
Recent Catastrophic Accidents: Investigating How Software Was Responsible

 W. Eric Wong, Vidroha Debroy, Adithya Surampudi & HyeonJeong Kim Michael F. Siok
 Department of Computer Science Lockheed Martin Aeronautics Company

 University of Texas at Dallas Fort Worth, Texas, USA
 {ewong,vxd024000,avs091020,hj.kim}@utdallas.edu mike.f.siok@lmco.com

Abstract

Areas crucial to life such as medicine, transportation, nuclear-
energy research and industry, aeronautics, and others, all make
use of software in one way or another. However, the
application of software to such domains means that the
software may now become safety-critical such that an error in
the software or an error in its use could have devastating
consequences. This paper reviews 14 recent accidents, several
of which resulted in the loss of life in addition to time and
money, and identifies the role(s) that software played as an
important causative factor. The useful lessons which can be
learned from the accidents are also presented, which can then
act as principles and guidelines to avoid the recurrence of
similar accidents in the future.

Keywords: Software safety, catastrophic accidents, mishaps,
safety-critical software systems

1. Introduction

Software systems are actively used today in safety-critical
areas such as aeronautics, astronautics, medicine, nuclear
power generation and nuclear research, transportation, etc.
When employed in such systems, software is often responsible
for controlling the behavior of electromechanical components
and monitoring their interactions in addition to other tasks
such as user interface management, computer administration,
and others. Since most accidents arise in the interfaces and
interactions among the components, software plays a direct
and important role in system safety [12].

Consequently an important issue that comes up is that of
software safety – which means that the software should
execute within a system context without contributing to
hazards [12]. However, should the software operation directly
or indirectly lead to a hazard in the case of a safety-critical
system, then the consequences of the hazard realization could
be catastrophic. By catastrophic we imply that the damage is
not just restricted to financial losses, or losses in terms of time
or property, but rather may also include the loss of life.

This paper selects a representative set of 14 recent
catastrophic accidents and presents a brief summary of them
and their software-related causes (whether direct or indirect).
We also explore the extent of the damage incurred in the case
of each accident, and more importantly, identify valuable
lessons that can be learned from them. By presenting the cases
of such accidents to the reader, we hope to highlight the ever
growing importance of software safety both as a field of

research and education, and as an aspect of software
development that needs more attention in practice.

Thus, the contributions made by this paper are as follows:

� We highlight the importance of software safety, especially
in the case of safety-critical systems, by analyzing 14
recent catastrophic accidents and underscoring the
software-related causes.

� For each accident we identify useful lessons that can be
taken away to avoid their recurrence.

The remainder of this paper is organized in the following
manner. In Section 2, we categorize and present a detailed
review of the circumstances surrounding each chosen accident
and identify the software-related causes for each. Section 3
then identifies the lessons that can be learned from the
accidents followed by a discussion in Section 4 of issues and
concerns relevant to this paper. Finally, conclusions and
suggested follow-on research is presented in Section 5.

2. Recent Catastrophic Accidents Involving Safety-

Critical Systems

Each accident presented in this section is summarized
individually. Yet, to facilitate discussion and apply an order to
the presentation, we also categorize the accidents based on
whether the damage incurred involved the loss of life or not.
Note that there may be several other ways to classify or
categorize these (and other similar) accidents based on various
criteria. Further discussion on this is presented in Section 4.3.

2.1 Accidents Involving the Loss of Life

The accidents presented in this section are those that resulted
in loss of life in addition to significant financial and/or
property loss incurred.

Miscalculated Radiation Doses at the National Oncology
Institute in Panama [2,5]: Panama’s largest radiation therapy
institution is the National Oncology Institute (Instituto
Oncológico Nacional, ION). In March 2001, Panama’s
Ministry of Health asked the Pan American Health
Organization (PAHO) to investigate some serious
overreactions among cancer patients undergoing specific
radiation therapy treatment at ION. A total of 56 patients were
treated for specific cancers within the target time period and
were identified in the ION radiation dosage study group. From
this study group it was determined that 28 patients were likely
given radiation doses exceeding their required dosage. By

2010 Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-4086-3/10 $26.00 © 2010 IEEE
DOI 10.1109/SSIRI.2010.38

14

2010 Fourth International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-4086-3/10 $26.00 © 2010 IEEE
DOI 10.1109/SSIRI.2010.38

14

August 2005 (4.5 years later), 23 of these 28 patients died. It
was reported that it was unclear whether these patients would
have died from their cancers with or without treatment.
However, at least 18 of the patient deaths were attributed
directly to radiation overdose.

After a careful investigation, three main causes for these
accidental overdoses were identified: (1) an unclear manual
for using the radiation mechanism, (2) no warnings in the
software program for the improper usage, and (3) no manual
quality control before usage. The treatment planning system
software allowed a radiation therapist to draw on a computer
screen the placement of metal shields (called “blocks”).
Investigation revealed that the software allowed the use of at
most four shield blocks, but the doctors at ION wished to use
five. The doctors thought they could get around this software-
imposed constraint by drawing all five blocks as a single large
block with a hole in the middle. What the doctors did not
realize was that the software provided different results in this
configuration based on how the “hole” was drawn. Drawing it
in one direction, the correct dose would be calculated; drawing
it in another direction, the software would recommend twice
the necessary exposure.

Loss of Precision Error in Patriot Missile Defense System
at Dhahran, Saudi Arabia [20]: The Patriot is a surface-to-
air defense missile system used by the United States Army to
protect against cruise missiles and medium to high altitude
aircraft. During the Gulf war in the early 1990’s, Patriot
missile systems were deployed at strategic locations to defend
key assets, military personnel, and citizens against Scud
missiles launched by Iraqi forces. The Patriot works by
locking its radar onto an incoming target and relaying the
signals to a computer at a control station that tracks the
target’s speed, trajectory, and computes a predicted course.
Using a series of complex split-second computations, the
computer calculates when to launch its missiles and, in the
case of Scuds, fires two Patriot missiles each with a 200-
pound conventional warhead traveling at about 2,000 miles an
hour at each Scud.

On the night of February 25, 1991, a Patriot missile defense
system operating at Dhahran, Saudi Arabia failed to track and
intercept an incoming Scud missile. This Scud subsequently
hit a U.S. Army barracks killing 28 soldiers and injuring
another 98.

The Patriot battery at Dhahran failed to track and intercept
the Scud missile because of a software problem in the
weapons control computer. This problem led to an inaccurate
tracking calculation (i.e., a loss of precision error) that grew
worse the longer the system operated without a reset. At the
time of the incident, the Patriot battery had been operating
continuously for over 100 hours. By then, the small inaccuracy
was serious enough to cause the system to target the wrong
place for the incoming Scud. Once identified, the error was
repaired and the revised software deployed to all Patriot
Missile Defense Batteries..

American Airlines (AA) Flight 965 Accident [14]: On
December 20, 1995, AA965 departed from Miami
International Airport bound for Cali, Colombia. At 9:40pm,

just five minutes before its scheduled arrival, the plane went
down in the Andes, crashing into the west slope of a mountain.
The crash led to a total of 159 deaths and completely
destroyed the airplane (a Boeing 757). Only four of the
passengers and a dog survived. This was the first U.S.-owned
757 accident and resulted in the highest death toll of any
accident in Colombia. The death toll was also the highest of
any accident involving a Boeing 757 at the time and was the
deadliest air disaster involving a U.S. carrier since the
downing of Pan Am Flight 103 on December 21, 1988.

The radar for the Cali, Colombia air traffic control system
had been damaged in a guerrilla attack in 1992, so controllers
were unable to use it to track the approach of the 757 aircraft.
The pilots relied on a series of radio beacons which had been
placed in the area to serve as navigational aids through the
canyons and mountainous terrain. Having already been
programmed with the location of these beacons, the onboard
flight management systems should have guided the pilots from
their point of origin to the terminal at the Cali airport.

The user interface for the flight management system
allowed the pilot to enter the name of a destination. If the
initial instead of the full name of the destination was entered,
the flight management system would select the destination
which had the highest radio frequency among all the
destinations which started with that initial. Once the
destination had been selected, the flight management system
did not provide any selection feedback.

The circumstances leading to this accident involved the
pilots programming the navigational computer with the
location of Rozo (a waypoint on their approach). Although
this waypoint was designated “R” on their charts, the same
identifier had also been used for a second radio beacon
(Romeo) near Bogotá. When a crewmember changed the
approach course to the airport, he input only “R” instead of
“Rozo” in the computer. The flight management system
interpreted this as a request to set a course to the “Romeo”
waypoint which has a higher radio frequency than the one at
Rozo. When two waypoints with the same initial were nearby,
the FMS automatically chose the one with the higher
frequency but listed the others. The pilot selected the first “R”
on the list, unwittingly setting a course for Bogotá, which
caused the autopilot to execute a wide semicircular turn to the
east and eventually to the accident site.

Korean Air Flight 801 Accident [9,15,18]: On August 5
1997, Korean Air Flight 801 departed from Kimpo
International Airport for Seoul, South Korea. Korean Air
Flight 801 was a scheduled commercial flight between Seoul,
Korea and Guam. On board were 254 people – 2 pilots, 1
flight engineer, 14 flight attendants and 237 passengers. The
flight experienced some turbulence along the way but the
flight was otherwise uneventful until the jet prepared to land.
At 1:42am, the aircraft struck Nimitz Hill, about 3 miles
(5 kilometers) short of the runway at an altitude of 660 feet
(201 meters). Of the 254 people on board, 228 were killed; 23
passengers and 3 flight attendants survived the accident with
serious injuries. The impact and post-crash fire destroyed the
aircraft. In 2000, a lawsuit was settled in the amount of
$70,000,000 on behalf of 54 families.

1515

The National Transportation Safety Board (NTSB)
determined that the probable cause of the accident was the
captain’s failure to adequately brief and execute a non-
precision localizer-only approach. A contributing cause was
the first officer’s and flight engineer’s failure to effectively
monitor and cross-check the captain’s execution of the
approach. In addition, the captain’s fatigue and Korean Air’s
flight crew training were listed as contributors. The crew had
been using an outdated flight map, which stated that the
minimum safe altitude for a landing aircraft was 1,770 feet
(540 meters) as opposed to 2,150 feet (656 meters). Flight 801
had been maintaining 1,870 feet (570 meters) prior to landing.
Bad weather in the area was also a contributing factor.
Although Flight 801 likely exited a heavy rain shower shortly
before the accident, the flight crew was still not able to see the
airport due to the presence of another rain shower located
between Nimitz Hill and the airport.

The identified software-related cause was the FAA’s
intentional inhibition of the Minimum Safe Altitude Warning
(MSAW) system. The MSAW system was developed by the
FAA in response to the NTSB Safety Recommendation A-73-
46. However, a 54-nm inhibit zone was setup at the Guam
International Airport to alleviate frequent nuisance warnings;
this was allowed by policy. By inhibiting these warnings close
to the airport, the usefulness of the MSAW system in
providing minimum safe altitude over terrain warnings was
diminished. Simulations by NTSB/FAA indicated that,
without the inhibition, MSAW would have generated an alert
64 seconds before impact which would have been sufficient
for the controller to advise Flight 801 and give the aircrew an
opportunity to take appropriate actions to avoid the crash.

2.2 Accidents that Did Not Involve the Loss of Life

The accidents presented in this section are those that resulted
in significant loss of time and money, yet fortunately the loss
of life was avoided.

Shutdown of the Hartsfield-Jackson Atlanta International
Airport [3]: Hartsfield–Jackson Atlanta International Airport
is one of the world’s busiest airports, both in terms of
passengers and number of flights. It serves as a major hub for
travel throughout the Southern United States. The airport has
151 domestic and 28 international gates. To ensure security,
all the passengers must go through a checkpoint and have their
carry-on luggage screened by an X-ray machine before they
are allowed to board their aircraft. The alertness of the security
personnel screening luggage is tested by the periodic display
of suspicious devices on the X-ray machine displays, followed
by a message indicating that the particular display was only a
test.

On April 19, 2006, an employee of Transportation Security
Administration (TSA), U.S. Department of Homeland
Security, identified the image of a suspicious device but did
not realize it was part of the routine testing for security
screeners. The software failed to indicate such a test was
underway. As a result and per procedure, the airport
authorities evacuated the security area for two hours while
searching for the suspicious device manually, which they
could never find. This evacuation occurred at peak travel time

which caused delays of more than 120 flights. In addition,
many passengers were inconvenienced; many had to rush to
reach their departure gates or reschedule flights due to this
evacuation.

This false alarm was due to a software error which failed to
alert the security screeners that the suspicious device was only
a test image. Normally the software flashes the words "This is
a test" on the screen after a brief delay.

Loss of Communication between the FAA Air Traffic
Control Center and Airplanes [6,13]: On Tuesday,
September 14, 2004, the Los Angeles International Airport
and other airports in the region suspended operations due to a
failure of the FAA radio system in Palmdale, California.
Technicians on-site failed to perform the periodic maintenance
check that must occur every 30 days and the radio
communications system shut down without warning. The air
traffic controllers lost contact with the aircraft when the
primary voice communications system shut down
unexpectedly. More precisely, it was a Voice Switching and
Control System (VSCS) that failed.

Air traffic controllers use a touch-screen interface to the
VSCS to select a phone line to connect to other controllers or
to a radio frequency to talk to flight crews. When the VSCS
failed, the backup system that was supposed to take over in the
event of a primary system failure also crashed. Fortunately,
the Collision Avoidance Systems (CAS) onboard the
commercial aircraft in-flight helped to avert catastrophe
during this outage. The CAS interrogated the transponders of
nearby aircraft and if danger of a collision was detected, one
of the pilots was instructed by the system to climb and the
other to descend. This communications outage disrupted about
600 flights (including causing 150 flight cancellations),
impacting over 30,000 passengers. Flights through the
airspace controlled by the Palmdale, CA facility were either
grounded or rerouted elsewhere.

An error in the VSCS compounded by human error was
ultimately responsible for the three-hour radio breakdown.
The replacement for the older VSCS system needed to be reset
approximately every 50 days to prevent data overload. The
software used a 32-bit countdown timer that decremented
every millisecond. This allowed for 232-1 milliseconds worth
of timer ticks after which the counter reached zero and the
system could no longer decrement the time; the software then
shut down. The manual radio system reset was needed before
the counter reached 232 milliseconds (approximately 50 days).
A field technician failed to perform the radio reset and the
VSCS subsequently shut down. The backup to this system also
failed.

Learning from this experience, the FAA deployed a
software fix to the VSCS which addressed this countdown
timer issue.

Mishap Involving NASA’s Demonstration of Autonomous
Rendezvous Technology (DART) [17]: On April 15, 2005,
the Demonstration of Autonomous Rendezvous Technology
(DART) spacecraft was successfully launched from the
Western Test Range at Vandenberg Air Force Base,
California.

1616

DART was designed to rendezvous with and perform a
variety of maneuvers in close proximity to the Multiple Paths
Beyond Line of Sight Communications (MUBLCOM) satellite
without assistance from ground personnel. DART performed
as planned during the first eight hours through the launch,
early orbit, and rendezvous phases of the mission,
accomplishing all objectives up to that time even though
ground operations personnel noticed anomalies with the
navigation system. During proximity operations, however, the
spacecraft began using much more propellant than expected.

Approximately 11 hours into what was supposed to be a 24-
hour mission, DART detected that its propellant supply was
depleted and it began maneuvers for departure and retirement.
Out of 27 defined mission objectives, DART met only 11.
NASA declared a “Type A” mishap and convened a Mishap
Investigation Board (MIB). These measures are taken for any
mishap resulting in a mission failure and a loss of more than
one million US dollars in government funds. This mishap
category requires the most detailed level of investigation.

None of the 14 requirements related to the proximity
operations phase, the critical technology objectives of the
mission, were met. The MIB found that DART had also
collided with MUBLCOM 3 minutes and 49 seconds before its
retirement. The MIB determined the underlying causes for this
collision based on hardware testing, telemetry data analysis,
and simulations. From the investigation, the MIB developed
two timelines for the study: one for DART’s premature
retirement and another for DART’s collision with
MUBLCOM.

Software-related causes played a significant role in this
incident. The premature retirement of DART occurred due to a
cycle of computational “resets” by the software throughout the
mission which triggered excessive thruster firings and an
unexpected rapid fuel depletion. Also incorrect velocity
measurement from the primary GPS receiver was introduced
into the software’s calculations during each reset. A software
fix for this known “bug” had not been applied to the on-board
software by the DART team either prior to or during the
mission.

Loss of the Mars Polar Lander [8,16]: The Mars Surveyor
'98 program was comprised of two spacecraft launched
separately: the Mars Climate Orbiter and the Mars Polar
Lander (MPL). The two missions were designed to study the
Martian weather, climate, and water and carbon dioxide
budget in order to understand the reservoirs, behavior, and
atmospheric role of volatiles and to search for evidence of
long-term and episodic climate changes.

MPL, with two Deep Space 2 (DS2) microprobes was
launched on January 3, 1999 – 23 days after its partner, the
Mars Climate Orbiter. All three components of the MPL were
mounted to a shared cruise stage which provided Earth
communications, power, and propulsion support services for
the trip to Mars. The length of the planned MPL mission after
landing was 90 days; the DS2 mission was two days. The
probes were to be released from the cruise stage after the
lander–cruise stage separation, plummeting to the surface to
impact about 60 kilometers from the MPL landing site. After
an eleven month hyperbolic transfer cruise, MPL reached
Mars on December 3, 1999. However, NASA lost contact with

the spacecraft just prior to its scheduled atmospheric entry and
communication was never regained. The total loss was $120
million (not including the launch vehicle and two DS2
microprobes) of which $110M was allocated to spacecraft
development and the other $10M to mission operations.

Given the total absence of telemetry data and no response to
any of the attempted recovery actions, an exact cause, or
causes, of failure could not be determined. Nevertheless, a
special review board appointed by the Jet Propulsion
Laboratory (JPL) Director identified that the most probable
cause of the loss of MPL was a premature shutdown of the
descent engines. It was assumed that one of the MPL’s leg
contact sensors tripped during descent which signaled a false
indication that the spacecraft had landed. This, in turn,
resulted in the spacecraft shutting down its descent engines. At
least one of the magnetic sensors attached to the landing legs
generated a spurious touchdown indication. The software,
intended to ignore touchdown indications prior to the enabling
of the touchdown sensing logic, was not properly implemented
and the spurious touchdown indication was retained. In
addition, the touchdown sensing software was not tested with
MPL in the final flight software configuration prior to its use
on the mission.

Loss of the Mars Climate Orbiter [19]: Companion to the
MPL (discussed above), the Mars Climate Orbiter was also
part of the Mars Surveyor’ 98 program. Mars Climate Orbiter
was launched on December 11, 1998. After a brief cruise in
Earth orbit, the spacecraft was put into trans-Mars trajectory;
about 15 days after launch, the largest Trajectory Correction
Maneuver (TCM) was executed using the spacecraft’s
hydrazine thrusters. During cruise to Mars, three additional
TCMs were performed.

The Mars Climate Orbiter was intended to enter an orbit at
an altitude of 140 – 150 kilometers (approx. 460,000 - 500,000
feet) above the Martian surface. However, a navigation error
caused the spacecraft to reach as low as 57 kilometers
(~190,000 feet). The spacecraft was likely destroyed by
atmospheric stresses and friction at this low altitude. This
malfunction was due to programming error; imperial units
(pound-seconds) were used instead of the metric units
(newtons) in the navigation software. The computer
controlling the spacecraft’s thrusters had underestimated the
thruster forces by a factor of 4.45 (i.e., one pound-second is
equivalent to 4.45 Newtons). This error may have accounted
for some of the TCMs required during transit to Mars. A
final, optional engine firing to raise the spacecraft’s path
relative to Mars before its arrival was considered by the
mission team but was not performed. The orbiter is thought to
have entered the Martian atmosphere at too steep an angle
leading to the loss.

Although the software was adapted from an earlier Mars
Climate Orbiter project, some testing was not performed prior
to launch and navigational data generated by the software was
not cross-checked during flight. The total cost of the loss was
about $85 million (not including the launch vehicle) of which
$80M was for spacecraft development and $5M was for
mission operations.

1717

Misplacement of a Satellite by Titan IV B-32/Centaur
Launch Vehicle [11,22]: On April 30, 1999, a Titan IV B was
launched with a mission to place a Milstar satellite in
geosynchronous orbit. The rocket was launched from the Cape
Canaveral Air Station (CCAS) in Florida. The launch vehicle
is configurable and can be launched with no upper stage or
with one of two optional upper stages each providing greater
and varied capability. The two types of upper stages are the
Centaur Upper Stage and the Inertial Upper Stage; the Centaur
upper Stage was used in this mission.

The first stages of flight proceeded without incident with the
Centaur separating from the Titan IV B as planned and
starting its main engines for the first burn phase. However,
after the initial stages of flight, the vehicle began to roll
unexpectedly. The Centaur stabilized itself during the
subsequent coast phase, but expended 85 percent of the
Reaction Control System (RCS) propellant.

During the second burn phase, the vehicle again began to
roll, eventually losing pitch and yaw control as well. Due to
the premature depletion of RCS propellant, the attitude control
system was unable to stabilize the vehicle. Because of the
anomalies during the Centaur’s flight, the Milstar satellite was
placed in an unusable low elliptical orbit, failing to reach the
desired geosynchronous orbit. The entire mission failed due to
this misplacement; the cost of this lost mission was about
$1.23 billion. In addition, NASA had to face severe criticisms
due to this mishap being the third straight Titan IV failure at
that time.

The Accident Investigation Board concluded the root cause
of the Titan IV B-32 mission mishap was the failure of the
software development, testing, and quality/mission assurance
processes used to detect and correct a human error in the
manual entry of a constant. The process allowed for a single
point of failure when generating mission critical data.

Loss of Contact with the SOHO [21,23]: The Solar and
Heliospheric Observatory (SOHO) was deployed on
December 2, 1995 and began normal operations in May 1996
to study the Sun. SOHO is a joint project between the
European Space Agency (ESA) and NASA and is also a
component of the International Solar Terrestrial Program
(ISTP). The three main scientific objectives of the SOHO
mission are: (1) investigation of the outer layer of the Sun, (2)
making observations of solar wind and associated phenomena,
and (3) probing the interior structure of the Sun. SOHO also
provides the primary source of near-real-time solar data for
space weather observation and prediction.

Originally planned as a two-year mission, SOHO continues
to operate after more than ten years in space. In October 2009,
a mission extension lasting until December 2012 was
approved. The 610 kg SOHO spacecraft is positioned in a halo
orbit around the Sun-Earth Lagrange L1 point, the point
between the Earth and the Sun where the balance of the Sun’s
gravity and the Earth’s gravity is equal to the centripetal force
needed for an object to have the same orbital period in its orbit
around the Sun as the Earth, with the result that the object will
stay in that same relative position.

Flight controllers at NASA Goddard Space Flight Center
(GSFC) lost contact with SOHO in the early morning hours of
June 25, 1998. Control of SOHO was eventually recovered 3

months later; SOHO was then re-oriented towards the Sun on
September 16 and returned to its normal operations on
September 25. However, though control was eventually
recovered, the one billion dollar spacecraft was temporarily at
stake and there was financial expense associated with recovery
operations to establish contact with and return the lost
spacecraft to operation.

The incident was preceded by a routine calibration of the
spacecraft’s three roll gyroscopes (gyros). The incorrect
diagnosis of a Gyro B fault and a rapid decision to send a
command to turn it off in response to unexpected telemetry
readings was a contributing factor to this incident.

With respect to the software-related causes, a modified
command sequence in the onboard control software was
missing a critical function to reactivate one of the gyros (Gyro
A). The absence of this function caused the failure of an
Emergency Sun Reacquisition (ESR) process and set in
motion the chain of events ending in the loss of telemetry from
the spacecraft. Furthermore, another error in the software
improperly left Gyro B in high gain mode which generated the
false readings that led to the initial inappropriate triggering of
the ESR.

Loss of Ariane 5 – Flight 501 [1]: Ariane 5 was an
expendable launch system designed to deliver payloads into
geostationary transfer or low Earth orbits. On June 4, 1996,
the Ariane 5 rocket departed on its maiden flight.

37 seconds after lift-off at an altitude of about 3,500 meters,
the Ariane 5 rocket veered off its flight path, broke up, and
exploded. The Ariane 5 had undergone a decade of
development at an expense estimated at $7 billion. The rocket
and cargo losses were valued at $500 million.

Shortly after lift-off, incorrect control signals sent to the
Ariane 5 engines caused them to swivel. The resulting stresses
on the rocket led to a breakup and onboard systems
automatically triggered the self-destruct. This malfunction
could be directly traced to a software failure. The cause was a
program segment that attempted conversion of a 64-bit
floating point number to a 16-bit signed integer. The input
value (a 64-bit floating point number related to the horizontal
velocity of the rocket with respect to the platform) was larger
than 32,767 and outside the range that could be represented by
a 16-bit signed integer, so the conversion failed due to an
overflow. The software error arose in the active and backup
computers at the same time, resulting in the shutdown of both
and subsequent total loss of attitude control. Software for the
Ariane 5 was reused from the Ariane 4 project. The Ariane 5
was a faster rocket than its predecessor wherein the noted
error would now more likely occur when it would not have in
the earlier rocket.

Emergency Shutdown of the Hatch Nuclear Power Plant
[4,10]: The Edwin I. Hatch nuclear power plant was recently
forced into an emergency shutdown for 48 hours, after a
software update was installed on an office computer.

The mishap occurred on March 7, 2008 after an engineer
installed a software update on a computer operating on the
plant’s business network. The software update was designed to
synchronize data on both the business system computer and
the control system computer. According to a report filed with

1818

the NRC, when the updated computer rebooted, it reset the
data on the control system causing safety systems to errantly
interpret the lack of data as a drop in water reservoirs that cool
the plant’s fuel rods. As a result, automated safety systems at
the plant triggered a controlled emergency shutdown.

The Southern Company (which managed the technology
operations for the plant) stated that the plant’s emergency
systems performed as designed and that at no time did the
malfunction endanger the security or safety of the nuclear
facility and surrounding area. They explained that company
technicians were aware that there was full two-way
communication between certain computers on the plant’s
corporate and control networks. However, the engineer who
installed the update was not aware that the software was
designed to synchronize data between the business system
computer and the control system computer and that a reboot in
the business system computer would force a similar reset in
the control system computer.

Estimating a loss based on electricity prices, the total cost to
purchase electricity from external sources during the 48-hour
shutdown period could be approximately $5 million. This does
not include other operation-related losses.

Power-Outage across Northeastern U.S. and Southeastern
Canada [7]: On August 14, 2003 in the heat of the summer at
around 4pm EST, parts of the Northeastern United States and
Southeastern Canada experienced widespread blackouts.
Specifically among the states affected were New York, New
Jersey, Vermont, Michigan, Ohio, Pennsylvania, Connecticut,
and Massachusetts. Among the major urban agglomerations
touched by the electrical power outage in the United States
were New York City, Albany, and Buffalo in New York,
Cleveland and Columbus in Ohio, and Detroit in Michigan.
Ottawa and Toronto in Canada were also affected.

The blackouts resulted in the shutdown of nuclear power
plants in New York and Ohio and affected airport operations
in the affected states. More than 50 million people were
impacted by the outages; the total loss was estimated at $13
billion.

The outage began due to some routine system
troubleshooting. A technician disabled a software trigger that
launched a ‘state estimator’ every five minutes; this is normal
procedure. Unfortunately, the technician forgot to turn the
trigger back on after finishing with the maintenance and the
system did not provide a reminder to do so.

With the trigger disabled, the power system began to set off
a series of alarms, slowly at first and then faster as the system
failure became more widespread. A race condition in the
system that set off the alarms developed and caused the alarm
software process to lock up. Alarms that were to be sounded
began to queue up with no software process to handle them.
Because of this the workers in the control room were not
alerted to the impending power losses. Eventually this queuing
incident halted the server where the process was hosted. An
image of the locked-up program and its queue of alarms were
moved to a backup server and an automated text was sent to a
technician. Since an exact copy of the locked up program was
used on the backup server, it did not take long for that server
to fail in the same way.

In the interests of better understanding the scale of the
blackout, we take a brief look at the infrastructure affected by
the blackout. With the power fluctuations on the grid, power
plants automatically went into “safe mode” to prevent damage
in the case of an overload, which in turn put much of the
power normally available off-line until those plants could be
slowly taken out of “safe mode.” In the meantime, homes and
businesses both in the affected and surrounding areas were
asked to limit power usage until the grid was back to full
power. Several areas lost water pressure. Transportation,
communication, and oil and gasoline services were also
greatly affected. Looting and civic disturbances were reported
in areas such as Ottawa, Ontario and Brooklyn, New York.

3. Lessons Learned

In this section we present the lessons learned from the
occurrence of these accidents and the knowledge we can take
away from them to prevent their recurrence. Each accident has
its own unique and important lessons; however, we choose to
present the lessons in this section in a collective form (from
what we consider most significant to least). Even though each
lesson may be based on a particular accident, this does not
imply that the lesson is restricted to that accident alone.

A lesson may be useful in many scenarios (i.e., may avoid
multiple accidents) and at the same time multiple lessons may
be learned from the same accident. These lessons therefore,
act as generally applicable guidelines and principles.

1) Testing for the bad is as important as testing for the

good: For safety-critical software, in addition to testing
what the software should do, test also what the software
should not do (i.e., which scenarios should not occur but
if they do, test for specific behavior returning the system
to a safe state). Instead of using default system exception
handlers which may simply result in system shut down,
consider customized handlers for various exceptions in
order to ensure the safe deterministic operation of critical
software systems. Examples evidenced where testing for
what the software should not do may have helped are the
miscalculated radiation doses at ION and the Ariane 5
incident [1].

2) Be wary of change impact – small changes can

sometimes have big consequences: When changing any
part of a safety-critical software system (no matter how
small the change), examine and test how that change will
affect the safety of the overall system, i.e., function and
exception, interface behavior, timing and others. While
this impacts analysis may not uncover every likely issue,
it provides a systematic process for dealing with the
effects of change to a safety critical software system. An
example of small changes affecting critical operations is
evidenced in the unintended emergency shutdown of the
Hatch nuclear power plant for a business computer update
[4,10]. Another supporting example is the Korean Air
Flight 801 accident where the MSAW system was
inhibited [9,15,18]. A third example is the loss of contact
with the SOHO [21,23] where a modified command
sequence was missing a critical function to reactivate a

1919

gyro. Also, even well-tested, proven software must still be
thoroughly retested and rechecked when reused, adapted,
and deployed to a different environment. An example of
this is the loss of the Mars Climate Orbiter [19] and the
Ariane 5 [1]. Finally, any changes made to the software,
and especially safety-critical software, should be properly
researched and documented. While this seems like a
trivial statement, oftentimes the documentation is
forgotten when coupled with aggressive schedules, cost
targets, and competing resources. An example of this is
the mishap involving NASA’s DART [17] where a known
fix was not applied to the flight software.

3) Always have a backup, but there are no guarantees:

For systems where a high degree of safety is of utmost
concern, redundancies should always be considered. An
example of this is the loss of communication between the
FAA Air Traffic Control Center and commercial aircraft
[6,13]. As important as this is however, it is also
important to note that if a system fails due to a software
fault, any identical redundant system using the same
software and interfaces to the same equipment will likely
fail due to the same software fault. As a result,
“redundancy” (namely, having an identical backup
system which runs the exact same software or using an
identical software program used as a backup to a primary
program) may not always be an appropriate preventative
measure. An example issue with software backup is the
power-outage across Northeastern U.S. and Southeastern
Canada [7] where the alarm process failed on the primary
and backup servers.

4) User-awareness is critical. Never take safety for

granted: In the case of safety-critical systems, one cannot
assume that a computer automatically ensures safe system
operation. When computing systems provide interaction
with the environment, inputs are read and computer
responses selected coincident with prior programming.
When human users interact with computer systems, the
humans are responsible for maintaining adequate
situational awareness taking responsibility and
accountability for the state changes of the system in
which the context is taking place. Accidents can occur
with safety critical systems in this case due to human
distraction or lack of situational awareness within the
context of system decision. An example of this loss of
situation awareness is evidenced with the American
Airlines Flight 965 accident [14] where the selection of
the wrong waypoint allowed the aircraft to steer into the
path of terrain. Another example is the miscalculated
radiation doses at the National Oncology Institute in
Panama [2,5].

5) Don’t leave well enough alone: When a system has a

known problem that could affect its safe operation, it is
never a good idea to let the issue persist indefinitely.
Instead of relying on an improvised workaround, the error
in the software should be corrected as soon as possible
and updated software tested, released, and deployed to
avoid a potential crisis. An example of this is the loss of

communication between the FAA air traffic control center
and aircraft [6,13] due to a field representative not
resetting software in the VCSC before the internal clock
reached 0. In this case, a manual procedure allowed the
software operation to continue until a repair could be
effected, but the repair did not actually occur until after
the incident had already occurred.

6) Success during simulations does not imply success

during operation: Whenever possible, safety-critical
software should undergo integration and final testing
using real equipment rather than simulations alone. If a
system is to be validated using simulation or other
analyses, care must be taken to ensure that the models
underlying the analysis are suitably accurate and well-
tested. Also, simulated stress testing and fault injection
(i.e., using inputs just outside allowed range values, using
unallowed inputs, etc.) should be an integral part of the
software testing process to discover latent faults, establish
the limits of the system, and verify deterministic behavior
in the presence of faults. The loss of the Mars Polar
Lander [8,16] illustrates this lesson where a false landing
indication on a sensor may have caused the spacecraft
loss on landing maneuver. A system with well-defined
limits of operation could fail when it is operated outside
of those limits. Just because an anomaly does not show up
in thousands of hours of testing, it in no way implies that
it may not show up in practice. An example of this is the
lack of precision software bug that led to the Patriot
Missile system failure at Dhahran, Saudi Arabia [20]. The
error would not have occurred if the system was reset
before the accumulated error would be large enough to
cause the malfunction [20].

7) Never pick user-convenience over software safety:

While functionality of a system that makes its use more
convenient for users is desirable, it needs to be carefully
analyzed and scrutinized to ensure this new functionality
does not result in a new unmitigated potential risk. For
safety-critical systems where new functionality must
integrate with or provide new safety-critical functionality,
an impact analysis should be performed to quantify the
extent to which the current system is affected prior to
effecting required changes. An example of a user
interface providing undocumented behavior is the
miscalculated radiation doses at the National Oncology
Institute in Panama [2,5] where the physicians tried to
define a 5-block mask instead of working within the
limits of the software. Another example is the American
Airlines (AA) Flight 965 [14] accident involving the
selection of waypoint mechanization of the flight
management system software.

8) Software may not always be used in the same way it is

tested; improper use may lead to catastrophic
consequences: Software (especially safety-critical
software) should be designed to avoid implementation or
usage ambiguities. Although flexible software may be
desired, the implementation must be accomplished such
that when users run the software based on their own

2020

mental assumptions, the software operates as expected
and when it does not, appropriate warning messages are
displayed to remind users of the potential risk of such
exercises. In the case of the miscalculated radiation doses
at the National Oncology Institute in Panama [2,5], the
physicians used the software in a way that that caused the
system to generate a lethal radiation dosage. No warning
messages were generated to alert the system user of the
result. Yet, the radiation treatment system allowed the
selection to be made.

9) Having a clearly defined system boundary is essential:

System boundaries should be carefully defined and
interfaces setup appropriately such that systems external
to the safety-critical system can be appropriately
supported within a managed risk approach. Providing this
managed interface provides a mechanism to allow
communication between the systems if warranted while
restricting operations between the systems that could
adversely affect safety-critical operations. The emergency
shutdown of the Hatch nuclear power plant [4,10] is an
example of this system boundary being sufficiently broad
to allow an operation outside the system boundary (i.e., a
business computer) to adversely affect the operation of
the power plant.

10) Safety-critical software should not be overly-sensitive

to erroneous data: There are times within a computer
system when inputs to an operation may fall outside the
designed boundaries of the expected input parameters. In
computer systems where sufficient exception handling is
not customized by the programming team, resultant
operation may not be deterministic under certain
circumstances. For safety-critical systems, deterministic
behavior is expected. In that regard, development testing
should be structured to ensure that signals (i.e., variables,
decision constructs, etc.) are tested in normal and
abnormal range conditions to ensure deterministic system
behaviors. This lesson is learned based on the mishap
involving NASA’s Demonstration of Autonomous
Rendezvous Technology (DART) [17] where successive
system resets eventually depleted the spacecraft
resources.

11) Whenever a critical software system is using sample

data for testing purposes, the system should alert the
end users. Sample data is typically used in computer
systems to demonstrate correct operation of the system
under known input conditions when it is inconvenient or
not generally possible to use live data instead. Sample
data is used to this end as representative data that one may
expect to experience in operation with the system. This
sample data should be carefully chosen and a thorough
testing effort should be conducted to ensure that
appropriate alert messages are displayed indicating a test
in progress or that sample data is being used. In the
Hartsfield-Jackson Atlanta International Airport [3]
incident, baggage screeners looking for contraband items
were misinformed by the computer system that a
suspicious item was detected. Whether this incident was

caused by a software bug or not, appropriate messages
should have prevented this mishap.

12) Engineers developing safety-critical software must

have a comprehensive understanding of the overall
software development process. While this statement
seems obvious, all too often the details of the software
development process to most go unchallenged and in
some cases, unknown. Engineers charged with the
development of safety-critical software, software
engineers, quality assurance engineers, systems engineers,
and others, should be familiar with the overall software
process and for those where it matters, deeply
knowledgeable of the mechanics of lower level processes
and workings of tools. Further, the process should be
followed and audited. Performance to the defined
software development process provides assurance to the
product development team that the engineering
development of the software is managed. Following the
process is of critical importance; there are many examples
of projects not following their software process. Within
the accidents and mishaps reported here, the
misplacement of a satellite by a Titan IV B-32/Centaur
Launch Vehicle [11,22] serves as one example of the
consequence of not performing required process work in
developing and testing the filter constants for the flight
software.

4. Discussion

In this section we discuss the reasons behind the choice of the
14 accidents presented in this study and why they were
categorized as they were. Additionally we also address the
issue that software is typically not the sole cause of the
accidents or mishaps in which software was identified as a
causal factor. Software behavior may, however, be in the
chain of events that ultimately leads to the mishap or accident.

4.1 Rationale Behind Choice of Accidents Studied

No paper regardless of breadth or depth can hope to cover
every accident that may be relevant to the subject matter
presented herein. The accidents that have been chosen for
analysis were selected on the basis of several criteria � the
extent of the damage, the extent to which software played a
contributing cause, and the recentness of the accidents. While
this paper does not claim to be a complete listing of such
accidents, it does however claim to provide a representative
picture of how faulty software, or software that has been used
in a faulty manner, can lead to loss of time, money, and
gravely so, under certain circumstances – loss of life as well.

4.2 Software: ‘sole cause’ versus ‘contributing cause’

We also point out that software may not be the sole cause for
the accidents and that quite often the causes are a combination
of software errors, human mistakes, and/or hardware failures.
Factors such as poor communication, negligence, and
oversight to name a few, have also been identified as past
contributors. However, undoubtedly, software has directly or

2121

indirectly played a causal role in each of the accidents
discussed in this paper. This is why the tone of the paper has
been primarily restricted to the software-related causes of the
accidents.

4.3 The Categorization of the Accidents Studied

As stated in Section 2, there are many different ways to
classify or categorize the accidents studied and other similar
accidents. Examples of such classifications may be based on
the financial cost incurred, the nature of the software fault, the
area/domain of the accident (such as nuclear research,
aeronautics, etc.), and various others. However, such
classifications come with a great deal of subjectivity and are
open to individual interpretation. An accident may also fit
more than one category. To avoid such complications and
possible ambiguities, we partitioned the accidents based on
whether the cost resulted in the loss of life or not. Not only is
this factual and non-subjective, but it also holds additional
benefit in that the accidents categorized under loss-of-life
illustrate the serious nature of the subject matter and the
importance of safety in software both in the past and in our
future as software becomes even more prolific within our
societal products.

5. Summary

This paper reviews 14 recent catastrophic accidents, several of
which have led to not just losses in terms of time and money,
but also the loss of life. In the case of each accident, the role
played by software in causing the accident has been identified.
While the accidents may not have been caused by the software
alone, and may have been compounded by human error and/or
hardware failure, nevertheless software has had a hand in the
causal chain of events. This is especially alarming given that
software systems are being increasingly used in our day-to-
day lives, including safety-critical systems.

By virtue of our review of these accidents, we also identify
lessons learned that can act as principles and guidelines so that
similar accidents might be avoided in the future. The
identified lessons taken together suggest that better
verification and validation activities and practices need to be
employed more systematically.

 Further research needs to be conducted in the area of
software safety in order to improve and add to the existing
body of knowledge on the subject. Software engineering
curriculums need to undergo significant updates in order to
better impart the fundamentals of software testing and
software safety to students who go on to become our future
industry practitioners.

Acknowledgements

This research is supported in part by the Net-Centric Industry
University Collaborative Research Consortium (IUCRC)
industrial memberships and in part by National Science
Foundation (NSF) funds for the net-centric IUCRC and for the
University of Texas at Dallas Research Experiences for
Undergraduates (REU) grant (CCF-0851848).

References

1. Ariane 501 Inquiry Board, “Ariane 5, Flight 501 Failure,”

July 1996
2. C. Borrás, “Overexposure of Radiation Therapy Patients in

Panama: Problem Recognition and Follow-up Measures,”
Rev Panam Salud Publica, 20(2/3):173–87, 2006

3. CNN, “TSA: Computer Glitch Led to Atlanta Airport Scare,”
April 21, 2006

4. Environmental Protection agency, “Clear Skies in Georgia”
5. Food and Drug Administration of U.S.A., “FDA Statement

on Radiation Overexposures in Panama”
6. L. Geppert, “Lost Radio Contact Leaves Pilots on Their

Own,” IEEE Spectrum, 41(11):16-17, November 2004
7. Great Northeast Power Blackout of 2003

http://www.globalsecurity.org/eye/blackout_2003.htm
8. JPL Special Review Board, “Report on the Loss of the Mars

Polar Lander and Deep Space 2 Missions,” March 2000
9. S. S. Krause, “Aircraft Safety: Accident Investigations,

Analyses and Applications,” second edition, McGraw-Hill
2003

10. B. Krebs, “Cyber Incident Blamed for Nuclear Power Plant
Shutdown,” Washington Post, June 5, 2008

11. G. L. Lann, “Is Software Really the Weak Link In
Dependable Computing?” The 41st IFIP WG 10.4 meeting,
Saint John, US Virgin Islands, January 2002 (Workshop on
“Challenges and Directions for Dependable Computing”)

12. N. Leveson, “Safeware: system safety and computers,”
Addison-Wesley, September, 1995.

13. Los Angeles Times, “FAA to Probe Radio Failure,”
September 17, 2004

14. M. Nakao, “Crash of American Airlines Boeing”, December
1995

15. National Transportation Safety Board, “Abstract on Korean
Air Flight 801Conclusions, Probable Cause, and Safety
Recommendations,” NTSB/AAR-99/02, August 1997

16. NASA, Mars Polar Lander official website
17. NASA, “Overview of the DART Mishap Investigation

Results,” May 2006
(www.nasa.gov/pdf/148072main_DART_mishap_overview.pdf)

18. Official Guam Crash Site Information Web Center
(http://ns.gov.gu/guam/indexmain.html)

19. Report: The Mars Climate Orbiter Mission Failure
Investigation Board
(http://marsprogram.jpl.nasa.gov/msp98/news/mco991110.html)

20. E. Schmitt, “Army is Blaming Patriot’s Computer for Failure
to Stop Dhahran Scud,” New York Times, May 20, 1991

21. SOHO Mission Interruption Joint NASA/ESA Investigation
Board, “Final Report,” August 1998

22. USAF Accident Investigation Board, “Titan IV B-
32/Centaur/Milstar Report”
(http://sunnyday.mit.edu/accidents/titan_1999_rpt.doc)

23. K. A. Weiss, N. Leveson, K. Lundqvist, N. Farid, and M.
Stringfellow, “An Analysis of Causation in Aerospace
Accidents,” in Proceedings of the 20th Digital Avionics
Systems Conference, Volume: 1, pp. 4A3/1-4A3/12,
Daytona Beach, Florida, USA, October 2001

2222

