorators by
yielding only the final
newline

163

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on January 20,2025 at 21:43:36 UTC from IEEE Xplore. Restrictions apply.

Name_mutation Changes names for boolean
literals

Trailer_mutation Specifically targets array-
like access ([])

Subscript_mutation Alters subscript (index)
expressions, like setting the
index to None

• Poodle

Poodle [14] is a mutation testing tool designed to enhance the
efficiency and flexibility of mutation testing in Python
environments Poodle operates by copying the source code to
a temporary location before applying mutations, thus
ensuring that the original code remains unaffected by the
mutations. Poodle applies mutations on the source code level
and has configurations such as whitelisting line by line, and
code blocks, as shown in Table 4.

Table 4. Poodle Mutation Operators [14]
Poodle Mutation Operators: Source Code level (with a
twist)
“BinOp”- Binary
Operation Mutator

Changes binary operators
+ to -

“AugAssign”- Augmented
Assignment Mutator

Alters augmented
assignments
+= to *=

“UnaryOp”- Unary
Operation Mutator

Modifies unary operators
-x to +x

“Compare”- Comparison
Mutator

Changes comparison
operations
== to >=

“Keyword”- Keyword
Mutator

Alters control flow
keywords
and to or

“Number”- Number
Mutator

Modifies numeric literals
1 to 0

“String”- String Mutator Changes string literals
“hello” to “world”

“FuncCall”- Function Call
Mutator

Alters function call
arguments or function
names

“DictArray”- Dict Array
Call Mutator

Modifies dictionary
accesses

“Lambda”- Lambda Return
Mutator

Changes the return value
of lambda functions

“Return”- Return Mutator Alters the return statements
in functions

“Decorator”- Decorator
Mutator

Modifies decorators on
functions or classes.

• Mutatest

Mutatest [15] is a Python-based mutation testing tool which
introduces mutations, or small changes, into a program's
source code. The tool operates by first scanning and creating
an abstract syntax tree (AST) from the source files to identify
locations in the code that can be mutated. randomly samples
these locations and applies mutations such as altering
operators, changing conditions, or modifying assignments.
Mutatest then runs the existing test suite against these
mutated versions using the corresponding pycache files,
which ensures that the original source code remains
untouched, as shown in Table 5.

Table 5. Mutatest Mutation Operators [15]
Mutatest Mutation Operators: Source Code Level
AugAssign Modifies augmented

assignment operations:
+= to minus=

BinOp Alters binary operators
+ to -

BinOp Bitwise
Comparison

Changes bitwise operations
x= a &y to x= a | y

BinOp Bitwise Shift Adjusts shift operations
x << y to x >> y

BoolOp Modifies Boolean
operations
if x and y to if x or y

Compare Changes comparison
operators
x >= y to x < y

Compare In Alters membership checks
x in [1,2,3] to x not in
[1,2,3]

Compare Is Changes identity checks
x is None to x is not None

If Replaces conditional
checks in if statements
with True or False

Index Mutates index values for
list or array accesses
x[0] to x[1] or x[-1]

NameConstant Switches between
constants
x=True to x=False

Slice Alters slice boundaries in
list or array
X[:2] to x[2:]

• Cosmic Ray

Cosmic Ray [16] is a powerful mutation testing tool designed
to enhance the robustness of the test suite by introducing
small alterations (mutations) in a program. Cosmic Ray
utilizes the concept of "sessions" to manage a full mutation

164

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on January 20,2025 at 21:43:36 UTC from IEEE Xplore. Restrictions apply.

testing suite, since mutation testing runs can be time-
consuming and may need to be paused or restarted. Cosmic
ray introduces mutations on the AST level and allows for
custom mutation operators to be created by the user, as shown
in Table 6.

Table 6. Cosmic Ray Mutation Operators [16]
Cosmic Ray Mutation Operators: AST Level
Binary_operator_replacement Replaces binary

operators
Boolean_replacer Replaces Boolean

operators
Break_continue Replaces break

with continue and
vice-versa

Comparison_operator_replacement Replaces one
comparison with
another

Exception_replacer Modifies exception
handlers

Keyword_replacer Replaces one
keyword with
another

No_op An operator that
makes no changes

Number_replacer Modifies numeric
constants

Remove_decorator Removes
decorators

Unary_operator_replacer Changes Unary
Operators

Variable_inserter Replaces usages of
named variables to
statements

Variable_replacer Replaces usages of
named variables

Zero_iteration_for_loop Modifies for-loops
to have zero
iterations

2.3 Challenges and Limitations of Mutation Testing

Mutation testing faces several limitations that hinder its
ability to be applied in practical use. One of the challenges is
the large number of mutants generated during testing. Each
syntactic change in the program code can create multiple
mutants, leading to a high execution cost due to the need to
test each mutant individually. For instance, a simple program
might be mutated in various ways, resulting in a considerable
number of test executions to cover all mutants. This high
computational cost [17], especially for larger programs, can
be prohibitive.

Mutation testing is also limited by the difficulty of identifying
equivalent mutants [17], those that behave identically to the
original program despite mutations. These equivalent

mutants do not provide useful information but still consume
resources. The concept of incompetent mutants [17] further
complicates the process because they do not functionally alter
the program's behavior in a meaningful way and are not
representative of real faults. These mutants can skew the
results of mutation testing and contribute to a misleading
assessment of test suite effectiveness. The process of
detecting these mutants often involves substantial manual
effort, adding to the overall complexity and cost of mutation
testing.

3. EXPERIMENTAL SETUP

We will now go into the details of setting up the environment for
the experiments, the research questions, the programs under test
and how the test cases were produced, and an explanation of how
to format the mutation testing tools.

3.1 Research Questions

RQ1: What is the difference between the mutation testing tools
based on tools and mutation specific criteria?

Every tool performs mutations and give results, but there are key
differences in design, configuration, operators used, application
technique, runtime, and displayed results. We want to give a
comprehensive comparison to show these differences between
all 5 tools.

RQ2: Which tool is the most effective in creating competent
mutants?

 We want to run these tools to determine which makes the most
competent mutants in two different environments. We will also
be calculating how many equivalent and incompetent mutants
were created to calculate a new competent mutant score: The
number of competent mutants (passed or failed) generated over
the total mutants created. This information will tell us which tool
utilizes computational storage best which makes for easier
alterations of unit tests.

3.2 Programs Under Test

Table 7. Program Under Test Metadata

PUT
PUT Metadata

Description # of
functions

of
test cases

bagels
Small program:
a program that asks users
to guess a 3 digit number.

2 8

diff-
match-
patch

Big Program: The Diff
Match and Patch libraries
offer robust algorithms to
perform the operations
required for
synchronizing plain text.

31 184

165

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on January 20,2025 at 21:43:36 UTC from IEEE Xplore. Restrictions apply.

As shown in Table 7, both bagels [18] and diff-patch-match
[19] were selected from GitHub. We selected bagels because
we wanted to generate mutation-adequate test suites to have
the highest possible mutation adequacy score, and we
selected diff-match-patch to observe how mutation tools
operate on non-mutation-adequate test suites, a larger code
base, and more advanced tests.

3.3 Generating Test Cases

A test suite had to be generated for the Bagels, so we
designed test cases using a comprehensive approach
involving branch adequacy and mutation adequacy. This
technique of creating mutation-adequate tests [11] was used
to achieve the highest possible mutation adequacy score.
The process goes as follows:

1. Generate branch adequate tests for a PUT
2. Run the mutation tool, and check for live mutants.
3. Attempt to kill the live mutants by changing the unit

tests accordingly.

We did not strive for a perfect mutation score in Diff-match-
patch unlike Bagels, because we wanted to record how
mutation tools behave when mutants survive, what mutants
were injected, and why tests won’t always be perfect.

3.4 Running Mutation Tools

Mutation testing is performed via the terminal, requiring
careful setup to ensure the tools function correctly.
Organizing the source code and test files is essential, as
troubleshooting can become tedious if configurations are not
well-structured. While each mutation testing tool has
documentation outlining the steps for execution, beginners or
those unfamiliar with terminal operations may find the
process challenging. Therefore, learning to read and interpret
open-source tool documentation is crucial for successful
mutation testing. Before running any mutation testing tool,
all test cases must pass at 100% using a testing framework
such as pytest or unit test. Next, the tools should be installed
ideally within a virtual environment (venv).

Cosmic Ray needs a TOML file to specify the configurations
which will include which file programmers want to mutate,
which file is the test file, excluded modules for things
programmers don’t want to test, which distributor
programmers want mutants to run on which can give
programmers the option to run multiple mutations at one time
in parallel, and timeout which is how long (in seconds)
programmers want each mutant to run and try each mutant
before moving onto the next mutant, this can greatly alter
how long the tests run. Then programmers must set up a
session and baseline which prepares the mutations for the
code and stores them in a database file. It's crucial to re-run
this command if programmers modify the configuration,

change the code-under-test, or alter the tests, as these changes
affect which mutations and tests are applied. Before running
the mutation suite, ensure the test suite passes unmutated
code by executing the baseline command confirming that
everything functions correctly without any mutations.
Cosmic Ray has a lengthy setup process [16].

Poodle is one of the simpler tools, programmers list its name
to be able to run the tool, there is no mandatory configuration
file, but it is an option. Poodle also uses inline comments;
whitelisting, such as #pragma: no mutate to exclude singular
lines of code and # nomut: on excludes certain code blocks
from mutation testing and #nomut: off to resume testing)
depending on where programmers place the command [14].
Mutmut requires whitelisting to be added line by line, using
the comment # pragma: no mutate to ensure that parts of the
code won’t mutate. There is also a configuration file that is
strongly suggested to set up, even though it is not mandatory
because Mutmut will mutate every executable file in a
directory [13].

It is important to acknowledge that certain tools, despite
proper setup, may not function as expected during the course
of this study. Specifically, Mutpy and Mutatest could not be
executed successfully. This highlights the potential
unreliability of some open-source tools, which may hinder
research progress. Recognizing anomalous behavior in a
tool’s functionality is crucial, as it may signal underlying
issues. Addressing these challenges will be a focus of future
investigations.

4. EXPERIMENTAL RESULTS

In this section we will go over the mutation testing results,
special observations, and answer the research questions,
mutators used by different tools have been shown in Table 9.

As shown in Table 8, Poodle’s mutation score was the lowest
with a 95.6% mutation score with only 1 mutant that was not
discovered. In Diff-match-patch, poodle created 2832
Mutants with a total mutation adequacy score of 80.6%.

Mutmut created 31 mutants for bagels and 1913 mutants for
diff-match-patch. Bagels got a 100% mutation adequacy
score, and diff-match-patch got an 80.29% mutation
adequacy score. Mutmut used 6 different operators across the
two PUT’s.

Cosmic Ray created the most mutants with 113 mutants
generated for bagels and 6158 mutants for diff-match-patch
Cosmic Ray used 9 different operators across both PUT’s.
The mutation score for bagels was 100% and diff-match-
patch was 81.55%.

166

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on January 20,2025 at 21:43:36 UTC from IEEE Xplore. Restrictions apply.

Table 8. The comparison between Diff-match-patch and Bagels

Table 9. Mutators used by different tools

Cosmic Ray Used Mutators Mutmut Used Mutators Poodle Used Mutators
Binary Mutator Number mutator FuncCall
Comparison Replacement Mutators Expression mutator AugAssign
Unary mutator Keyword mutator BinOp
Boolean mutator And/or mutator UnaryOp
Break/continue mutator String mutator DictArray
Exception mutators Operator mutator Number
Number replacer mutator String
Zero Iteration Mutator Keyword
Add/not Mutator Compare
 Return

RQ1: Is there a difference between the existing mutation testing
tools based on tool and mutation specific criteria?

Poodle made the least mutants, took the least time, and did not
mutate the test file, gives 2 different viewing options for html
results, one is the actual source code displayed with each
mutation showing up line by line, and another list style result
with only failed mutants. Poodle used 10 different mutation
operators across bagels and diff-match-patch.

Mutmut unfortunately did not give any extra information about the
killed mutants like which mutants were applied to which areas in
its overall mutation score, so the analysis is incomplete. We do not
know what operators makes up the successful mutations, what
percent is equivalent or incompetent. Mutmut used 6 different
operators in diff-match-patch, but we were only able to analyze
the surviving mutants, so the analysis is incomplete. Mutmut also
mutates the test file, even when including the whitelisting onto the
file.

Cosmic Ray organizes the mutation results by operators and
makes so many because it applies a maximum level of
application by applying every single type of operator onto a
mutation location. The whitelisting feature on cosmic ray also
counted skipped mutants into the total mutant percentage, so this
means that to get an accurate calculation programmers need to
go in and count the mutants by hand that programmers want
included. The amount of mutants cosmic ray produced for diff
match patch was almost twice as much as poodle, and 3 times as
much as Mutmut, and this could be due to the AST application
technique being able to apply more sophisticated mutants.
Cosmic ray also utilized its bitwise operators, which added onto
the number of mutations created. Most of the mutations turned
out to be incompetent, may of the Binary operator mutants were

incompetent because every binary operator was applied to each
place a binary operator showed up.

In Mutpy’s case every single mutant either survived or was
incompetent, and the mutation score would be 0%, even with the
simplest of programs and tests. There is a bug in the tool’s source
code, we were not able to locate it.

Mutatest would start to run but would crash a few seconds after
that and there would be a few errors which would lead to a bug in
programs and tests. A “Population” error would show up,
indicating there was a bug in the source code as well.

RQ2: Which tool creates the most competent mutants?

As shown in Figure 1, Poodle had 128 mutants timeout which
means the mutants were trying to be applied, but exceeded
the amount of time a single mutant is allowed to compile.
Poodle created 1463 competent mutants, 1415 incompetent
mutants, 3 equivalent mutants, generating a 50.9%
competency score.

Cosmic ray had no mutants timeout with more mutants over
Poodle. 1584 mutants were competent, 25 were equivalent,
and 4598 were incompetent, which is a 25.7% competency
score.

Competent mutants apply to both surviving and killed
mutants because both are important to the mutation adequacy
score. As programmers can see in the graph above, Poodle
had the higher percentage of competent mutants. We did not
include Mutmut in this part of the study because the results
of the mutation trial were incomplete.

Tools Diff-match-patch Bagels
Generated Survived Killed Percentage Generated Survived Killed Percentage

Poodle 2832 548 2284 80.6% 23 1 22 95.6%
Cosmic Ray
 6158 1136 5022 81.55% 26 0 26 100%

Mutmut 1913 377 1536 80.29% 31 0 31 100%

167

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on January 20,2025 at 21:43:36 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Comparison between Poodle and Cosmic Ray

5. CONCLUSION AND FUTURE DIRECTIONS

Mutation testing is a widely researched software testing
technique, though it still faces significant challenges in
reaching widespread adoption in industry [4]. One major
obstacle is the manual effort required to review both
incompetent and equivalent mutants, which involves
ensuring that detected mutants align meaningfully with the
intended test outcomes.

In this study, we thoroughly analyzed five Python mutation
testing tools, examining each tool's architecture, interface,
configuration options, and release dates. We tested each tool
on both mutation-adequate and non-mutation-adequate test
suites, with tests spanning small to very large codebases. Our
findings highlight that incompetent mutants significantly
impede the progression of mutation testing. Specifically, over
half of the mutants generated by Poodle and Cosmic Ray
were deemed incompetent. Mutmut also presented
incomplete mutation results, while MutPy and Mutatest
encountered functional issues, suggesting that improvements
and updates are necessary to enhance their effectiveness.
Overall, our study indicates there is substantial room for
improvement in Python mutation testing tools.

In the future, we hope that developers consider our findings
and address the limitations identified in this paper. We also
plan to extend our research by testing larger suites, exploring
a wider range of mutation operators, and using diverse test
case scenarios to gain deeper insights into the reliability of
mutation testing tools in Python.

ACKNOWLEDGEMENTS

This work was supported in part by the U.S. National Science
Foundation under Grant 2050869 and Grant 2349347. It was
also supported by the National Science and Technology

Council, Taiwan under Grant No. NSTC 113-2222-E-029-
003-MY2. It was partially completed by the first author under
the supervision of Professor W. Eric Wong and Mr. Zizhao
Chen while attending the Research Experience for
Undergraduates (REU) program at the University of Texas at
Dallas in Summer 2024.

REFERENCES

[1] Ahamed, S.S., 2010. Studying the feasibility and

importance of software testing: An Analysis. arXiv
preprint arXiv:1001.4193.

[2] Bertolino, A. and Marré, M., 1996. How many paths are
needed for branch testing?. Journal of Systems and
Software, 35(2), pp.95-106.

[3] Zou, Y., Li, H., Li, D., Zhao, M. and Chen, Z., 2024,
March. Systematic Analysis of Learning-Based
Software Fault Localization. In 2024 10th International
Symposium on System Security, Safety, and Reliability
(ISSSR) (pp. 478-489). IEEE.

[4] Offutt, J., 2011. A mutation carol: Past, present and
future. Information and Software Technology, 53(10),
pp.1098-1107.

[5] Mathur, A.P. and Wong, W.E., 1993, October.
Evaluation of the cost of alternate mutation strategies.
In Anais do VII Simpósio Brasileiro de Engenharia de
Software (pp. 320-334). SBC.

[6] Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Le Traon,
Y. and Harman, M., 2019. Mutation testing advances: an
analysis and survey. In Advances in computers (Vol.
112, pp. 275-378). Elsevier.

[7] Wong, W.E. ed., 2001. Mutation testing for the new
century (Vol. 24). Springer Science & Business Media.

[8] Sánchez Jerez, A.B., Delgado Pérez, P., Medina Bulo, I.
and Segura Rueda, S., 2022. Mutation testing in the wild:
findings from GitHub. Empirical Software Engineering,
27, 1-35.

[9] Derezińska, A. and Hałas, K., 2014. Analysis of
mutation operators for the python language.
In Proceedings of the Ninth International Conference on
Dependability and Complex Systems DepCoS-
RELCOMEX. June 30–July 4, 2014, Brunów,
Poland (pp. 155-164). Springer International Publishing

[10] Ahmed, Z., Zahoor, M. and Programmersnas, I., 2010,
February. Mutation operators for object-oriented
systems: A survey. In 2010 The 2nd International
Conference on Computer and Automation Engineering
(ICCAE) (Vol. 2, pp. 614-618). IEEE

[11] Kintis, M., Papadakis, M., Papadopoulos, A., Valvis, E.
and Malevris, N., 2016, October. Analysing and
comparing the effectiveness of mutation testing tools: A
manual study. In 2016 IEEE 16th International Working
Conference on Source Code Analysis and Manipulation
(SCAM) (pp. 147-156). IEEE.

[12] “MutPy,” PyPI, Nov. 17, 2019. https://pypi.org/project/
MutPy, last available in November 2024

0
1000
2000
3000
4000
5000
6000
7000

Poodle Cosmic Ray

Copmpetent, Incompetent,
and Equivalent Mutants*

Competent Incompetent Equivalent

168

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on January 20,2025 at 21:43:36 UTC from IEEE Xplore. Restrictions apply.

[13] “mutmut - python mutation tester — mutmut
documentation.” https://mutmut.readthedocs.io/en/latest
last available in November 2024

[14] “Poodle documentation.” https://poodle.readthedocs.io/
en/latest/index.html, last available in November 2024

[15] “Mutatest: Python mutation testing — Mutatest 3.1.0

documentation.”
https://mutatest.readthedocs.io/en/latest/index.html, last
available in November 2024

[16] “Cosmic Ray: mutation testing for Python — Cosmic
Ray documentation.” https://cosmic-
ray.readthedocs.io/en/latest/index.html, last available in
November 2024

[17] Nguyen, Q.V. and Madeyski, L., 2014. Problems of
mutation testing and higher order mutation testing.
In Advanced Computational Methods for Knowledge
Engineering: Proceedings of the 2nd International
Conference on Computer Science, Applied Mathematics
and Applications (ICCSAMA 2014) (pp. 157-172).
Springer International Publishing.

[18] Sweigart, A., 2021. The Big Book of Small Python
Projects: 81 Easy Practice Programs. No Starch Press,
pp. 1-5.

[19] google. (n.d.). GitHub - google/diff-match-patch: Diff
Match Patch is a high-performance library in multiple
languages that manipulates plain text. GitHub.
https://github.com/google/diff-match-patch, last
available in November 2024

169

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on January 20,2025 at 21:43:36 UTC from IEEE Xplore. Restrictions apply.

