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Abstract 
 

Areas crucial to life such as medicine, transportation, nuclear-
energy research and industry, aeronautics, and others, all make 
use of software in one way or another. However, the 
application of software to such domains means that the 
software may now become safety-critical such that an error in 
the software or an error in its use could have devastating 
consequences. This paper reviews 14 recent accidents, several 
of which resulted in the loss of life in addition to time and 
money, and identifies the role(s) that software played as an 
important causative factor. The useful lessons which can be 
learned from the accidents are also presented, which can then 
act as principles and guidelines to avoid the recurrence of 
similar accidents in the future. 

 
Keywords: Software safety, catastrophic accidents, mishaps, 
safety-critical software systems 
 
1. Introduction 
 
Software systems are actively used today in safety-critical 
areas such as aeronautics, astronautics, medicine, nuclear 
power generation and nuclear research, transportation, etc. 
When employed in such systems, software is often responsible 
for controlling the behavior of electromechanical components 
and monitoring their interactions in addition to other tasks 
such as user interface management, computer administration, 
and others. Since most accidents arise in the interfaces and 
interactions among the components, software plays a direct 
and important role in system safety [12]. 

Consequently an important issue that comes up is that of 
software safety – which means that the software should 
execute within a system context without contributing to 
hazards [12]. However, should the software operation directly 
or indirectly lead to a hazard in the case of a safety-critical 
system, then the consequences of the hazard realization could 
be catastrophic. By catastrophic we imply that the damage is 
not just restricted to financial losses, or losses in terms of time 
or property, but rather may also include the loss of life. 

This paper selects a representative set of 14 recent 
catastrophic accidents and presents a brief summary of them 
and their software-related causes (whether direct or indirect). 
We also explore the extent of the damage incurred in the case 
of each accident, and more importantly, identify valuable 
lessons that can be learned from them. By presenting the cases 
of such accidents to the reader, we hope to highlight the ever 
growing importance of software safety both as a field of 

research and education, and as an aspect of software 
development that needs more attention in practice. 

Thus, the contributions made by this paper are as follows: 
 

� We highlight the importance of software safety, especially 
in the case of safety-critical systems, by analyzing 14 
recent catastrophic accidents and underscoring the 
software-related causes. 

� For each accident we identify useful lessons that can be 
taken away to avoid their recurrence. 

 

The remainder of this paper is organized in the following 
manner. In Section 2, we categorize and present a detailed 
review of the circumstances surrounding each chosen accident 
and identify the software-related causes for each. Section 3 
then identifies the lessons that can be learned from the 
accidents followed by a discussion in Section 4 of issues and 
concerns relevant to this paper. Finally, conclusions and 
suggested follow-on research is presented in Section 5.   
 
2. Recent Catastrophic Accidents Involving Safety-

Critical Systems  
 
Each accident presented in this section is summarized 
individually. Yet, to facilitate discussion and apply an order to 
the presentation, we also categorize the accidents based on 
whether the damage incurred involved the loss of life or not. 
Note that there may be several other ways to classify or 
categorize these (and other similar) accidents based on various 
criteria. Further discussion on this is presented in Section 4.3.  
 
2.1 Accidents Involving the Loss of Life 
 
The accidents presented in this section are those that resulted 
in loss of life in addition to significant financial and/or 
property loss incurred.  
 
Miscalculated Radiation Doses at the National Oncology 
Institute in Panama [2,5]: Panama’s largest radiation therapy 
institution is the National Oncology Institute (Instituto 
Oncológico Nacional, ION). In March 2001, Panama’s 
Ministry of Health asked the Pan American Health 
Organization (PAHO) to investigate some serious 
overreactions among cancer patients undergoing specific 
radiation therapy treatment at ION. A total of 56 patients were 
treated for specific cancers within the target time period and 
were identified in the ION radiation dosage study group. From 
this study group it was determined that 28 patients were likely 
given radiation doses exceeding their required dosage. By 
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August 2005 (4.5 years later), 23 of these 28 patients died. It 
was reported that it was unclear whether these patients would 
have died from their cancers with or without treatment. 
However, at least 18 of the patient deaths were attributed 
directly to radiation overdose. 

After a careful investigation, three main causes for these 
accidental overdoses were identified: (1) an unclear manual 
for using the radiation mechanism, (2) no warnings in the 
software program for the improper usage, and (3) no manual 
quality control before usage. The treatment planning system 
software allowed a radiation therapist to draw on a computer 
screen the placement of metal shields (called “blocks”). 
Investigation revealed that the software allowed the use of at 
most four shield blocks, but the doctors at ION wished to use 
five. The doctors thought they could get around this software-
imposed constraint by drawing all five blocks as a single large 
block with a hole in the middle. What the doctors did not 
realize was that the software provided different results in this 
configuration based on how the “hole” was drawn. Drawing it 
in one direction, the correct dose would be calculated; drawing 
it in another direction, the software would recommend twice 
the necessary exposure. 
 
Loss of Precision Error in Patriot Missile Defense System 
at Dhahran, Saudi Arabia [20]: The Patriot is a surface-to-
air defense missile system used by the United States Army to 
protect against cruise missiles and medium to high altitude 
aircraft. During the Gulf war in the early 1990’s, Patriot 
missile systems were deployed at strategic locations to defend 
key assets, military personnel, and citizens against Scud 
missiles launched by Iraqi forces. The Patriot works by 
locking its radar onto an incoming target and relaying the 
signals to a computer at a control station that tracks the 
target’s speed, trajectory, and computes a predicted course. 
Using a series of complex split-second computations, the 
computer calculates when to launch its missiles and, in the 
case of Scuds, fires two Patriot missiles each with a 200-
pound conventional warhead traveling at about 2,000 miles an 
hour at each Scud. 

On the night of February 25, 1991, a Patriot missile defense 
system operating at Dhahran, Saudi Arabia failed to track and 
intercept an incoming Scud missile. This Scud subsequently 
hit a U.S. Army barracks killing 28 soldiers and injuring 
another 98. 

The Patriot battery at Dhahran failed to track and intercept 
the Scud missile because of a software problem in the 
weapons control computer. This problem led to an inaccurate 
tracking calculation (i.e., a loss of precision error) that grew 
worse the longer the system operated without a reset. At the 
time of the incident, the Patriot battery had been operating 
continuously for over 100 hours. By then, the small inaccuracy 
was serious enough to cause the system to target the wrong 
place for the incoming Scud. Once identified, the error was 
repaired and the revised software deployed to all Patriot 
Missile Defense Batteries.. 
 
American Airlines (AA) Flight 965 Accident [14]: On 
December 20, 1995, AA965 departed from Miami 
International Airport bound for Cali, Colombia. At 9:40pm, 

just five minutes before its scheduled arrival, the plane went 
down in the Andes, crashing into the west slope of a mountain. 
The crash led to a total of 159 deaths and completely 
destroyed the airplane (a Boeing 757). Only four of the 
passengers and a dog survived. This was the first U.S.-owned 
757 accident and resulted in the highest death toll of any 
accident in Colombia. The death toll was also the highest of 
any accident involving a Boeing 757 at the time and was the 
deadliest air disaster involving a U.S. carrier since the 
downing of Pan Am Flight 103 on December 21, 1988. 

The radar for the Cali, Colombia air traffic control system 
had been damaged in a guerrilla attack in 1992, so controllers 
were unable to use it to track the approach of the 757 aircraft. 
The pilots relied on a series of radio beacons which had been 
placed in the area to serve as navigational aids through the 
canyons and mountainous terrain. Having already been 
programmed with the location of these beacons, the onboard 
flight management systems should have guided the pilots from 
their point of origin to the terminal at the Cali airport. 

The user interface for the flight management system 
allowed the pilot to enter the name of a destination. If the 
initial instead of the full name of the destination was entered, 
the flight management system would select the destination 
which had the highest radio frequency among all the 
destinations which started with that initial. Once the 
destination had been selected, the flight management system 
did not provide any selection feedback. 

The circumstances leading to this accident involved the 
pilots programming the navigational computer with the 
location of Rozo (a waypoint on their approach). Although 
this waypoint was designated “R” on their charts, the same 
identifier had also been used for a second radio beacon 
(Romeo) near Bogotá. When a crewmember changed the 
approach course to the airport, he input only “R” instead of 
“Rozo” in the computer. The flight management system 
interpreted this as a request to set a course to the “Romeo” 
waypoint which has a higher radio frequency than the one at 
Rozo. When two waypoints with the same initial were nearby, 
the FMS automatically chose the one with the higher 
frequency but listed the others. The pilot selected the first “R” 
on the list, unwittingly setting a course for Bogotá, which 
caused the autopilot to execute a wide semicircular turn to the 
east and eventually to the accident site.  
 
Korean Air Flight 801 Accident [9,15,18]: On August 5 
1997, Korean Air Flight 801 departed from Kimpo 
International Airport for Seoul, South Korea. Korean Air 
Flight 801 was a scheduled commercial flight between Seoul, 
Korea and Guam. On board were 254 people – 2 pilots, 1 
flight engineer, 14 flight attendants and 237 passengers. The 
flight experienced some turbulence along the way but the 
flight was otherwise uneventful until the jet prepared to land. 
At 1:42am, the aircraft struck Nimitz Hill, about 3 miles 
(5 kilometers) short of the runway at an altitude of 660 feet 
(201 meters). Of the 254 people on board, 228 were killed; 23 
passengers and 3 flight attendants survived the accident with 
serious injuries. The impact and post-crash fire destroyed the 
aircraft. In 2000, a lawsuit was settled in the amount of 
$70,000,000 on behalf of 54 families. 
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The National Transportation Safety Board (NTSB) 
determined that the probable cause of the accident was the 
captain’s failure to adequately brief and execute a non-
precision localizer-only approach.  A contributing cause was 
the first officer’s and flight engineer’s failure to effectively 
monitor and cross-check the captain’s execution of the 
approach. In addition, the captain’s fatigue and Korean Air’s 
flight crew training were listed as contributors. The crew had 
been using an outdated flight map, which stated that the 
minimum safe altitude for a landing aircraft was 1,770 feet 
(540 meters) as opposed to 2,150 feet (656 meters). Flight 801 
had been maintaining 1,870 feet (570 meters) prior to landing. 
Bad weather in the area was also a contributing factor. 
Although Flight 801 likely exited a heavy rain shower shortly 
before the accident, the flight crew was still not able to see the 
airport due to the presence of another rain shower located 
between Nimitz Hill and the airport.  

The identified software-related cause was the FAA’s 
intentional inhibition of the Minimum Safe Altitude Warning 
(MSAW) system. The MSAW system was developed by the 
FAA in response to the NTSB Safety Recommendation A-73-
46. However, a 54-nm inhibit zone was setup at the Guam 
International Airport to alleviate frequent nuisance warnings; 
this was allowed by policy. By inhibiting these warnings close 
to the airport, the usefulness of the MSAW system in 
providing minimum safe altitude over terrain warnings was 
diminished. Simulations by NTSB/FAA indicated that, 
without the inhibition, MSAW would have generated an alert 
64 seconds before impact which would have been sufficient 
for the controller to advise Flight 801 and give the aircrew an 
opportunity to take appropriate actions to avoid the crash. 
 
2.2 Accidents that Did Not Involve the Loss of Life 
 
The accidents presented in this section are those that resulted 
in significant loss of time and money, yet fortunately the loss 
of life was avoided. 
 
Shutdown of the Hartsfield-Jackson Atlanta International 
Airport [3]:  Hartsfield–Jackson Atlanta International Airport 
is one of the world’s busiest airports, both in terms of 
passengers and number of flights. It serves as a major hub for 
travel throughout the Southern United States. The airport has 
151 domestic and 28 international gates. To ensure security, 
all the passengers must go through a checkpoint and have their 
carry-on luggage screened by an X-ray machine before they 
are allowed to board their aircraft. The alertness of the security 
personnel screening luggage is tested by the periodic display 
of suspicious devices on the X-ray machine displays, followed 
by a message indicating that the particular display was only a 
test.  

On April 19, 2006, an employee of Transportation Security 
Administration (TSA), U.S. Department of Homeland 
Security, identified the image of a suspicious device but did 
not realize it was part of the routine testing for security 
screeners.  The software failed to indicate such a test was 
underway. As a result and per procedure, the airport 
authorities evacuated the security area for two hours while 
searching for the suspicious device manually, which they 
could never find. This evacuation occurred at peak travel time 

which caused delays of more than 120 flights. In addition, 
many passengers were inconvenienced; many had to rush to 
reach their departure gates or reschedule flights due to this 
evacuation. 

This false alarm was due to a software error which failed to 
alert the security screeners that the suspicious device was only 
a test image. Normally the software flashes the words "This is 
a test" on the screen after a brief delay. 
 
Loss of Communication between the FAA Air Traffic 
Control Center and Airplanes [6,13]: On Tuesday, 
September 14, 2004, the Los Angeles International Airport 
and other airports in the region suspended operations due to a 
failure of the FAA radio system in Palmdale, California. 
Technicians on-site failed to perform the periodic maintenance 
check that must occur every 30 days and the radio 
communications system shut down without warning. The air 
traffic controllers lost contact with the aircraft when the 
primary voice communications system shut down 
unexpectedly. More precisely, it was a Voice Switching and 
Control System (VSCS) that failed. 

Air traffic controllers use a touch-screen interface to the 
VSCS to select a phone line to connect to other controllers or 
to a radio frequency to talk to flight crews. When the VSCS 
failed, the backup system that was supposed to take over in the 
event of a primary system failure also crashed. Fortunately, 
the Collision Avoidance Systems (CAS) onboard the 
commercial aircraft in-flight helped to avert catastrophe 
during this outage. The CAS interrogated the transponders of 
nearby aircraft and if danger of a collision was detected, one 
of the pilots was instructed by the system to climb and the 
other to descend. This communications outage disrupted about 
600 flights (including causing 150 flight cancellations), 
impacting over 30,000 passengers. Flights through the 
airspace controlled by the Palmdale, CA facility were either 
grounded or rerouted elsewhere. 

An error in the VSCS compounded by human error was 
ultimately responsible for the three-hour radio breakdown. 
The replacement for the older VSCS system needed to be reset 
approximately every 50 days to prevent data overload. The 
software used a 32-bit countdown timer that decremented 
every millisecond. This allowed for 232-1 milliseconds worth 
of timer ticks after which the counter reached zero and the 
system could no longer decrement the time; the software then 
shut down. The manual radio system reset was needed before 
the counter reached 232 milliseconds (approximately 50 days). 
A field technician failed to perform the radio reset and the 
VSCS subsequently shut down. The backup to this system also 
failed.  

Learning from this experience, the FAA deployed a 
software fix to the VSCS which addressed this countdown 
timer issue.  

 
Mishap Involving NASA’s Demonstration of Autonomous 
Rendezvous Technology (DART) [17]: On April 15, 2005, 
the Demonstration of Autonomous Rendezvous Technology 
(DART) spacecraft was successfully launched from the 
Western Test Range at Vandenberg Air Force Base, 
California.  
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DART was designed to rendezvous with and perform a 
variety of maneuvers in close proximity to the Multiple Paths 
Beyond Line of Sight Communications (MUBLCOM) satellite 
without assistance from ground personnel. DART performed 
as planned during the first eight hours through the launch, 
early orbit, and rendezvous phases of the mission, 
accomplishing all objectives up to that time even though 
ground operations personnel noticed anomalies with the 
navigation system. During proximity operations, however, the 
spacecraft began using much more propellant than expected. 

Approximately 11 hours into what was supposed to be a 24-
hour mission, DART detected that its propellant supply was 
depleted and it began maneuvers for departure and retirement. 
Out of 27 defined mission objectives, DART met only 11. 
NASA declared a “Type A” mishap and convened a Mishap 
Investigation Board (MIB). These measures are taken for any 
mishap resulting in a mission failure and a loss of more than 
one million US dollars in government funds. This mishap 
category requires the most detailed level of investigation.  

None of the 14 requirements related to the proximity 
operations phase, the critical technology objectives of the 
mission, were met. The MIB found that DART had also 
collided with MUBLCOM 3 minutes and 49 seconds before its 
retirement. The MIB determined the underlying causes for this 
collision based on hardware testing, telemetry data analysis, 
and simulations. From the investigation, the MIB developed 
two timelines for the study: one for DART’s premature 
retirement and another for DART’s collision with 
MUBLCOM.  

Software-related causes played a significant role in this 
incident. The premature retirement of DART occurred due to a 
cycle of computational “resets” by the software throughout the 
mission which triggered excessive thruster firings and an 
unexpected rapid fuel depletion. Also incorrect velocity 
measurement from the primary GPS receiver was introduced 
into the software’s calculations during each reset. A software 
fix for this known “bug” had not been applied to the on-board 
software by the DART team either prior to or during the 
mission.  
 
Loss of the Mars Polar Lander [8,16]: The Mars Surveyor 
'98 program was comprised of two spacecraft launched 
separately: the Mars Climate Orbiter  and the Mars Polar 
Lander (MPL). The two missions were designed to study the 
Martian weather, climate, and water and carbon dioxide 
budget in order to understand the reservoirs, behavior, and 
atmospheric role of volatiles and to search for evidence of 
long-term and episodic climate changes. 

MPL, with two Deep Space 2 (DS2) microprobes was 
launched on January 3, 1999 – 23 days after its partner, the 
Mars Climate Orbiter. All three components of the MPL were 
mounted to a shared cruise stage which provided Earth 
communications, power, and propulsion support services for 
the trip to Mars. The length of the planned MPL mission after 
landing was 90 days; the DS2 mission was two days. The 
probes were to be released from the cruise stage after the 
lander–cruise stage separation, plummeting to the surface to 
impact about 60 kilometers from the MPL landing site. After 
an eleven month hyperbolic transfer cruise, MPL reached 
Mars on December 3, 1999. However, NASA lost contact with 

the spacecraft just prior to its scheduled atmospheric entry and 
communication was never regained. The total loss was $120 
million (not including the launch vehicle and two DS2 
microprobes) of which $110M was allocated to spacecraft 
development and the other $10M to mission operations. 

Given the total absence of telemetry data and no response to 
any of the attempted recovery actions, an exact cause, or 
causes, of failure could not be determined. Nevertheless, a 
special review board appointed by the Jet Propulsion 
Laboratory (JPL) Director identified that the most probable 
cause of the loss of MPL was a premature shutdown of the 
descent engines. It was assumed that one of the MPL’s leg 
contact sensors tripped during descent which signaled a false 
indication that the spacecraft had landed. This, in turn, 
resulted in the spacecraft shutting down its descent engines. At 
least one of the magnetic sensors attached to the landing legs 
generated a spurious touchdown indication. The software, 
intended to ignore touchdown indications prior to the enabling 
of the touchdown sensing logic, was not properly implemented 
and the spurious touchdown indication was retained. In 
addition, the touchdown sensing software was not tested with 
MPL in the final flight software configuration prior to its use 
on the mission.  
 
Loss of the Mars Climate Orbiter [19]: Companion to the 
MPL (discussed above), the Mars Climate Orbiter was also 
part of the Mars Surveyor’ 98 program. Mars Climate Orbiter 
was launched on December 11, 1998. After a brief cruise in 
Earth orbit, the spacecraft was put into trans-Mars trajectory;  
about 15 days after launch, the largest Trajectory Correction 
Maneuver (TCM) was executed using the spacecraft’s 
hydrazine thrusters. During cruise to Mars, three additional 
TCMs were performed. 

The Mars Climate Orbiter was intended to enter an orbit at 
an altitude of 140 – 150 kilometers (approx. 460,000 - 500,000 
feet) above the Martian surface. However, a navigation error 
caused the spacecraft to reach as low as 57 kilometers 
(~190,000 feet). The spacecraft was likely destroyed by 
atmospheric stresses and friction at this low altitude. This 
malfunction was due to programming error; imperial units 
(pound-seconds) were used instead of the metric units 
(newtons) in the navigation software. The computer 
controlling the spacecraft’s thrusters had underestimated the 
thruster forces by a factor of 4.45 (i.e., one pound-second is 
equivalent to 4.45 Newtons).  This error may have accounted 
for some of the TCMs required during transit to Mars.  A 
final, optional engine firing to raise the spacecraft’s path 
relative to Mars before its arrival was considered by the 
mission team but was not performed. The orbiter is thought to 
have entered the Martian atmosphere at too steep an angle 
leading to the loss. 

Although the software was adapted from an earlier Mars 
Climate Orbiter project, some testing was not performed prior 
to launch and navigational data generated by the software was 
not cross-checked during flight. The total cost of the loss was 
about $85 million (not including the launch vehicle) of which 
$80M was for spacecraft development and $5M was for 
mission operations. 
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Misplacement of a Satellite by Titan IV B-32/Centaur 
Launch Vehicle [11,22]: On April 30, 1999, a Titan IV B was 
launched with a mission to place a Milstar satellite in 
geosynchronous orbit. The rocket was launched from the Cape 
Canaveral Air Station (CCAS) in Florida. The launch vehicle 
is configurable and can be launched with no upper stage or 
with one of two optional upper stages each providing greater 
and varied capability. The two types of upper stages are the 
Centaur Upper Stage and the Inertial Upper Stage; the Centaur 
upper Stage was used in this mission. 

The first stages of flight proceeded without incident with the 
Centaur separating from the Titan IV B as planned and 
starting its main engines for the first burn phase. However, 
after the initial stages of flight, the vehicle began to roll 
unexpectedly. The Centaur stabilized itself during the 
subsequent coast phase, but expended 85 percent of the 
Reaction Control System (RCS) propellant.  

During the second burn phase, the vehicle again began to 
roll, eventually losing pitch and yaw control as well. Due to 
the premature depletion of RCS propellant, the attitude control 
system was unable to stabilize the vehicle. Because of the 
anomalies during the Centaur’s flight, the Milstar satellite was 
placed in an unusable low elliptical orbit, failing to reach the 
desired geosynchronous orbit. The entire mission failed due to 
this misplacement; the cost of this lost mission was about 
$1.23 billion. In addition, NASA had to face severe criticisms 
due to this mishap being the third straight Titan IV failure at 
that time. 

The Accident Investigation Board concluded the root cause 
of the Titan IV B-32 mission mishap was the failure of the 
software development, testing, and quality/mission assurance 
processes used to detect and correct a human error in the 
manual entry of a constant. The process allowed for a single 
point of failure when generating mission critical data.  
 
Loss of Contact with the SOHO [21,23]: The Solar and 
Heliospheric Observatory (SOHO) was deployed on 
December 2, 1995 and began normal operations in May 1996 
to study the Sun. SOHO is a joint project between the 
European Space Agency (ESA) and NASA and is also a 
component of the International Solar Terrestrial Program 
(ISTP). The three main scientific objectives of the SOHO 
mission are: (1) investigation of the outer layer of the Sun, (2) 
making observations of solar wind and associated phenomena, 
and (3) probing the interior structure of the Sun. SOHO also 
provides the primary source of near-real-time solar data for 
space weather observation and prediction.  

Originally planned as a two-year mission, SOHO continues 
to operate after more than ten years in space. In October 2009, 
a mission extension lasting until December 2012 was 
approved. The 610 kg SOHO spacecraft is positioned in a halo 
orbit around the Sun-Earth Lagrange L1 point, the point 
between the Earth and the Sun where the balance of the Sun’s 
gravity and the Earth’s gravity is equal to the centripetal force 
needed for an object to have the same orbital period in its orbit 
around the Sun as the Earth, with the result that the object will 
stay in that same relative position.  

Flight controllers at NASA Goddard Space Flight Center 
(GSFC) lost contact with SOHO in the early morning hours of 
June 25, 1998. Control of SOHO was eventually recovered 3 

months later; SOHO was then re-oriented towards the Sun on 
September 16 and returned to its normal operations on 
September 25. However, though control was eventually 
recovered, the one billion dollar spacecraft was temporarily at 
stake and there was financial expense associated with recovery 
operations to establish contact with and return the lost 
spacecraft to operation.  

The incident was preceded by a routine calibration of the 
spacecraft’s three roll gyroscopes (gyros).  The incorrect 
diagnosis of a Gyro B fault and a rapid decision to send a 
command to turn it off in response to unexpected telemetry 
readings was a contributing factor to this incident.   

With respect to the software-related causes, a modified 
command sequence in the onboard control software was 
missing a critical function to reactivate one of the gyros (Gyro 
A). The absence of this function caused the failure of an 
Emergency Sun Reacquisition (ESR) process and set in 
motion the chain of events ending in the loss of telemetry from 
the spacecraft. Furthermore, another error in the software 
improperly left Gyro B in high gain mode which generated the 
false readings that led to the initial inappropriate triggering of 
the ESR.  
 
Loss of Ariane 5 – Flight 501 [1]: Ariane 5 was an 
expendable launch system designed to deliver payloads into 
geostationary transfer or low Earth orbits. On June 4, 1996, 
the Ariane 5 rocket departed on its maiden flight.  

37 seconds after lift-off at an altitude of about 3,500 meters, 
the Ariane 5 rocket veered off its flight path, broke up, and 
exploded. The Ariane 5 had undergone a decade of 
development at an expense estimated at $7 billion. The rocket 
and cargo losses were valued at $500 million.  

Shortly after lift-off, incorrect control signals sent to the 
Ariane 5 engines caused them to swivel. The resulting stresses 
on the rocket led to a breakup and onboard systems 
automatically triggered the self-destruct. This malfunction 
could be directly traced to a software failure. The cause was a 
program segment that attempted conversion of a 64-bit 
floating point number to a 16-bit signed integer. The input 
value (a 64-bit floating point number related to the horizontal 
velocity of the rocket with respect to the platform) was larger 
than 32,767 and outside the range that could be represented by 
a 16-bit signed integer, so the conversion failed due to an 
overflow. The software error arose in the active and backup 
computers at the same time, resulting in the shutdown of both 
and subsequent total loss of attitude control.  Software for the 
Ariane 5 was reused from the Ariane 4 project.  The Ariane 5 
was a faster rocket than its predecessor wherein the noted 
error would now more likely occur when it would not have in 
the earlier rocket. 
 
Emergency Shutdown of the Hatch Nuclear Power Plant 
[4,10]: The Edwin I. Hatch nuclear power plant was recently 
forced into an emergency shutdown for 48 hours, after a 
software update was installed on an office computer.  

The mishap occurred on March 7, 2008 after an engineer 
installed a software update on a computer operating on the 
plant’s business network. The software update was designed to 
synchronize data on both the business system computer and 
the control system computer. According to a report filed with 
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the NRC, when the updated computer rebooted, it reset the 
data on the control system causing safety systems to errantly 
interpret the lack of data as a drop in water reservoirs that cool 
the plant’s fuel rods. As a result, automated safety systems at 
the plant triggered a controlled emergency shutdown.  

The Southern Company (which managed the technology 
operations for the plant) stated that the plant’s emergency 
systems performed as designed and that at no time did the 
malfunction endanger the security or safety of the nuclear 
facility and surrounding area. They explained that company 
technicians were aware that there was full two-way 
communication between certain computers on the plant’s 
corporate and control networks. However, the engineer who 
installed the update was not aware that the software was 
designed to synchronize data between the business system 
computer and the control system computer and that a reboot in 
the business system computer would force a similar reset in 
the control system computer.  

Estimating a loss based on electricity prices, the total cost to 
purchase electricity from external sources during the 48-hour 
shutdown period could be approximately $5 million. This does 
not include other operation-related losses.  
 
Power-Outage across Northeastern U.S. and Southeastern 
Canada [7]: On August 14, 2003 in the heat of the summer at 
around 4pm EST, parts of the Northeastern United States and 
Southeastern Canada experienced widespread blackouts. 
Specifically among the states affected were New York, New 
Jersey, Vermont, Michigan, Ohio, Pennsylvania, Connecticut, 
and Massachusetts. Among the major urban agglomerations 
touched by the electrical power outage in the United States 
were New York City, Albany, and Buffalo in New York, 
Cleveland and Columbus in Ohio, and Detroit in Michigan. 
Ottawa and Toronto in Canada were also affected.  

The blackouts resulted in the shutdown of nuclear power 
plants in New York and Ohio and affected airport operations 
in the affected states. More than 50 million people were 
impacted by the outages; the total loss was estimated at $13 
billion.  

The outage began due to some routine system 
troubleshooting. A technician disabled a software trigger that 
launched a ‘state estimator’ every five minutes; this is normal 
procedure. Unfortunately, the technician forgot to turn the 
trigger back on after finishing with the maintenance and the 
system did not provide a reminder to do so.  

With the trigger disabled, the power system began to set off 
a series of alarms, slowly at first and then faster as the system 
failure became more widespread.  A race condition in the 
system that set off the alarms developed and caused the alarm 
software process to lock up. Alarms that were to be sounded 
began to queue up with no software process to handle them. 
Because of this the workers in the control room were not 
alerted to the impending power losses. Eventually this queuing 
incident halted the server where the process was hosted. An 
image of the locked-up program and its queue of alarms were 
moved to a backup server and an automated text was sent to a 
technician. Since an exact copy of the locked up program was 
used on the backup server, it did not take long for that server 
to fail in the same way. 

In the interests of better understanding the scale of the 
blackout, we take a brief look at the infrastructure affected by 
the blackout. With the power fluctuations on the grid, power 
plants automatically went into “safe mode” to prevent damage 
in the case of an overload, which in turn put much of the 
power normally available off-line until those plants could be 
slowly taken out of “safe mode.” In the meantime, homes and 
businesses both in the affected and surrounding areas were 
asked to limit power usage until the grid was back to full 
power. Several areas lost water pressure. Transportation, 
communication, and oil and gasoline services were also 
greatly affected. Looting and civic disturbances were reported 
in areas such as Ottawa, Ontario and Brooklyn, New York. 
 
3. Lessons Learned 
 
In this section we present the lessons learned from the 
occurrence of these accidents and the knowledge we can take 
away from them to prevent their recurrence. Each accident has 
its own unique and important lessons; however, we choose to 
present the lessons in this section in a collective form (from 
what we consider most significant to least). Even though each 
lesson may be based on a particular accident, this does not 
imply that the lesson is restricted to that accident alone. 

A lesson may be useful in many scenarios (i.e., may avoid 
multiple accidents) and at the same time multiple lessons may 
be learned from the same accident. These lessons therefore, 
act as generally applicable guidelines and principles. 
 
1) Testing for the bad is as important as testing for the 

good: For safety-critical software, in addition to testing 
what the software should do, test also what the software 
should not do (i.e., which scenarios should not occur but 
if they do, test for specific behavior returning the system 
to a safe state). Instead of using default system exception 
handlers which may simply result in system shut down, 
consider customized handlers for various exceptions in 
order to ensure the safe deterministic operation of critical 
software systems. Examples evidenced where testing for 
what the software should not do may have helped are the 
miscalculated radiation doses at ION and the Ariane 5 
incident [1].  

 
2) Be wary of change impact – small changes can 

sometimes have big consequences: When changing any 
part of a safety-critical software system (no matter how 
small the change), examine and test how that change will 
affect the safety of the overall system, i.e., function and 
exception, interface behavior, timing and others. While 
this impacts analysis may not uncover every likely issue, 
it provides a systematic process for dealing with the 
effects of change to a safety critical software system.  An 
example of small changes affecting critical operations is 
evidenced in the unintended emergency shutdown of the 
Hatch nuclear power plant for a business computer update 
[4,10]. Another supporting example is the Korean Air 
Flight 801 accident where the MSAW system was 
inhibited [9,15,18]. A third example is the loss of contact 
with the SOHO [21,23] where a modified command 
sequence was missing a critical function to reactivate a 
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gyro. Also, even well-tested, proven software must still be 
thoroughly retested and rechecked when reused, adapted, 
and deployed to a different environment. An example of 
this is the loss of the Mars Climate Orbiter [19] and the 
Ariane 5 [1]. Finally, any changes made to the software, 
and especially safety-critical software, should be properly 
researched and documented. While this seems like a 
trivial statement, oftentimes the documentation is 
forgotten when coupled with aggressive schedules, cost 
targets, and competing resources.  An example of this is 
the mishap involving NASA’s DART [17] where a known 
fix was not applied to the flight software. 

 
3) Always have a backup, but there are no guarantees: 

For systems where a high degree of safety is of utmost 
concern, redundancies should always be considered. An 
example of this is the loss of communication between the 
FAA Air Traffic Control Center and commercial aircraft 
[6,13]. As important as this is however, it is also 
important to note that if a system fails due to a software 
fault, any identical redundant system using the same 
software and interfaces to the same equipment will likely 
fail due to the same software fault. As a result, 
“redundancy” (namely, having an identical backup 
system which runs the exact same software or using an 
identical software program used as a backup to a primary 
program) may not always be an appropriate preventative 
measure. An example issue with software backup is the 
power-outage across Northeastern U.S. and Southeastern 
Canada [7] where the alarm process failed on the primary 
and backup servers. 

 
4) User-awareness is critical. Never take safety for 

granted: In the case of safety-critical systems, one cannot 
assume that a computer automatically ensures safe system 
operation. When computing systems provide interaction 
with the environment, inputs are read and computer 
responses selected coincident with prior programming.  
When human users interact with computer systems, the 
humans are responsible for maintaining adequate 
situational awareness taking responsibility and 
accountability for the state changes of the system in 
which the context is taking place. Accidents can occur 
with safety critical systems in this case due to human 
distraction or lack of situational awareness within the 
context of system decision.  An example of this loss of 
situation awareness is evidenced with the American 
Airlines Flight 965 accident [14] where the selection of 
the wrong waypoint allowed the aircraft to steer into the 
path of terrain. Another example is the miscalculated 
radiation doses at the National Oncology Institute in 
Panama [2,5]. 

 
5) Don’t leave well enough alone: When a system has a 

known problem that could affect its safe operation, it is 
never a good idea to let the issue persist indefinitely. 
Instead of relying on an improvised workaround, the error 
in the software should be corrected as soon as possible 
and updated software tested, released, and deployed to 
avoid a potential crisis. An example of this is the loss of 

communication between the FAA air traffic control center 
and aircraft [6,13] due to a field representative not 
resetting software in the VCSC before the internal clock 
reached 0.  In this case, a manual procedure allowed the 
software operation to continue until a repair could be 
effected, but the repair did not actually occur until after 
the incident had already occurred. 

 
6) Success during simulations does not imply success 

during operation: Whenever possible, safety-critical 
software should undergo integration and final testing 
using real equipment rather than simulations alone. If a 
system is to be validated using simulation or other 
analyses, care must be taken to ensure that the models 
underlying the analysis are suitably accurate and well-
tested. Also, simulated stress testing and fault injection 
(i.e., using inputs just outside allowed range values, using 
unallowed inputs, etc.) should be an integral part of the 
software testing process to discover latent faults, establish 
the limits of the system, and verify deterministic behavior 
in the presence of faults. The loss of the Mars Polar 
Lander [8,16] illustrates this lesson where a false landing 
indication on a sensor may have caused the spacecraft 
loss on landing maneuver. A system with well-defined 
limits of operation could fail when it is operated outside 
of those limits. Just because an anomaly does not show up 
in thousands of hours of testing, it in no way implies that 
it may not show up in practice. An example of this is the 
lack of precision software bug that led to the Patriot 
Missile system failure at Dhahran, Saudi Arabia [20]. The 
error would not have occurred if the system was reset 
before the accumulated error would be large enough to 
cause the malfunction [20]. 

 
7) Never pick user-convenience over software safety: 

While functionality of a system that makes its use more 
convenient for users is desirable, it needs to be carefully 
analyzed and scrutinized to ensure this new functionality 
does not result in a new unmitigated potential risk. For 
safety-critical systems where new functionality must 
integrate with or provide new safety-critical functionality, 
an impact analysis should be performed to quantify the 
extent to which the current system is affected prior to 
effecting required changes. An example of a user 
interface providing undocumented behavior is the 
miscalculated radiation doses at the National Oncology 
Institute in Panama [2,5] where the physicians tried to 
define a 5-block mask instead of working within the 
limits of the software. Another example is the American 
Airlines (AA) Flight 965 [14] accident involving the 
selection of waypoint mechanization of the flight 
management system software. 

 
8) Software may not always be used in the same way it is 

tested; improper use may lead to catastrophic 
consequences: Software (especially safety-critical 
software) should be designed to avoid implementation or 
usage ambiguities. Although flexible software may be 
desired, the implementation must be accomplished such 
that when users run the software based on their own 
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mental assumptions, the software operates as expected 
and when it does not, appropriate warning messages are 
displayed to remind users of the potential risk of such 
exercises. In the case of the miscalculated radiation doses 
at the National Oncology Institute in Panama [2,5], the 
physicians used the software in a way that that caused the 
system to generate a lethal radiation dosage.  No warning 
messages were generated to alert the system user of the 
result.  Yet, the radiation treatment system allowed the 
selection to be made. 

 
9) Having a clearly defined system boundary is essential: 

System boundaries should be carefully defined and 
interfaces setup appropriately such that systems external 
to the safety-critical system can be appropriately 
supported within a managed risk approach.  Providing this 
managed interface provides a mechanism to allow 
communication between the systems if warranted while 
restricting operations between the systems that could 
adversely affect safety-critical operations. The emergency 
shutdown of the Hatch nuclear power plant [4,10] is an 
example of this system boundary being sufficiently broad 
to allow an operation outside the system boundary (i.e., a 
business computer) to adversely affect the operation of 
the power plant. 

 
10) Safety-critical software should not be overly-sensitive 

to erroneous data: There are times within a computer 
system when inputs to an operation may fall outside the 
designed boundaries of the expected input parameters.  In 
computer systems where sufficient exception handling is 
not customized by the programming team, resultant 
operation may not be deterministic under certain 
circumstances.  For safety-critical systems, deterministic 
behavior is expected.  In that regard, development testing 
should be structured to ensure that signals (i.e., variables, 
decision constructs, etc.) are tested in normal and 
abnormal range conditions to ensure deterministic system 
behaviors. This lesson is learned based on the mishap 
involving NASA’s Demonstration of Autonomous 
Rendezvous Technology (DART) [17] where successive 
system resets eventually depleted the spacecraft 
resources. 

 
11) Whenever a critical software system is using sample 

data for testing purposes, the system should alert the 
end users. Sample data is typically used in computer 
systems to demonstrate correct operation of the system 
under known input conditions when it is inconvenient or 
not generally possible to use live data instead.  Sample 
data is used to this end as representative data that one may 
expect to experience in operation with the system. This 
sample data should be carefully chosen and a thorough 
testing effort should be conducted to ensure that 
appropriate alert messages are displayed indicating a test 
in progress or that sample data is being used. In the 
Hartsfield-Jackson Atlanta International Airport [3] 
incident, baggage screeners looking for contraband items 
were misinformed by the computer system that a 
suspicious item was detected.  Whether this incident was 

caused by a software bug or not, appropriate messages 
should have prevented this mishap. 

 
12) Engineers developing safety-critical software must 

have a comprehensive understanding of the overall 
software development process. While this statement 
seems obvious, all too often the details of the software 
development process to most go unchallenged and in 
some cases, unknown. Engineers charged with the 
development of safety-critical software, software 
engineers, quality assurance engineers, systems engineers, 
and others, should be familiar with the overall software 
process and for those where it matters, deeply 
knowledgeable of the mechanics of lower level processes 
and workings of tools. Further, the process should be 
followed and audited. Performance to the defined 
software development process provides assurance to the 
product development team that the engineering 
development of the software is managed.  Following the 
process is of critical importance; there are many examples 
of projects not following their software process. Within 
the accidents and mishaps reported here, the 
misplacement of a satellite by a Titan IV B-32/Centaur 
Launch Vehicle [11,22] serves as one example of the 
consequence of not performing required process work in 
developing and testing the filter constants for the flight 
software. 

 
4. Discussion 
 
In this section we discuss the reasons behind the choice of the 
14 accidents presented in this study and why they were 
categorized as they were. Additionally we also address the 
issue that software is typically not the sole cause of the 
accidents or mishaps in which software was identified as a 
causal factor.  Software behavior may, however, be in the 
chain of events that ultimately leads to the mishap or accident. 
 
4.1 Rationale Behind Choice of Accidents Studied 
 
No paper regardless of breadth or depth can hope to cover 
every accident that may be relevant to the subject matter 
presented herein. The accidents that have been chosen for 
analysis were selected on the basis of several criteria � the 
extent of the damage, the extent to which software played a 
contributing cause, and the recentness of the accidents. While 
this paper does not claim to be a complete listing of such 
accidents, it does however claim to provide a representative 
picture of how faulty software, or software that has been used 
in a faulty manner, can lead to loss of time, money, and 
gravely so, under certain circumstances – loss of life as well. 
 
4.2 Software: ‘sole cause’ versus ‘contributing cause’ 
 
We also point out that software may not be the sole cause for 
the accidents and that quite often the causes are a combination 
of software errors, human mistakes, and/or hardware failures. 
Factors such as poor communication, negligence, and 
oversight to name a few, have also been identified as past 
contributors. However, undoubtedly, software has directly or 
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indirectly played a causal role in each of the accidents 
discussed in this paper. This is why the tone of the paper has 
been primarily restricted to the software-related causes of the 
accidents. 
  
4.3 The Categorization of the Accidents Studied 
 
As stated in Section 2, there are many different ways to 
classify or categorize the accidents studied and other similar 
accidents. Examples of such classifications may be based on 
the financial cost incurred, the nature of the software fault, the 
area/domain of the accident (such as nuclear research, 
aeronautics, etc.), and various others. However, such 
classifications come with a great deal of subjectivity and are 
open to individual interpretation. An accident may also fit 
more than one category. To avoid such complications and 
possible ambiguities, we partitioned the accidents based on 
whether the cost resulted in the loss of life or not. Not only is 
this factual and non-subjective, but it also holds additional 
benefit in that the accidents categorized under loss-of-life 
illustrate the serious nature of the subject matter and the 
importance of safety in software both in the past and in our 
future as software becomes even more prolific within our 
societal products. 
 
5. Summary 
 
This paper reviews 14 recent catastrophic accidents, several of 
which have led to not just losses in terms of time and money, 
but also the loss of life. In the case of each accident, the role 
played by software in causing the accident has been identified. 
While the accidents may not have been caused by the software 
alone, and may have been compounded by human error and/or 
hardware failure, nevertheless software has had a hand in the 
causal chain of events. This is especially alarming given that 
software systems are being increasingly used in our day-to-
day lives, including safety-critical systems. 

By virtue of our review of these accidents, we also identify 
lessons learned that can act as principles and guidelines so that 
similar accidents might be avoided in the future. The 
identified lessons taken together suggest that better 
verification and validation activities and practices need to be 
employed more systematically.  

 Further research needs to be conducted in the area of 
software safety in order to improve and add to the existing 
body of knowledge on the subject. Software engineering 
curriculums need to undergo significant updates in order to 
better impart the fundamentals of software testing and 
software safety to students who go on to become our future 
industry practitioners.  
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