
Bridging the Gap Between Fault Trees and UML State Machine Diagrams for
Safety Analysis

 HyeonJeong Kim, , , 1, * W. Eric Wong, , 2 Vidroha Debroy, , 3 DooHwan Bae , 4

 CS division, EECS Department Department of Computer Science
 Korea Advanced Institute of Science and Technology University of Texas at Dallas
 Daejeon, South Korea Richardson, Texas, USA
 {1hjkim, 4bae}@se.kaist.ac.kr {2ewong, 3vxd024000}@utdallas.edu

Abstract

Poorly designed software systems are one of main causes of
accidents in safety-critical systems, and thus, the importance
of safety analysis for software has greatly increased over the
recent years. Software safety can be improved by analyzing
both its desired and undesired behaviors, and this in turn
requires expressive power such that both can be modeled.
However, there is a considerable gap between modeling
methods for desired and undesired behaviors. Therefore, we
propose a method to bridge the gap between fault trees (for
undesired behavior) and UML state machine diagrams (for
desired behavior). More specifically, we present rules and
algorithms that facilitate the transformation of a hazard (in
the context of fault trees) to a UML state machine diagram.
We illustrate our proposed approach via an example on a
microwave-oven system. Our proposed transformation can
help engineers identify how the hazards may occur, thereby
allowing them to prevent the hazard from occurring.

Keywords - safety analysis; fault tree analysis (FTA); UML state
machine diagrams; automatic transformation rules

I. INTRODUCTION
Software is often responsible for controlling the behavior of
electro-mechanical components and the interactions among
the components in systems [8], and since most accidents
occur due to control-related issues, software directly or
indirectly affects the hazards of safety-critical systems [4,8].
These hazards in turn can lead to losses that may span life,
property, and even the environment. Thus, safety analysis for
software is highly important and must be carried out [7,8]. *

Fault Trees (FTs) are widely employed in hazard analysis
because they are a simple, visual, and standardized notation
used to state safety requirements [6,12]. Since a FT is
suitable for identifying the causes of hazards and their
relationships, it has been widely used in describing hazards
related to hardware, which are usually composed of failure
modes of hardware [6,12]. Unlike hardware, software
contributes to a hazard due to an incorrect combination or
sequencing of normal behaviors [1,2,14]. Therefore, safety
analysis for software hazards should be with respect to the

*Corresponding author. HyeonJeong Kim is a PhD student at Korea
Advanced Institute of Science and Technology and is visiting the
University of Texas at Dallas as an exchange PhD student under the
supervision of Professor W. Eric Wong.

normal behavior of the system [1,2]. However, FTs are not
appropriate to describe, and analyze normal behaviors (that
are highly relevant to the causes of hazards) for safety
analysis.

UML state machine diagrams are appropriate for
specifying the discrete behavior of various subsystems [3,9].
They may also be adapted to describe the identified hazards
in the FTs, which can help in the understanding of hazards
with respect to system behaviors. For this purpose, UML
state machine diagrams should be consistent with FTs.
However, it is error prone to manually construct a UML state
machine diagram from a FT. It is also difficult to formally
and/or manually analyze the diagram for safety, since the
diagram can have indirect paths to causes of the hazards due
to its depth (i.e., a composite state can own its sub-states)
and orthogonality (i.e., regions in a state are independent of
each other).

Therefore, the major research goal of this paper is to
develop an algorithm to transform hazards of fault tree into
UML state machine diagram for safety analysis, in
accordance with software behavior. This software behavior,
for our purposes, is described in UML state machine notation,
and hereafter we refer to it as the original state machine
(diagram). We develop three steps for transforming the
hazards: identifying the types of primary events in the fault
tree related to software behavior, developing the rules to map
the primary events and gates (which are components of fault
tree) to UML state machine notation, and extracting
important information from the original state machine
diagram that deals with properties (e.g., hierarchy or
orthogonality) of the diagram. The output of our
transformation process is also a state machine (diagram), that
is hereafter, referred to as the transformed state machine
(diagram). The contributions of the paper are as follows.

 Rules are proposed that provide the foundation of the
automatic transformation from fault tree to state machine
diagram for describing hazards

 Each transformed state machine diagram captures both
explicit and implicit causes that trigger a hazard with
respect to normal behavior

The rest of this paper is organized as follows. Section II
describes the fundamentals of fault tree analysis and UML
state machine diagrams. Section III then describes the
methodology, while Section IV explains our approach via an
illustrative example. Subsequently, Section V overviews
related work, followed by Section VI which discusses the

2010 Asia Pacific Software Engineering Conference

1530-1362/10 $26.00 © 2010 IEEE
DOI 10.1109/APSEC.2010.31

196

2010 Asia Pacific Software Engineering Conference

1530-1362/10 $26.00 © 2010 IEEE
DOI 10.1109/APSEC.2010.31

196

identified threats to validity. Finally, Section VII presents
conclusions and a discussion on future work.

II. BACKGROUND

A. Fault Tree Analysis (FTA)
FTA can be described as an analytical technique, whereby
an undesired event of the system is specified, and the system
is then analyzed in the context of its environment and
operation, to find all credible ways in which the undesired
event (called a top event) can occur [6,12]. A typical fault
tree is composed of a number of symbols which are
classified in three categories: primary events, intermediate
events, and logic gates. Primary and intermediate events
represent causes of the top event which are abnormal
conditions that may lead to a reduction in, or loss of, the
capability of a functional unit to perform a required function.
Primary events of a fault tree are those events, which cannot
be further developed. The gates serve to permit or inhibit the
passage of fault logic up the tree. The gates show the
relationships of events needed for the occurrence of a
‘higher’ event. The ‘higher’ event is the ‘output’ of the gate;
the ‘lower’ events are the ‘inputs’ to the gates. The gate
symbol denotes the type of relationship of the input events
required for the output event. There are three basic types of
fault tree gates: the OR gate, the AND gate, and the NOT
gate [6,11,12]. PAND is a special case of AND gate. Also a
XOR gate is a combination of three basic gates, so we
assume it is replaced with the basic gates in fault tree.

A fault tree is reduced to a logically equivalent form,
showing a specific combination of primary events, which is
called a Prime Implicant (PI) [12]. PIs may cause the top
event and cannot be reduced in number.

Any fault tree consists of a finite number of PIs that are
unique for its top event. The PI expression for the top event
can be written in the general form,

T = Pl + P2 +…+ Pk

where T is the top event and each Pi is a Prime Implicant.
Thus, T occurs if any Pi is evaluated to true. Also,

Pi =X1•X2•...•Xn

where X1, X2, etc., are primary events. Thus, Pi is evaluated
to true only if X1, X2,…, Xn all evaluate to true, i.e., all
primary events must occur.

B. UML State machine diagrams
Since UML state machine diagrams are used to specify the
behavior of various model elements, they are an appropriate
notation to describe safety-critical system [3,9]. While a state
machine diagram allows for depth and orthogonality, which
makes it convenient to both use and understand, at the same
time this makes it equally difficult and inconvenient to
analyze. A formal definition makes the analysis easier, and
so we define the state machine diagram using formal
notation. Due to concerns such as space limitations, and in
order to maintain our focus, we omit certain aspects of state
machine diagrams that we do not require, such as redefined

elements or connection points. Additionally, we do not
explain each element in great depth, and direct readers to [9]
for more detailed definitions. We start with the definition of
an event. We adhere to the convention that a large cased
letter such as ‘X’ refers to a set, and one of its elements is
represented by a small cased ‘x’, i.e., x X.

Def. 1. (Event) An event e E is an occurrence of signal
or operation (method) of a state machine diagram.

Def. 2. (Arithmetic Operation) An arithmetic operation o
 O is an assignment statement that may include an

arithmetic operator (e.g. +, –, /, *).

Def. 3. (Behavior) A behavior b B is an atomic element
which generates an event or does an arithmetic operation
with attributes (or parameters) of a state machine diagram.
(i.e., B (E O))

Def. 4. (Transition label) A transition label tl TL is 3-
tuple <Etl, gtl, Atl>, where Etl is a set of trigger events that
may fire the transition tl, gtl is a Boolean expression (called
a guard condition) which should be satisfied when one event
in Etl occurs, Atl (B) is a set of optional behaviors (called
actions) which are executed after firing the transition tl.
A transition label in the diagram uses a notation ‘Etl[gtl]/Atl.’
The portion before ‘/’ describes what is required for firing
the transition. Once at least one event in Etl occurs and gtl is
satisfied, the transition is fired. Since the inclusion of Etl, gtl,
and Atl in the notation are optional, transition labels allows
for several variations in their forms: empty, only consisting
of events, guard conditions, or actions, or combinations of
them.
Def. 5. (Pseudo State) A pseudo state ps is either initial,
fork, join, or choice.
An initial pseudo state is used to describe the default state in
composite state or state machine diagram. The other pseudo
states are used to connect multiple transition paths to or
from states [9]. A fork pseudo state is used to split an
incoming transition in to two or more transitions, and a join
pseudo state is used to merge two or more incoming
transitions. Finally, a choice pseudo state serves to describe
a conditional branch.

Def. 6. (State) A state s S is 4-tuple <Ens, Ds, Exs, Rs>,
where Ens, Ds, Exs are sets of entry, doActivity, and exit
behaviors of the state s respectively (i.e., Ens B, Ds B,
Exs B), Rs R (see Def. 8) is a set of regions of state s.

The number of regions determines whether the state is
simple, composite, or orthogonal composite. A simple,
composite, or orthogonal composite state has zero, at least
one, or more than one region respectively. En, D, and Ex are
a set of optional behaviors that are executed whenever the
state is entered, while being in the state, and whenever the
state is exited, respectively.
Def. 7. (Transition) A transition t = <vt

s, tlt, vt
t> is a

relation in V×TL×V, where V is a finite set of vertices,

197197

where each vertex is either Pseudo State ps or State s (i.e., V
 (PS S)), vt

s is a source vertex of t, vt
t is a target vertex

of t, and tl TL is the transition label of t.

Def. 8. (Region) A region r R is a 2-tuple <Vr, Tr>,
where Vr V is a finite set of vertices in region r, and Tr is a
finite set of transitions in region r.
Def. 9. (State Machine) A state machine sm is a set of
regions, sm = <Rsm> where Rsm R is a set of regions and
|Rsm| 1.
A state or state machine can own its regions and these
regions are annotated with unique identifiers such as s1, sm1,
so the entire set of regions (R) may be divided into subsets
(Rsm1, Rsm2, Rs1, and Rs2) that are mutually disjoint, and each
of them can identify its owner. Also, since regions can own
states and states can own regions, they serve as to link a state
machine and its states, or a composite state and its sub-states.
For example, if sm1 owns r1 and r2, and r1 owns s1, s2, s3,
t1, and t2; then sm1 is a parent of r1 and r2, and sm1 is a
grandparent of s1, s2, and s3. We can thus, retrieve the
hierarchical relationship between states, or between states
and state machine diagrams.

III. TRANSFORMATION OF THE HAZARDS FROM PRIME
IMPLICANTS OF FAULT TREES TO STATE MACHINES

We propose three steps for transforming hazard scenarios:
(1) identifying the types of primary events in fault tree
related to software behavior, (2) developing the rules to
transform the primary events and gates in fault trees to UML
state machine diagrams, and (3) extracting the information
from original state machine diagrams.

A. Identification of types of primary events in a fault tree
Fault trees should be defined with respect to the specification
of the system [6,12]. The specification itself can be based on
requirements documents, or design documents. In the paper,
we assume that the engineer defines the fault tree based on a
state machine diagram (which we refer to as the original state
machine diagram), which means each primary event in the
fault tree consists of what the diagram has. We assume that
each primary event is specified as follows:

Def. 10. (Primary event) A primary event pe PE is
defined with a notation ‘sm.element’, where sm is a target
state machine and element can be the name or label of
elements to be analyzed for safety.

In the first step, we identify the type of primary events using
text matching with the original state machine diagram and
put a ‘type’ tag to each primary event. We first match ‘sm’
with the name of the state machine, and then search
‘element’ with a label or name of element in the state
machine. Primary events can be interpreted as multiple
elements in the original state machine, which means that
primary events can be developed further. For example, a
primary event ‘sm1.a=b+c’ can be mapped into both En and
A. It should be developed to two lower primary events with
OR gate. All the mapped elements can be the causes of
hazard which hazard analysis method should deal with. We

should, therefore, adjust the fault tree if a primary event is
interpreted as more than one element in original state
machine diagram. After matching, we put a tag on every
primary event, where each tag shows the type of primary
event and its location in original state machine diagram.
Table 1 shows the types of primary events and their
corresponding tags. We can classify the types of primary
events into five categories: states, transitions, operations,
events, and guard conditions. State machines, regions, and
pseudo states show the relationship between them and other
elements (state, transition, etc).

Table 1. Types of Primary events and their Corresponding Tags
Types Possible tag
State s<sm>element
Transition t<sm, source_state_ name>. transition_label
Operation en<sm, state_name>.element

d<sm, state_name>.element
ex<sm, state_name>.element
a<sm, source_state_name >. transition_label

Event e<sm, source_state_name>. transition_label
en<sm, state_name>.element
d<sm, state_name>.element
ex<sm, state_name>.element
a<sm, source_state_name >. transition_label

Guard
condition

g<sm, source_state_name >. transition_label
data<variables>.element

Identifying states is simple because all of the elements in the
same state machine should have distinct names. For example,
suppose that there is a primary event ‘door.open’ in fault tree.
The primary event can be divided into two parts: door and
open. ‘door’ represents a name of state machine diagram and
‘open’ describes an element of the diagram. If ‘open’ is
mapped to a name of state, the primary event is a state. Its
tag is ‘s<door>.open.’ On the other hand, identifying a
transition is quite different from identifying a state since the
transition label can have several variations as discussed
earlier (please see Def. 4 in Section II). Thus, there is a
potential problem in that a primary event for a transition may
not be perfectly matched (string matched) to a state machine.
To illustrate this, consider a scenario where there are three
transitions:

(1)‘[a>b]’,
(2)‘receive_event()[a>b]’, and
(3)‘receive_ event()[a>b]/a=b’

in the state machine. The first transition has only a guard
condition; the second transition has a guard condition and a
receiving event from the state machine diagram (the second
transition occurs if the guard condition is true, and it receives
the event); and the third transition is same as the second
transition except that there is now an additional action. Given
a primary event ‘sm.receive_event()[a>b]’ in the fault tree, it
can refer to the second transition (if the engineer wants a
perfect matching), or either of the last two transitions (if the
engineer considers all elements in state machine diagram
which include (textually) the primary event). We select the
latter approach to get all the possible elements in state
machine diagram (even for behavior, event, or guard
condition). Therefore, sm.receive_event()[a>b] becomes an

198198

intermediate event, and consists of an OR gate composed of
two primary events: ‘sm.receive_event()[a>b]’ and
‘sm.receive_event()[a>b]/a=b.’ Describing a specific
transition requires information about its state machine,
source state, and transition label; thus, a transition tag is
formed according to the format: ‘t<sm, source_state_
name>.transition_label.’

The arithmetic operation is one kind of behaviors as
mentioned in Def. 3, so it may be mapped to element in En,
D, Ex, and A (as per Def. 4 and 6). Furthermore, one
operation can appear in several of these behavior sets (En, D,
Ex, and A) at the same time. The types of behavior sets
decide when a behavior is executed, so we distinguish the
types using a tag. In case of state related behavior, a tag
shows its behavior type, state machine, state name, and
operation (as ‘element’). Otherwise (in case of transition
related behavior - action), the tag has the same structure as a
transition.

An event can be mapped to a trigger event of a transition
(via the transition label, Def. 4) or behavior (Def. 3 and Def.
6). If a primary event is mapped to an event in a behavior set,
its type and tag have the same mapping rules as arithmetic
operations. If a given element is mapped to a trigger event of
the transition, we identify the element as one of Etl (in Def.
4). Its tag requires the same information as a tag of a
transition.

A Boolean expression (in the primary event) can be used
to represent a guard condition in a transition, or alternatively
to evaluate the value of an input variable. We call the second
case a ‘data comparative.’ Data comparatives mean Boolean
expressions including comparison operators (e.g. <=, >=, >,
<) to compare a variable’s value. Because the change of a
variable’s value can be one cause of a hazard, we also need
to consider all the possible ways that satisfy the causes of
hazard. Whenever the change occurs, the data comparatives
should be checked. Tags for data comparatives require
information on the list of variables in a Boolean expression.

Since we map all the possible primary events and expand
the fault tree, we need human intervention (further
discussion on this is presented in Section VI) to filter out the
primary events which cannot be causes of the hazard. We
then extract PIs from adjusted fault tree. Since the extraction
of PIs is not our focus, we use existing methods such as
those in [6,12].

B. Transformation of Primary Events and Gates in Fault
Trees

Each PI represents a unit to be analyzed as part of the safety
analysis. However, we still need information from state
machine such as incoming transitions for triggering En, and
fault tree is not appropriate to describe it. We therefore
transform, the PI to a state machine to describe how causes
of hazard can occur. While original state machine diagrams
focus on describing how the software system works, our
transformed state machine describes how the hazard occurs.
Each PI corresponds to one state machine diagram. All the
primary events and gates in PIs are mapped to the elements
in transformed state machine diagram.

Primary events in fault trees have nine kinds of tags as
shown in Table 1. Some of these tags share the same trigger
conditions which are sufficient to cause a primary event to
occur and so, can be grouped together. We reclassify the nine
tags into four groups: (1) states, entry and doActivity of a
state, (2) exit of a state, (3) transitions, events, guard
conditions and actions, and (4) data comparatives. Elements
in the same category have the same transformation rules.
(1) States, and Entry and doActivity of a state
State, doActivity, and entry have same triggering conditions:
firing of all incoming transitions to a given state. When a
transition is fired, exit of its source state, its action, and entry
and doActivity of its target state is executed in order within
one unit of time. When an incoming transition to a given
state is fired, entry and doActivity are executed and state
becomes active. State and doActivity have the same life
time; doActivity is repeatedly executed until the state
becomes inactive. Thus, the three types have the same
triggering conditions.

Figure 1 shows the transformed state machine diagram
corresponding to a state, entry, or doActivity of the state. An
asterisk (*) signifies the state which satisfies the cause of the
hazard, and s corresponds to the state (it is matched to
sm.element in its tag for state or sm.state_name for d or en in
its tag). Incoming(s) refers to all transitions to s and
Outgoing(s) to all transitions from s. Both Incoming(s) and
Outgoing(s) include a set of transitions from or to other
states (which excludes self-transition from s to s). Not_s
implies all other states in same state machine diagram with
state s.

State s may be a default state in original state machine
diagram which has a direct transition from initial pseudo
state in the outmost region. If s is a default state of the state
machine diagram, it satisfies the cause of the hazard without
firing any transitions. Figure 1 (a) shows the transformation
rule of a default state s and Figure 1 (b) shows the
transformation when state s is not a default state.

 (a) State is a default

(b) State is not a default
Figure 1. Transformed state machine diagram for s, s.en, and s.d

(2) Exit of a state
Exit of a state is executed when the outgoing transitions from
the state are enabled (i.e., triggered event occurs and guard
condition is satisfied). Even if exit behavior is included in
the state, it is not executed until an outgoing transition of the

199199

state is fired. A trigger condition for an exit behavior of state
is firing of outgoing transitions of a given state. Figure 2
shows the transformed state machine corresponding to exit
behavior. s corresponds to the state including exit behavior
(it is matched to sm.state_name in a tag for ex).
target(Outgoing(s)) describes a set of target states of
outgoing transitions from s. We describe the state list in one
state as per [9] and mark * on the target states.
Outgoing(target(Outgoing(s))) are outgoing transitions from
target(Outgoing(s)). not_target stands for every state in sm
except s and target(Outgoing(s)).

Figure 2. Transformed state machine diagram for s.ex

(3) Transitions, events, guard condition, and actions

Transitions, events, guard condition, and actions can be
combined into one because they occur when the transition is
fired. Figure 3 shows the transformed state machine diagram
corresponding to a transition. A given transition t, which
can be found using sm, source state name, and transition
label in its tag) includes events, guard condition, or actions.
We accept the target(t), which represents a target state that
is active from firing t, as a cause of hazard. Our concern is
only occurrence of t, so target(t) is marked with *.
Not(target(t)) represents all states which do not have a given
transition t as their incoming transition.

Figure 3. Transformed state machine diagram for tl, e, g, and a

(4) Data comparatives

Data comparatives are related to a cause of hazard related to
the value of data (e.g., parameters or variables). Whenever
values are changed, data comparatives should be evaluated.
If the result of the evaluation is true, it satisfies the condition
to be a cause of the hazard. Figure 4 describes transformed
state machine diagram for data comparative ‘a>b’ (described
in a tag as ‘element’). variables in a tag represents variables
(or parameters) in data comparative such as a and b.
write(variable) returns transitions or states which define
values of variables in their behavior. If the trigger event has
each given variable as one of its parameters, the variable
accepts its value from where the event is generated. Also,
each given variable may take its value from result of
arithmetic operation if it is located in left of assignment
operator in A, En, D, or Ex. write(variables) returns
transition, incoming transitions, state, or outgoing transitions
for an assignment statement in A, En, D, or Ex respectively.
Wait in Figure 4 stands for the state that dissatisfies the data

comparative (Boolean expression) and does not have any
change on variables. Whenever the value is changed (at least
one of the transitions in write(variable) is enabled), it
reaches a state ‘check’ in Figure 4. If the data comparative
([a>b]) is evaluated as true, it reaches a state ‘checked’,
which can be a cause of the hazard and marked with *.
Otherwise, it comes back to a state Wait.

Figure 4. Transformed state machine diagram for data ‘a>b’

Each fault tree can have four gates: AND, OR, PAND, and
NOT gates, where each explains the relationship between its
inputs and output. Each gate of same type acts in the same
manner within the transformed diagram.

(5) AND gate

An AND gate is used to show that the output occurs only if
all the inputs occur [6,12]. Figure 5 describes a 2-input AND
gate (left) and its transformed state machine diagram (right).
The fault tree shows that C is true when both A and B occur
(which is described in Boolean algebra form: C=A•B). All
the inputs of AND gate should occur prior to output, so the
transformed state machine starts from the inputs (the inputs
come first after the initial pseudo state). A composite state
after the initial pseudo state provides the regions for
expanding the inputs. The input is either an intermediate
event or a primary event in fault tree. If it is an intermediate
event, it transforms further for its gate and inputs. Otherwise,
it follows transformation rules for a primary event. Each
outmost region in AandB has one state marked with asterisk
(*). The states should be active at the same time, so we use a
join pseudo state to merge the transitions from different
orthogonal regions. Join pseudo state in Figure 5 enables the
transition from state A and B to state C only when A* and B*
are active at the same time. The intermediate event C may be
used for an input of higher intermediate event, so we also
mark C with *.

Expand(A)

Expand(B)

A*

B*

C*

AandB

Expand(A)

Expand(B)

A*

B*

C*

AandB

Figure 5. AND gate and its transformed state machine diagram

(6) OR gate

An OR gate is used to show that the output occurs only if one
or more of the inputs occur [6,12]. Figure 6 describes a 2-
input OR gate (left) and its transformed state machine

200200

diagram (right). The fault tree shows that C is true when
either A or B occur (which is described in Boolean algebra
form: C=A+B). The transformed state machine diagram of
OR gate is similar to that of the AND gate. The difference is
the connection between its inputs and output. Output C has
direct transitions from A* and B*. A transition from A* to C
can be fired without regard to an active state in a region for
expansion of B by [9]. Since we use a PI as a unit of the
transformation and PI has only AND or PAND gates, the
fault tree has only one OR gate which makes a connection
between top event and PIs.

Expand(A)

Expand(B)

A*

B*

C*

AorB

Expand(A)

Expand(B)

A*

B*

C*

AorB

Figure 6. OR gate and its transformed state machine diagram

(7) PAND gate

A PAND gate means that output occurs when inputs occur in
sequence [6,12]. The left portion of the input should occur
before the right, i.e., inputs, which are closer to left side of a
PAND gate, should be executed earlier. Figure 7 shows a 2-
input PAND gate (left), and its transformed state machine
diagram (right). The fault tree shows that C is true when A
and B occur in sequence (which is described in Boolean
algebra form: C=). Unlike other gates, the composite state
has only one region and each input connects in sequence
with respect to order of inputs in fault tree (A before B). In
the ApandB, the state with * in outmost region of the
composite state ‘Expand(A)’ has an outgoing transition to
the composite state ‘Expand(B),’ and the state with * in
‘Expand(B)’ has an outgoing transition to output state C.

Expand(A)

Expand(B)

A*

B*

ApandB

C*

Expand(A)

Expand(B)

A*

B*

ApandB

C*

Figure 7. PAND gate and its transformed state machine diagram

(8) NOT gate

A NOT gate means that output is a negation (or an
occurrence failure) of its input [11]. Since any event (except
top event) in fault tree can be an input of NOT gate, we
should develop a method to apply the gate to all the events in
fault tree. If the primary event is related to first three groups
(state, exit of state, and transition), we apply NOT gate (or a
negation) by swapping the ‘*’ mark on the state, i.e., if one
state has a ‘*’ mark, we remove it and add it on the other
state. For example, Not_s, s.ex/not_target, and Not(target(t))
in Figure 1, Figure 2, and Figure 3 respectively have ‘*’
marks after applying the negation. In the case of data
comparatives, we reverse the comparative operator (e.g.,

 >, <, = !=). For example, we simply negate a
data comparative by replacing ‘a<b’ with ‘a b’ in Figure 4.

For intermediate event, we can also apply the negation to
swap ‘*’ mark between output state and composite state for
inputs of the gate, like a primary event. After the negation,
the composite state has ‘*’ mark instead of the output state.
For instance, the output state C is marked with ‘*’ in Figures
5, 6, and 7 which are pre-negation, whereas after negation
the composite states ‘AandB,’ ‘AorB,’ and ‘ApandB’ are
marked with ‘*’, and C would be unmarked. Since a state
marked with ‘*’ is connected to outside region, it has risk to
fire a direct transition from a composite state without
exploring inside the composite state. If there is no
inconvenience, we prefer to delegate the negation to gate and
inputs of the intermediate event. Figure 8 shows negation of
an intermediate event including AND and OR gates. The
negation of output (an intermediate event) is equal to
negation of gate and its inputs. Negation of AND gate is OR
gate and vice versa. Figure 8(a) shows negation of
intermediate event (C = A•B) including AND gate. Negation
of C is represented in ‘~C = ~(A•B) = (~A)+(~B).’ Figure
8(b) shows negation of intermediate event (C = A+B)
including OR gate. Negation of C is described in ‘~C =
~(A+B) = (~A)•(~B).’ Because all possible sequences of its
inputs of PAND gate should be specified for negating a
PAND gate, we prefer swapping ‘*’ mark for PAND gate
instead of delegating the negation to PAND gate and its
inputs.

Expand(notA) A

Expand(notB) B

~A*

~B*

~C*

~Aor~B

Expand(notA) A

Expand(notB) B

~A*

~B*

~C*

~Aor~B

(a) Negation of an intermediate event which includes AND gate

Expand(notA) A

Expand(notB) B

~A*

~B*

~C*

~Aand~B

Expand(notA) A

Expand(notB) B

~A*

~B*

~C*

~Aand~B

 (b) Negation of an intermediate event which includes OR gate

Figure 8. Negation of (a) AND and (b) OR gate

The NOT gate is also useful to collectively describe
everything but a particular element. For example, suppose a
region is composed of five states: A, B, C, D, and E. If given
primary events are ‘A, B, C, or D,’ we can replace four
primary events with one primary event (~E). Four primary
inputs are inputs of OR gate, and this produces four PIs
instead of just one. It thus, helps to simplify and abstract
both the fault tree, and the transformed model.

C. Extracting the information from state machine
diagram
In this step, we extract the information from original state
machine diagram such as deriving actual incoming
transitions (instead on ‘incoming’). The extraction is usually
straightforward and explicit such as getting a source/target
state of a given transition. However, elements that are related

201201

to hierarchy and orthogonality in the original diagram have
implicit information which should be analyzed. For example,
firing an outgoing transition from a composite state makes
both the state and its sub-states inactive. These kinds of
implicit transitions for the sub-states make the analysis of
state machine diagram difficult, but it should still be
considered. We explain the elements which have these
hierarchy and orthogonality issues.

(1) Checking a default state

A UML state machine diagram allows depth (i.e., hierarchy),
and so it might have more than one active state at the same
time. Figure 9 shows the pseudo code to check whether a
given state is one of the default states in state machine
diagram sm. Only if the state s and its ancestor states are
default states, is true returned and false otherwise. The
parent of s is a region (see Def. 8) which includes an initial
pseudo state, and its one outgoing transition whose target
state is the default state in the region. If the target state is s,
we need to extend the examination to its ancestor states. Its
ancestor states are retrieved by getting its grandparent (by
Def. 6, Def. 8, and Def. 9). The procedure repeats until it
reaches to state machine level.

Figure 9. Pseudo code for checking if s is a default state

(2) Retrieving all incoming transitions

We should extract the incoming transitions to the state s, in
order to fully transform the state and its behaviors. Figure 10
describes pseudo code to retrieve all incoming transitions to
the state s. The incoming transitions can be direct or indirect.
Direct incoming transitions mean they head to a given state.
Indirect incoming transitions mean they make a given state
active even though its explicit target is a different state.

Indirect incoming transitions can be further divided into
three cases. The first case occurs when there is a transition
from outside to inside of a given state. Even though a target
of the transition is not a given state, it is included in a given
state. If the transition is fired, both a given state and a target
state become active. The second case occurs when a given
state is a default state and there are incoming transitions
whose target is its super-state (composite state). If an
incoming transition, which terminates on the outside edge of

the composite state, is fired, each default state in each region
is active [9]. Incoming transitions to the composite state are
also treated as implicit incoming transitions to default states
in it. The third case indicates when the state is a default state
and there is a transition to a state in other regions of its
super-state (orthogonal composite state). Whenever an
orthogonal composite state is entered, each one of its
orthogonal regions is also entered, either by default or
explicitly [9]. Therefore, if a transition from outside the
orthogonal composite state, to a state inside of other
orthogonal regions is fired, each region of the orthogonal
state are entered and its default state become active.

Figure 10. Pseudo code for retrieving incoming transitions

(3) Retrieving all outgoing transitions

We should extract the outgoing transitions to the state s for
transformation of all the primary events, which is similar to
extracting incoming transitions. Figure 11 describes pseudo
code to retrieve all outgoing transitions to the state s. The
outgoing transitions can also be direct or indirect. Direct
outgoing transitions mean that they start from a given state.

Indirect outgoing transitions mean they make a given
state inactive even though its explicit source is not s. Indirect
outgoing transitions can be further divided into three cases.
The first case occurs when there is a transition from inside to
outside of a given state. If the transition is fired, both the
source state and the given state become inactive. Even
though the source of the transition is not the given state, the
source is included in the given state and the transition goes
out of the given state. The second case occurs when there are
outgoing transitions from the super-state of a given state (a
given state is included in a source state of transition). When
exiting from a composite state, the active sub-states
(including a given state) are exited [9]. Outgoing transitions
from the composite state are also treated as implicit outgoing
transitions from all of its sub-states. The third case indicates

Boolean default(State s){

if(localDefaultState(s)){
 element e=s.getGrandParent();

if(type of e is state)
 return default(e);
 else //type of e is state machine
 return true;
}
else{
 return false;
}

}
Boolean localDefaultState(State s){

Region r=s.getParent();
Vertex v=r.getInitialPseudoState();

 If(s==v.outgoingTransition()->target())
return true;

 return false;
}

 Transition[] getIncomingTransitions(State s){
Transition [] incoming;

//direct incoming transitions
incoming.add(s.getIncomingTransitions());

//indirect incoming transition #1
if(s.isComposite()==true){
 Transition t s.getParent();

if(t->target() s&&t->source() s)
 incoming.add(t);
}
while(localDefaultState(s)){
 Element e=s.getGrandParent();
 //indirect incoming transitions #2
 incoming.add(s.getIncomingTransitions());

 //indirect incoming transitions #3
 Transition t e.getParent();

 if(t->target() e&& t->target() s.getParent()
 && t->source() e)
 incoming.add(t);
 s=e;
}
return incoming;

 }

202202

when a given state is active, and there is an outgoing
transition to a state in other regions of its super-state
(orthogonal composite state). When exiting from an
orthogonal composite state, each of its regions is exited [9].
Therefore, if a transition from a state inside of other
orthogonal regions, to outside the orthogonal composite state
is fired, each region of the orthogonal state are exited and its
active states are exited.

Transition[] getOutgoingTransitions(State s){
Transition [] outgoing;

//direct outgoing transitions
outgoing.add(s.getOutgoingTransitions());

//indirect outgoing transition #1
if(s.isComposite()==true){

Transition t s.getParent();
if(t->source() s && t->target() s)

outgoing.add(t);
}
Element e=s.getGrandParent();
while(type of e is a state){

//indirect incoming transitions #2
outgoing.add(e.getOutgoingTransitions());

//indirect outgoing transitions #3
Transition t e.getParent();
if(t->source() e && t->target() e

&& t->source() s.getParent())
outgoing.add(t);

s=e;
e=s.getGrandParent();

}
return outgoing;

}

Figure 11. Pseudo code for retrieving outgoing transitions

IV. AN ILLUSTRATIVE EXAMPLE
We now describe how our approach helps engineers bridge
the gap between fault tree analysis and system specification
using the example of a microwave oven. The software
system is described as a UML state machine diagram (as
shown in Figure 12) and one hazard is defined in a fault tree
(as shown in Figure 13 (a)). States and transitions in the
UML state machine diagram and primary events in fault tree
are specified with their own identifiers (e.g., s1, t1, or p1).
We depict two parts of a microwave oven: microwave and
door. The microwave describes how the user sets the
cooking time, and operates it (as per Figure 12 (a)); and
door specifies how the system understands the user’s control
to open or close the door (as per Figure 12 (b)). The fault
tree shows the hazard that involves user exposure to
microwave radiation, because the microwave produces
radiation without the door being closed, and the radiation
may harm humans.

Figure 13 (b) shows the result after identifying the types
of primary events in fault tree (which is the first step). p1 is
matched to one of doActivity in state cooking of state
machine microwave, and p2 is mapped to state closed of

state machine door. If one primary event has more than one
possible element in original state machine diagram, it should
be developed to have all possible candidates as its input and
PIs of fault tree should be retrieved again. For instance,
suppose that there is another state s4 including micro
waving() in its entry. p1 should be an intermediate event and
it has OR gate and its two inputs: p3-‘d<microwave,
cooking> micro-waving()’ and p4-‘en<microwave, paused>
microwaving().’ Then, the fault tree consists of one top
event, one OR gate, and two PIs: p3 AND ~ p2 (PI1), and p4
AND ~p2 (PI2).

s1: off
entry/
time:=0;

s2: ont1: timing(n)/
time.append(n)

s3:
timing_set

t5: timing(n)/
time.append(n)

s5: operating

s6:
idle doActivity/

time--; microwaving();

s7:cooking

t4:
clear(),
cancel()

t2: autocook()
[door.close==true]/
time+=30;

t3: [time==0]/
alarm();

t6: start()
[door.close==true]

t10: [door.closed==true]

t11:
[door.opened
==true]

s4:
paused

t8: pause()

t7: resume()
[door.close==true]

t9: autocook()/
time+=30;

Microwave

(a) State machine diagram for microwave

Door

s8: closed

s9: closing

s10: opened

s11: opening

t12: door_open()

t13: [sensor==open]
/door_opened();

t16: [sensor==close]/
open_failed()

t14: door_close()

t17: [sensor==open]
/close_failed()

t15: [sensor==close]/
door_closed();

Door

s8: closed

s9: closing

s10: opened

s11: opening

t12: door_open()

t13: [sensor==open]
/door_opened();

t16: [sensor==close]/
open_failed()

t14: door_close()

t17: [sensor==open]
/close_failed()

t15: [sensor==close]/
door_closed();

(b) State machine diagram for door

Figure 12. UML state machine diagram for microwave

p1: engine.
microwaving()

p2: door.
closed

p3: exposure_
of_microwave

~

p1:
d<engine,
cooking>

microwaving()

p2:
s<door>
closed

p3: exposure_
of_microwave

~

(a) Original (b) Mapped

Figure 13. Fault tree for hazard of microwave

Figure 13 (b) is an input for the second step and Figure 14
shows a result after transforming the input. The rule for an
intermediate event having AND gate is applied first and it
decides the shape of the orthogonal composite state

203203

‘s7_d_and_not_s8’ (for inputs of the gate), join pseudo state
(for AND gate), and simple state ‘exposure_of_microwave’
(an output of the gate). Each region in the composite state
provides space to expand each input (s7_d or not_s8). While
the region s7_d is applied a transition rule for s.d (Figure 1
(b)), the region not_s8 is applied a transition rule for s and a
NOT gate (switching ‘*’ on the states in the region).

Not_s7 s7.d
microwaving*

outgoing(s7)

incoming(s7)

s8 Not_s8*
outgoing(s8)

incoming(s8)

s7_d_and_not_s8

exposure_
of_microwave*

s7_d

not_s8

Not_s7 s7.d
microwaving*

outgoing(s7)

incoming(s7)

s8 Not_s8*
outgoing(s8)

incoming(s8)

s7_d_and_not_s8

exposure_
of_microwave*

s7_d

not_s8

Figure 14. Transformed state machine diagram for the hazard without

information from original state machine diagram

Not_s7 s7.d
microwaving*

t3, t4, t8, t11

t2, t6, t7, t10

s8 Not_s8*
t12

t15, t16

s7_d_and_not_s8

exposure_
of_microwave*

s7_d

not_s8

Not_s7 s7.d
microwaving*

t3, t4, t8, t11

t2, t6, t7, t10

s8 Not_s8*
t12

t15, t16

s7_d_and_not_s8

exposure_
of_microwave*

s7_d

not_s8

Figure 15. Transformed state machine diagram for describing the hazard

with information

Figure 15 shows the result after retrieving all the transitions
(the third step). Except t10 (direct incoming), t3 and t11
(direct outgoing), all transitions to be derived in region s7_d
are indirect incoming or outgoing transitions of s7. s2
includes s5 and s5 includes s7, so incoming and outgoing
transitions of s2 and s5 should be considered. They are not
orthogonal composite states and s7 is their inner most state,
so there exist only the second type of indirect transitions
(which start from or terminate on the outside edge of the
composite state). s5 includes s7 as a default state; all
incoming transitions (i.e., t2, t6, and t7) to s5 are also
treated as incoming transitions to s7. Since s5 is not a
default state, s7 does not accept incoming transition to s2
even though s2 is super-state of s5 and s7. If the outgoing
transitions from s2 (t4) and s5 (t8) are fired, s7 becomes
inactive.

While the original state machine diagram (as shown in
Figure 12) describes the normal behaviors of microwave,
our transformed state machine diagram (as shown in Figure
15) focuses on describing the abnormal behaviors (hazards)
of microwave, which consists of wrong combination or
wrong sequences of normal behaviors. The transformed

diagram depicts the required elements that are sufficient to
cause the hazard to occur, and so it acts a basis to produce
the test scenarios to examine if software does not have any
defined hazard in the fault tree. For instance, we can
combine a set of test scenarios using s7.d_microwaving (i.e.,
{t2, t6, t7, and t10}) and not_s8 (i.e., {t12}) in Figure 15.
As a result of combination (referring to Figure 12 and
Figure 15), ‘t2 t12,’ ‘t1 t6 t12,’ ‘t2 t8 t7
t12,’ and ‘t2 t11 t10 t12’ can be derived as test
scenarios. With these test scenarios, we can find a remaining
hazard in software, and thus we can prevent the hazard from
occurring, for example by changing the guard condition of
t11 to ‘door.closed==false’ or the triggering event of t11 to
‘door.door_open().’

Even though engineers define the hazards using fault
trees, the gap between fault tree and original state machine
diagram makes it hard to use the fault tree for safety
analysis. For instance, we cannot trace what triggers p1 only
with the fault tree (of Figure 13). If t10 is a primary event in
the fault tree, the original diagram is inappropriate to
describe s7’s being active only due to firing t10 because s7
has other three defined incoming transitions. The
transformed diagram can link this gap between the fault tree
and the original diagram.

Safety-critical software may have a very complicated
structure in its model, and so analyzing the large and
complicated model manually is time consuming and effort
intensive work. Furthermore, it is easy to make unexpected
errors or miss hazards to be analyzed. Especially, dealing
with the implicit information related to depth and
othogonality manually make these problems worse. Thus,
providing the rules and algorithm to semi-automate (if not
fully automate) the transformation helps significantly to
reduce effort, time, and errors in interpreting the hazards in
fault tree with respect to the original state machine diagram.

V. RELATED WORK
Several studies have tried to bridge the gap between fault
tree and system modeling [1,2,5,7,10]. Kaiser provided an
integrated approach to add the notion of states and events to
fault trees, which are called State/Event Fault Trees (SEFTs)
[1,2]. SEFT adopts the state/event concept to depict the
system behavior, and the fault tree concept to describe the
faults which are connected to states or events. It has a
combined view for both system specification and fault.
However, the engineer manually identifies the causes of
fault tree and manually connects them to state or event.
Constructing SEFT is very difficult, error-prone, and time
consuming especially when the system is very complicated
and large. Furthermore, because both system specification
and hazard are defined in one model together, the engineers
should require additional effort to divide a view for a
specific purpose.

Some researchers have tried to combine fault tree and
state-based model (Petri-net [5,7] or state machine [10]).
They provided the method to convert the fault tree to state-

204204

based model. It provides simple transformation without
connecting the fault with information in state-based
modeling. Consequently, the converted result conveys
exactly the same meaning as the fault tree. To use the
transformed information, the engineer should identify and
connect each cause with model element manually.

VI. THREATS TO VALIDITY
We expand the fault tree for capturing all possible causes,
when we identify types of primary events in fault tree.
Domain experts should get rid of false causes among
primary events. If the domain experts are not involved in
elimination, the normal behaviors may be treated as
abnormal behaviors and the engineer may try to remove or
block normal behaviors, which might lead to unexpected
hazards. Therefore, we rely on the domain experts’ opinion
for the elimination.

In the second step, we re-classify and transform each
type of primary event which are identified in the first step.
Re-classification is in accordance with conditions sufficient
to lead to a cause, which excludes exact time when it
happens or data dependencies. For example, firing a
transition is a moment, but we accept the target state after
the transition is fired rather than the firing moment. Instead
of adopting the moment, we separate and abstract one state
(in original diagram) into two states according to possibility
of being a cause of hazard. For example, if the target state is
active due to other incoming transition (in transformation of
transition t), we do not accept it as the cause because the
given transition is not fired. The transformed state machine
admits only the active target state after the given transition
is fired.

Our example is based on a microwave-oven system, and
not a complex safety-critical system. This may affect our
confidence in our abilities to generalize. However, if safety-
critical system is described in UML state machine diagram,
regardless of high the complexity, the transformation rules
and algorithm for extracting the information can be
applicable because we consider the meta-structure (i.e.,
depth and orthogonality) of the diagram (defined in UML
superstructure [9]).

VII. CONCLUSIONS AND FUTURE WORK
We develop an algorithm to transform the hazard from a
fault tree to a state machine diagram, which bridges the gap
between hazard analysis and system specification. It helps
the engineer to develop the primary events of the fault tree
by matching them with elements of state machine diagram.
The algorithm provides an automatic transformation, and it
deals with implicit transitions of the state machine diagram
that the engineers can overlook. The resultant state machine
diagram focuses on the causes of the hazard and shows the
direct paths to the causes, which can potentially help to
identify the test scenarios.

As far as future work is concerned, we will work on
extracting test scenarios from transformed state machine

diagram with larger and more complex safety critical
software systems, and also work on developing a tool to
support automation from transformation to extraction of test
scenarios. Unlike previous work which aims to extract test
scenarios [13], we can focus on undesired behavior as well
as normal behavior.

ACKNOWLEDGMENT
This research is funded by the following agencies: (1) The

MKE (The Ministry of Knowledge Economy), Korea, under the
ITRC (Information Technology Research Center) support program
supervised by the NIPA (National IT Industry Promotion Agency)
(NIPA-2010-(C1090-1031-0001)), (2) The Defense Acquisition
Program Administration and Agency for Defense Development
under the contract, (3) The Real-world Scale Computing: BK21
Program, KAIST in 2010, and (4) The USA National Science
Foundation (NSF) grant CCF-0851848.

REFERENCES
1. B. Kaiser, “Extending the Expressive Power of Fault Trees,” Annual

Reliability and Maintainability Symposium (RAMS), pp. 468-474,
January, 2005.

2. B. Kaiser, C. Gramlich, and M. Förster, “State/event fault trees -
safety analysis model for software-controlled systems,” International
Journal of Reliability Engineering and System Safety, Vol. 92, no. 11,
pp. 1521-1537, November, 2007.

3. D. Harel, “Statecharts: A Visual Formalism For Complex Systems,”
Science of Computer Programming 8(3), pp.231-274, 1987.

4. E. Wong, V. Debroy, A. Surampudi, and H. Kim, “Recent
Catastrophic Accidents: Investigating How Software Was
Responsible,” Proc. International Conference on Secure Software
Integration and Reliability Improvement (SSIRI 10), Singapore, June
9-11, 2010.

5. K. Buchacker, “Combining fault trees and Petri nets to model safety-
critical systems,” High Performance computing. The society for
computer simulation International, pp. 439 - 444, 1999.

6. M. Stamatelatos, W. Vesely, “Fault Tree Handbook with Aerospace
Applications,” Technical Report of NASA, August, 2002.

7. N. Leveson and J. Stolzy, “Safety analysis using Petri net,” IEEE
Transaction on Software Engineering, Vol. 13, No. 3, pp. 386-397,
March, 1986.

8. N. Leveson, “Safeware: system safety and computers,” Addison-
Wesley, September, 1995.

9. Object Management Group (OMG), “OMG Unified Modeling
Language (OMG UML), Superstructure,” formal/09-02-02, February,
2009.

10. O. El Ariss, X. Dianxiang, E. Wong, C. Yuting, and L. Yann-Hang,
“A Systematic Approach for Integrating Fault Trees into System
Statecharts,” Proc. 32nd Annual IEEE International Computer
Software and Applications Conference, pp.120-123, 2008.

11. T. Chu and G. Apostolakis, Methods for Probabilistic Analysis of
Noncoherent Fault Trees, IEEE Transactions on Reliability, Vol. 29,
No. 5, pp. 354-360, December, 1980.

12. W. Vesely, F. Gold berg, N. Roberts, and D. Haasl, “Fault tree
handbook,” Technical Report NUREG-0492, U.S. Nuclear
Regulatory Commission, 1981.

13. Y. Kim, H. Hong, D. Bae, and S. Cha, "Test Cases Generation from
UML State Diagram", IEE Proceedings - Software, Vol. 146, No 4,
pp. 187-192, August 1999.

14. Y. Oh, J. Yoo, S. Cha, and H. Son, “Software safety analysis of
function block diagrams using fault trees,” International Journal of
Reliability Engineering and System Safety, Vol. 88, no. 3, pp. 215-
228, June, 2005.

205205

