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Abstract 

Poorly designed software systems are one of main causes of 
accidents in safety-critical systems, and thus, the importance 
of safety analysis for software has greatly increased over the 
recent years. Software safety can be improved by analyzing 
both its desired and undesired behaviors, and this in turn 
requires expressive power such that both can be modeled. 
However, there is a considerable gap between modeling 
methods for desired and undesired behaviors. Therefore, we 
propose a method to bridge the gap between fault trees (for 
undesired behavior) and UML state machine diagrams (for 
desired behavior). More specifically, we present rules and 
algorithms that facilitate the transformation of a hazard (in 
the context of fault trees) to a UML state machine diagram. 
We illustrate our proposed approach via an example on a 
microwave-oven system. Our proposed transformation can 
help engineers identify how the hazards may occur, thereby 
allowing them to prevent the hazard from occurring. 

Keywords - safety analysis; fault tree analysis (FTA); UML state 
machine diagrams; automatic transformation rules 

I.  INTRODUCTION 
Software is often responsible for controlling the behavior of 
electro-mechanical components and the interactions among 
the components in systems [8], and since most accidents 
occur due to control-related issues, software directly or 
indirectly affects the hazards of safety-critical systems [4,8]. 
These hazards in turn can lead to losses that may span life, 
property, and even the environment. Thus, safety analysis for 
software is highly important and must be carried out [7,8]. * 

Fault Trees (FTs) are widely employed in hazard analysis 
because they are a simple, visual, and standardized notation 
used to state safety requirements [6,12]. Since a FT is 
suitable for identifying the causes of hazards and their 
relationships, it has been widely used in describing hazards 
related to hardware, which are usually composed of failure 
modes of hardware [6,12]. Unlike hardware, software 
contributes to a hazard due to an incorrect combination or 
sequencing of normal behaviors [1,2,14]. Therefore, safety 
analysis for software hazards should be with respect to the 
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normal behavior of the system [1,2]. However, FTs are not 
appropriate to describe, and analyze normal behaviors (that 
are highly relevant to the causes of hazards) for safety 
analysis. 

UML state machine diagrams are appropriate for 
specifying the discrete behavior of various subsystems [3,9]. 
They may also be adapted to describe the identified hazards 
in the FTs, which can help in the understanding of hazards 
with respect to system behaviors. For this purpose, UML 
state machine diagrams should be consistent with FTs. 
However, it is error prone to manually construct a UML state 
machine diagram from a FT. It is also difficult to formally 
and/or manually analyze the diagram for safety, since the 
diagram can have indirect paths to causes of the hazards due 
to its depth (i.e., a composite state can own its sub-states) 
and orthogonality (i.e., regions in a state are independent of 
each other).  

Therefore, the major research goal of this paper is to 
develop an algorithm to transform hazards of fault tree into 
UML state machine diagram for safety analysis, in 
accordance with software behavior. This software behavior, 
for our purposes, is described in UML state machine notation, 
and hereafter we refer to it as the original state machine 
(diagram). We develop three steps for transforming the 
hazards: identifying the types of primary events in the fault 
tree related to software behavior, developing the rules to map 
the primary events and gates (which are components of fault 
tree) to UML state machine notation, and extracting 
important information from the original state machine 
diagram that deals with properties (e.g., hierarchy or 
orthogonality) of the diagram. The output of our 
transformation process is also a state machine (diagram), that 
is hereafter, referred to as the transformed state machine 
(diagram). The contributions of the paper are as follows. 

 

 Rules are proposed that provide the foundation of the 
automatic transformation from fault tree to state machine 
diagram for describing hazards 

 

 Each transformed state machine diagram captures both 
explicit and implicit causes that trigger a hazard with 
respect to normal behavior  

 

The rest of this paper is organized as follows. Section II 
describes the fundamentals of fault tree analysis and UML 
state machine diagrams. Section III then describes the 
methodology, while Section IV explains our approach via an 
illustrative example. Subsequently, Section V overviews 
related work, followed by Section VI which discusses the 
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identified threats to validity. Finally, Section VII presents 
conclusions and a discussion on future work. 

II. BACKGROUND 

A. Fault Tree Analysis (FTA)  
FTA can be described as an analytical technique, whereby 
an undesired event of the system is specified, and the system 
is then analyzed in the context of its environment and 
operation, to find all credible ways in which the undesired 
event (called a top event) can occur [6,12]. A typical fault 
tree is composed of a number of symbols which are 
classified in three categories: primary events, intermediate 
events, and logic gates. Primary and intermediate events 
represent causes of the top event which are abnormal 
conditions that may lead to a reduction in, or loss of, the 
capability of a functional unit to perform a required function. 
Primary events of a fault tree are those events, which cannot 
be further developed. The gates serve to permit or inhibit the 
passage of fault logic up the tree. The gates show the 
relationships of events needed for the occurrence of a 
‘higher’ event. The ‘higher’ event is the ‘output’ of the gate; 
the ‘lower’ events are the ‘inputs’ to the gates. The gate 
symbol denotes the type of relationship of the input events 
required for the output event. There are three basic types of 
fault tree gates: the OR gate, the AND gate, and the NOT 
gate [6,11,12]. PAND is a special case of AND gate. Also a 
XOR gate is a combination of three basic gates, so we 
assume it is replaced with the basic gates in fault tree. 

A fault tree is reduced to a logically equivalent form, 
showing a specific combination of primary events, which is 
called a Prime Implicant (PI) [12]. PIs may cause the top 
event and cannot be reduced in number.  

Any fault tree consists of a finite number of PIs that are 
unique for its top event. The PI expression for the top event 
can be written in the general form, 

 

T = Pl + P2 +…+ Pk 
 

where T is the top event and each Pi is a Prime Implicant. 
Thus, T occurs if any Pi is evaluated to true. Also, 

 

Pi =X1•X2•...•Xn 
 

where X1, X2, etc., are primary events. Thus, Pi is evaluated 
to true only if X1, X2,…, Xn all evaluate to true, i.e., all 
primary events must occur. 

B. UML State machine diagrams 
Since UML state machine diagrams are used to specify the 
behavior of various model elements, they are an appropriate 
notation to describe safety-critical system [3,9]. While a state 
machine diagram allows for depth and orthogonality, which 
makes it convenient to both use and understand, at the same 
time this makes it equally difficult and inconvenient to 
analyze. A formal definition makes the analysis easier, and 
so we define the state machine diagram using formal 
notation. Due to concerns such as space limitations, and in 
order to maintain our focus, we omit certain aspects of state 
machine diagrams that we do not require, such as redefined 

elements or connection points. Additionally, we do not 
explain each element in great depth, and direct readers to [9] 
for more detailed definitions. We start with the definition of 
an event. We adhere to the convention that a large cased 
letter such as ‘X’ refers to a set, and one of its elements is 
represented by a small cased ‘x’, i.e., x  X.   

Def. 1. (Event) An event e  E is an occurrence of signal 
or operation (method) of a state machine diagram. 

Def. 2. (Arithmetic Operation) An arithmetic operation o 
 O is an assignment statement that may include an 

arithmetic operator (e.g. +, –, /, *).  

Def. 3.  (Behavior) A behavior b  B is an atomic element 
which generates an event or does an arithmetic operation 
with attributes (or parameters) of a state machine diagram. 
(i.e., B  (E  O) )   

Def. 4. (Transition label) A transition label tl  TL is 3-
tuple <Etl, gtl, Atl>, where Etl is a set of trigger events that 
may fire the transition tl, gtl is a Boolean expression (called 
a guard condition) which should be satisfied when one event 
in Etl occurs, Atl (  B) is a set of optional behaviors (called 
actions) which are executed after firing the transition tl.  
A transition label in the diagram uses a notation ‘Etl[gtl]/Atl.’ 
The portion before ‘/’ describes what is required for firing 
the transition. Once at least one event in Etl occurs and gtl is 
satisfied, the transition is fired. Since the inclusion of Etl, gtl, 
and Atl in the notation are optional, transition labels allows 
for several variations in their forms: empty, only consisting 
of events, guard conditions, or actions, or combinations of 
them.  
Def. 5. (Pseudo State) A pseudo state ps is either initial, 
fork, join, or choice.  
An initial pseudo state is used to describe the default state in 
composite state or state machine diagram. The other pseudo 
states are used to connect multiple transition paths to or 
from states [9]. A fork pseudo state is used to split an 
incoming transition in to two or more transitions, and a join 
pseudo state is used to merge two or more incoming 
transitions. Finally, a choice pseudo state serves to describe 
a conditional branch. 

Def. 6.  (State) A state s  S is 4-tuple <Ens, Ds, Exs, Rs>, 
where Ens, Ds, Exs are sets of entry, doActivity, and exit 
behaviors of the state s respectively (i.e., Ens  B, Ds  B, 
Exs  B), Rs  R (see Def. 8) is a set of regions of state s. 

The number of regions determines whether the state is 
simple, composite, or orthogonal composite. A simple, 
composite, or orthogonal composite state has zero, at least 
one, or more than one region respectively. En, D, and Ex are 
a set of optional behaviors that are executed whenever the 
state is entered, while being in the state, and whenever the 
state is exited, respectively.  
Def. 7. (Transition) A transition t = <vt

s, tlt, vt
t> is a 

relation in V×TL×V, where V is a finite set of vertices, 
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where each vertex is either Pseudo State ps or State s (i.e., V 
 (PS  S) ), vt

s is a source vertex of t, vt
t is a target vertex 

of t, and tl  TL is the transition label of t. 

Def. 8.  (Region) A region r  R is a 2-tuple <Vr, Tr>, 
where Vr  V is a finite set of vertices in region r, and Tr is a 
finite set of transitions in region r.  
Def. 9. (State Machine) A state machine sm is a set of 
regions, sm = <Rsm> where Rsm  R is a set of regions and 
|Rsm|  1.  
A state or state machine can own its regions and these 
regions are annotated with unique identifiers such as s1, sm1, 
so the entire set of regions (R) may be divided into subsets 
(Rsm1, Rsm2, Rs1, and Rs2) that are mutually disjoint, and each 
of them can identify its owner. Also, since regions can own 
states and states can own regions, they serve as to link a state 
machine and its states, or a composite state and its sub-states. 
For example, if sm1 owns r1 and r2, and r1 owns s1, s2, s3, 
t1, and t2; then sm1 is a parent of r1 and r2, and sm1 is a 
grandparent of s1, s2, and s3. We can thus, retrieve the 
hierarchical relationship between states, or between states 
and state machine diagrams. 

III. TRANSFORMATION OF THE HAZARDS FROM PRIME 
IMPLICANTS OF FAULT TREES TO STATE MACHINES 

We propose three steps for transforming hazard scenarios: 
(1) identifying the types of primary events in fault tree 
related to software behavior, (2) developing the rules to 
transform the primary events and gates in fault trees to UML 
state machine diagrams, and (3) extracting the information 
from original state machine diagrams.  

A. Identification of types of primary events in a fault tree 
Fault trees should be defined with respect to the specification 
of the system [6,12]. The specification itself can be based on 
requirements documents, or design documents. In the paper, 
we assume that the engineer defines the fault tree based on a 
state machine diagram (which we refer to as the original state 
machine diagram), which means each primary event in the 
fault tree consists of what the diagram has. We assume that 
each primary event is specified as follows: 
 

Def. 10.  (Primary event) A primary event pe  PE is 
defined with a notation ‘sm.element’, where sm is a target 
state machine and element can be the name or label of 
elements to be analyzed for safety.  

In the first step, we identify the type of primary events using 
text matching with the original state machine diagram and 
put a ‘type’ tag to each primary event. We first match ‘sm’ 
with the name of the state machine, and then search 
‘element’ with a label or name of element in the state 
machine. Primary events can be interpreted as multiple 
elements in the original state machine, which means that 
primary events can be developed further. For example, a 
primary event ‘sm1.a=b+c’ can be mapped into both En and 
A. It should be developed to two lower primary events with 
OR gate. All the mapped elements can be the causes of 
hazard which hazard analysis method should deal with. We 

should, therefore, adjust the fault tree if a primary event is 
interpreted as more than one element in original state 
machine diagram. After matching, we put a tag on every 
primary event, where each tag shows the type of primary 
event and its location in original state machine diagram. 
Table 1 shows the types of primary events and their 
corresponding tags. We can classify the types of primary 
events into five categories: states, transitions, operations, 
events, and guard conditions. State machines, regions, and 
pseudo states show the relationship between them and other 
elements (state, transition, etc). 

Table 1. Types of Primary events and their Corresponding Tags  
Types Possible tag 
State s<sm>element 
Transition t<sm, source_state_ name>. transition_label 
Operation en<sm, state_name>.element 

d<sm, state_name>.element 
ex<sm, state_name>.element 
a<sm, source_state_name >. transition_label

Event e<sm, source_state_name>. transition_label 
en<sm, state_name>.element 
d<sm, state_name>.element 
ex<sm, state_name>.element 
a<sm, source_state_name >. transition_label

Guard 
condition 

g<sm, source_state_name >. transition_label
data<variables>.element 

 

Identifying states is simple because all of the elements in the 
same state machine should have distinct names. For example, 
suppose that there is a primary event ‘door.open’ in fault tree. 
The primary event can be divided into two parts: door and 
open. ‘door’ represents a name of state machine diagram and 
‘open’ describes an element of the diagram. If ‘open’ is 
mapped to a name of state, the primary event is a state. Its 
tag is ‘s<door>.open.’ On the other hand, identifying a 
transition is quite different from identifying a state since the 
transition label can have several variations as discussed 
earlier (please see Def. 4 in Section II). Thus, there is a 
potential problem in that a primary event for a transition may 
not be perfectly matched (string matched) to a state machine. 
To illustrate this, consider a scenario where there are three 
transitions:  

(1)‘[a>b]’,  
(2)‘receive_event()[a>b]’, and  
(3)‘receive_ event()[a>b]/a=b’  

in the state machine. The first transition has only a guard 
condition; the second transition has a guard condition and a 
receiving event from the state machine diagram (the second 
transition occurs if the guard condition is true, and it receives 
the event); and the third transition is same as the second 
transition except that there is now an additional action. Given 
a primary event ‘sm.receive_event()[a>b]’ in the fault tree, it 
can refer to the second transition (if the engineer wants a 
perfect matching), or either of the last two transitions (if the 
engineer considers all elements in state machine diagram 
which include (textually) the primary event). We select the 
latter approach to get all the possible elements in state 
machine diagram (even for behavior, event, or guard 
condition). Therefore, sm.receive_event()[a>b] becomes an 
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intermediate event, and consists of an OR gate composed of 
two primary events: ‘sm.receive_event()[a>b]’ and 
‘sm.receive_event()[a>b]/a=b.’ Describing a specific 
transition requires information about its state machine, 
source state, and transition label; thus, a transition tag is 
formed according to the format: ‘t<sm, source_state_ 
name>.transition_label.’  

The arithmetic operation is one kind of behaviors as 
mentioned in Def. 3, so it may be mapped to element in En, 
D, Ex, and A (as per Def. 4 and 6). Furthermore, one 
operation can appear in several of these behavior sets (En, D, 
Ex, and A) at the same time. The types of behavior sets 
decide when a behavior is executed, so we distinguish the 
types using a tag. In case of state related behavior, a tag 
shows its behavior type, state machine, state name, and 
operation (as ‘element’). Otherwise (in case of transition 
related behavior - action), the tag has the same structure as a 
transition. 

An event can be mapped to a trigger event of a transition 
(via the transition label, Def. 4) or behavior (Def. 3 and Def. 
6). If a primary event is mapped to an event in a behavior set, 
its type and tag have the same mapping rules as arithmetic 
operations. If a given element is mapped to a trigger event of 
the transition, we identify the element as one of Etl (in Def. 
4). Its tag requires the same information as a tag of a 
transition. 

A Boolean expression (in the primary event) can be used 
to represent a guard condition in a transition, or alternatively 
to evaluate the value of an input variable. We call the second 
case a ‘data comparative.’ Data comparatives mean Boolean 
expressions including comparison operators (e.g. <=, >=, >, 
<) to compare a variable’s value. Because the change of a 
variable’s value can be one cause of a hazard, we also need 
to consider all the possible ways that satisfy the causes of 
hazard. Whenever the change occurs, the data comparatives 
should be checked. Tags for data comparatives require 
information on the list of variables in a Boolean expression. 

Since we map all the possible primary events and expand 
the fault tree, we need human intervention (further 
discussion on this is presented in Section VI) to filter out the 
primary events which cannot be causes of the hazard. We 
then extract PIs from adjusted fault tree. Since the extraction 
of PIs is not our focus, we use existing methods such as 
those in [6,12].  

B. Transformation of Primary Events and Gates in Fault 
Trees 

Each PI represents a unit to be analyzed as part of the safety 
analysis. However, we still need information from state 
machine such as incoming transitions for triggering En, and 
fault tree is not appropriate to describe it. We therefore 
transform, the PI to a state machine to describe how causes 
of hazard can occur. While original state machine diagrams 
focus on describing how the software system works, our 
transformed state machine describes how the hazard occurs. 
Each PI corresponds to one state machine diagram. All the 
primary events and gates in PIs are mapped to the elements 
in transformed state machine diagram. 

Primary events in fault trees have nine kinds of tags as 
shown in Table 1. Some of these tags share the same trigger 
conditions which are sufficient to cause a primary event to 
occur and so, can be grouped together. We reclassify the nine 
tags into four groups: (1) states, entry and doActivity of a 
state, (2) exit of a state, (3) transitions, events, guard 
conditions and actions, and (4) data comparatives. Elements 
in the same category have the same transformation rules. 
(1)  States, and Entry and doActivity of a state 
State, doActivity, and entry have same triggering conditions: 
firing of all incoming transitions to a given state. When a 
transition is fired, exit of its source state, its action, and entry 
and doActivity of its target state is executed in order within 
one unit of time. When an incoming transition to a given 
state is fired, entry and doActivity are executed and state 
becomes active. State and doActivity have the same life 
time; doActivity is repeatedly executed until the state 
becomes inactive. Thus, the three types have the same 
triggering conditions.  

Figure 1 shows the transformed state machine diagram 
corresponding to a state, entry, or doActivity of the state. An 
asterisk (*) signifies the state which satisfies the cause of the 
hazard, and s corresponds to the state (it is matched to 
sm.element in its tag for state or sm.state_name for d or en in 
its tag). Incoming(s) refers to all transitions to s and 
Outgoing(s) to all transitions from s. Both Incoming(s) and 
Outgoing(s) include a set of transitions from or to other 
states (which excludes self-transition from s to s). Not_s 
implies all other states in same state machine diagram with 
state s.  

State s may be a default state in original state machine 
diagram which has a direct transition from initial pseudo 
state in the outmost region. If s is a default state of the state 
machine diagram, it satisfies the cause of the hazard without 
firing any transitions. Figure 1 (a) shows the transformation 
rule of a default state s and Figure 1 (b) shows the 
transformation when state s is not a default state. 

 

  (a) State is a default 

(b) State is not a default 
Figure 1. Transformed state machine diagram for s, s.en, and s.d 

(2)  Exit of a state 
Exit of a state is executed when the outgoing transitions from 
the state are enabled (i.e., triggered event occurs and guard 
condition is satisfied). Even if exit behavior is included in 
the state, it is not executed until an outgoing transition of the 
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state is fired. A trigger condition for an exit behavior of state 
is firing of outgoing transitions of a given state. Figure 2 
shows the transformed state machine corresponding to exit 
behavior. s corresponds to the state including exit behavior 
(it is matched to sm.state_name in a tag for ex). 
target(Outgoing(s)) describes a set of target states of 
outgoing transitions from s. We describe the state list in one 
state as per [9] and mark * on the target states. 
Outgoing(target(Outgoing(s))) are outgoing transitions from 
target(Outgoing(s)). not_target stands for every state in sm 
except s and target(Outgoing(s)). 
 

Figure 2. Transformed state machine diagram for s.ex 
 

(3)  Transitions, events, guard condition, and actions 
 

Transitions, events, guard condition, and actions can be 
combined into one because they occur when the transition is 
fired. Figure 3 shows the transformed state machine diagram 
corresponding to a transition. A given transition t, which 
can be found using sm, source state name, and transition 
label in its tag) includes events, guard condition, or actions. 
We accept the target(t), which represents a target state that 
is active from firing t, as a cause of hazard. Our concern is 
only occurrence of t, so target(t) is marked with *. 
Not(target(t)) represents all states which do not have a given 
transition t as their incoming transition.  

Figure 3. Transformed state machine diagram for tl, e, g, and a 
 

(4)  Data comparatives  
 

Data comparatives are related to a cause of hazard related to 
the value of data (e.g., parameters or variables). Whenever 
values are changed, data comparatives should be evaluated. 
If the result of the evaluation is true, it satisfies the condition 
to be a cause of the hazard. Figure 4 describes transformed 
state machine diagram for data comparative ‘a>b’ (described 
in a tag as ‘element’). variables in a tag represents variables 
(or parameters) in data comparative such as a and b.  
write(variable) returns transitions or states which define 
values of variables in their behavior. If the trigger event has 
each given variable as one of its parameters, the variable 
accepts its value from where the event is generated. Also, 
each given variable may take its value from result of 
arithmetic operation if it is located in left of assignment 
operator in A, En, D, or Ex. write(variables) returns 
transition, incoming transitions, state, or outgoing transitions 
for an assignment statement in A, En, D, or Ex respectively. 
Wait in Figure 4 stands for the state that dissatisfies the data 

comparative (Boolean expression) and does not have any 
change on variables. Whenever the value is changed (at least 
one of the transitions in write(variable) is enabled), it 
reaches a state ‘check’ in Figure 4. If the data comparative 
([a>b]) is evaluated as true, it reaches a state ‘checked’, 
which can be a cause of the hazard and marked with *. 
Otherwise, it comes back to a state Wait.  

Figure 4. Transformed state machine diagram for data ‘a>b’ 
 

Each fault tree can have four gates: AND, OR, PAND, and 
NOT gates, where each explains the relationship between its 
inputs and output. Each gate of same type acts in the same 
manner within the transformed diagram. 
 

(5)  AND gate 
 

An AND gate is used to show that the output occurs only if 
all the inputs occur [6,12]. Figure 5 describes a 2-input AND 
gate (left) and its transformed state machine diagram (right). 
The fault tree shows that C is true when both A and B occur 
(which is described in Boolean algebra form: C=A•B). All 
the inputs of AND gate should occur prior to output, so the 
transformed state machine starts from the inputs (the inputs 
come first after the initial pseudo state). A composite state 
after the initial pseudo state provides the regions for 
expanding the inputs. The input is either an intermediate 
event or a primary event in fault tree. If it is an intermediate 
event, it transforms further for its gate and inputs. Otherwise, 
it follows transformation rules for a primary event. Each 
outmost region in AandB has one state marked with asterisk 
(*). The states should be active at the same time, so we use a 
join pseudo state to merge the transitions from different 
orthogonal regions. Join pseudo state in Figure 5 enables the 
transition from state A and B to state C only when A* and B* 
are active at the same time. The intermediate event C may be 
used for an input of higher intermediate event, so we also 
mark C with *. 
 

Expand(A)

Expand(B)

A*

B*

C*

AandB

Expand(A)

Expand(B)

A*

B*

C*

AandB

 
Figure 5. AND gate and its transformed state machine diagram 

 

(6)  OR gate 
 

An OR gate is used to show that the output occurs only if one 
or more of the inputs occur [6,12]. Figure 6 describes a 2-
input OR gate (left) and its transformed state machine 
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diagram (right). The fault tree shows that C is true when 
either A or B occur (which is described in Boolean algebra 
form: C=A+B). The transformed state machine diagram of 
OR gate is similar to that of the AND gate. The difference is 
the connection between its inputs and output. Output C has 
direct transitions from A* and B*. A transition from A* to C 
can be fired without regard to an active state in a region for 
expansion of B by [9]. Since we use a PI as a unit of the 
transformation and PI has only AND or PAND gates, the 
fault tree has only one OR gate which makes a connection 
between top event and PIs. 
 

Expand(A)

Expand(B)

A*

B*

C*

AorB

Expand(A)

Expand(B)

A*

B*

C*

AorB

 
Figure 6. OR gate and its transformed state machine diagram 

 

(7)  PAND gate 
 

A PAND gate means that output occurs when inputs occur in 
sequence [6,12]. The left portion of the input should occur 
before the right, i.e., inputs, which are closer to left side of a 
PAND gate, should be executed earlier. Figure 7 shows a 2-
input PAND gate (left), and its transformed state machine 
diagram (right). The fault tree shows that C is true when A 
and B occur in sequence (which is described in Boolean 
algebra form: C= ). Unlike other gates, the composite state 
has only one region and each input connects in sequence 
with respect to order of inputs in fault tree (A before B).  In 
the ApandB, the state with * in outmost region of the 
composite state ‘Expand(A)’  has an outgoing transition to 
the composite state ‘Expand(B),’ and the state with * in 
‘Expand(B)’ has an outgoing transition to output state C. 
 

Expand(A)

Expand(B)

A*

B*

ApandB

C*

Expand(A)

Expand(B)

A*

B*

ApandB

C*

 
Figure 7. PAND gate and its transformed state machine diagram 

 

(8) NOT gate 
 

A NOT gate means that output is a negation (or an 
occurrence failure) of its input [11]. Since any event (except 
top event) in fault tree can be an input of NOT gate, we 
should develop a method to apply the gate to all the events in 
fault tree. If the primary event is related to first three groups 
(state, exit of state, and transition), we apply NOT gate (or a 
negation) by swapping the ‘*’ mark on the state, i.e., if one 
state has a ‘*’ mark, we remove it and add it on the other 
state. For example, Not_s, s.ex/not_target, and Not(target(t)) 
in Figure 1, Figure 2, and Figure 3 respectively have ‘*’ 
marks after applying the negation. In the case of data 
comparatives, we reverse the comparative operator (e.g.,  

 >,    <, =  !=). For example, we simply negate a 
data comparative by replacing ‘a<b’ with ‘a b’ in Figure 4.  

For intermediate event, we can also apply the negation to 
swap ‘*’ mark between output state and composite state for 
inputs of the gate, like a primary event. After the negation, 
the composite state has ‘*’ mark instead of the output state. 
For instance, the output state C is marked with ‘*’ in Figures 
5, 6, and 7 which are pre-negation, whereas after negation 
the composite states ‘AandB,’ ‘AorB,’ and ‘ApandB’ are 
marked with ‘*’, and C would be unmarked. Since a state 
marked with ‘*’ is connected to outside region, it has risk to 
fire a direct transition from a composite state without 
exploring inside the composite state. If there is no 
inconvenience, we prefer to delegate the negation to gate and 
inputs of the intermediate event. Figure 8 shows negation of 
an intermediate event including AND and OR gates. The 
negation of output (an intermediate event) is equal to 
negation of gate and its inputs. Negation of AND gate is OR 
gate and vice versa. Figure 8(a) shows negation of 
intermediate event (C = A•B) including AND gate. Negation 
of C is represented in ‘~C = ~(A•B) = (~A)+(~B).’ Figure 
8(b) shows negation of intermediate event (C = A+B) 
including OR gate. Negation of C is described in ‘~C = 
~(A+B) = (~A)•(~B).’ Because all possible sequences of its 
inputs of PAND gate should be specified for negating a 
PAND gate, we prefer swapping ‘*’ mark for PAND gate 
instead of delegating the negation to PAND gate and its 
inputs. 

 

Expand(notA)  A

Expand(notB)  B

~A*

~B*

~C*

~Aor~B

Expand(notA)  A

Expand(notB)  B

~A*

~B*

~C*

~Aor~B

  
(a) Negation of an intermediate event which includes AND gate  

 

    

Expand(notA)  A

Expand(notB) B

~A*

~B*

~C*

~Aand~B

Expand(notA)  A

Expand(notB) B

~A*

~B*

~C*

~Aand~B

  
 (b) Negation of an intermediate event which includes OR gate 

Figure 8. Negation of (a) AND and (b) OR gate 
 

The NOT gate is also useful to collectively describe 
everything but a particular element. For example, suppose a 
region is composed of five states: A, B, C, D, and E. If given 
primary events are ‘A, B, C, or D,’ we can replace four 
primary events with one primary event (~E). Four primary 
inputs are inputs of OR gate, and this produces four PIs 
instead of just one. It thus, helps to simplify and abstract 
both the fault tree, and the transformed model.  

C. Extracting the information from state machine 
diagram  
In this step, we extract the information from original state 
machine diagram such as deriving actual incoming 
transitions (instead on ‘incoming’). The extraction is usually 
straightforward and explicit such as getting a source/target 
state of a given transition. However, elements that are related 
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to hierarchy and orthogonality in the original diagram have 
implicit information which should be analyzed. For example, 
firing an outgoing transition from a composite state makes 
both the state and its sub-states inactive. These kinds of 
implicit transitions for the sub-states make the analysis of 
state machine diagram difficult, but it should still be 
considered. We explain the elements which have these 
hierarchy and orthogonality issues. 

 

(1)  Checking a default state 
 

A UML state machine diagram allows depth (i.e., hierarchy), 
and so it might have more than one active state at the same 
time. Figure 9 shows the pseudo code to check whether a 
given state is one of the default states in state machine 
diagram sm. Only if the state s and its ancestor states are 
default states, is true returned and false otherwise. The 
parent of s is a region (see Def. 8) which includes an initial 
pseudo state, and its one outgoing transition whose target 
state is the default state in the region. If the target state is s, 
we need to extend the examination to its ancestor states. Its 
ancestor states are retrieved by getting its grandparent (by 
Def. 6, Def. 8, and Def. 9). The procedure repeats until it 
reaches to state machine level.  

Figure 9. Pseudo code for checking if s is a default state 
 

(2)  Retrieving all incoming transitions 
 

We should extract the incoming transitions to the state s, in 
order to fully transform the state and its behaviors. Figure 10 
describes pseudo code to retrieve all incoming transitions to 
the state s. The incoming transitions can be direct or indirect.  
Direct incoming transitions mean they head to a given state. 
Indirect incoming transitions mean they make a given state 
active even though its explicit target is a different state.  

Indirect incoming transitions can be further divided into 
three cases. The first case occurs when there is a transition 
from outside to inside of a given state. Even though a target 
of the transition is not a given state, it is included in a given 
state. If the transition is fired, both a given state and a target 
state become active. The second case occurs when a given 
state is a default state and there are incoming transitions 
whose target is its super-state (composite state). If an 
incoming transition, which terminates on the outside edge of 

the composite state, is fired, each default state in each region 
is active [9]. Incoming transitions to the composite state are 
also treated as implicit incoming transitions to default states 
in it. The third case indicates when the state is a default state 
and there is a transition to a state in other regions of its 
super-state (orthogonal composite state). Whenever an 
orthogonal composite state is entered, each one of its 
orthogonal regions is also entered, either by default or 
explicitly [9]. Therefore, if a transition from outside the 
orthogonal composite state, to a state inside of other 
orthogonal regions is fired, each region of the orthogonal 
state are entered and its default state become active. 

Figure 10. Pseudo code for retrieving incoming transitions 
 

(3)  Retrieving all outgoing transitions 
 

We should extract the outgoing transitions to the state s for 
transformation of all the primary events, which is similar to 
extracting incoming transitions. Figure 11 describes pseudo 
code to retrieve all outgoing transitions to the state s. The 
outgoing transitions can also be direct or indirect. Direct 
outgoing transitions mean that they start from a given state.  

Indirect outgoing transitions mean they make a given 
state inactive even though its explicit source is not s. Indirect 
outgoing transitions can be further divided into three cases. 
The first case occurs when there is a transition from inside to 
outside of a given state. If the transition is fired, both the 
source state and the given state become inactive. Even 
though the source of the transition is not the given state, the 
source is included in the given state and the transition goes 
out of the given state. The second case occurs when there are 
outgoing transitions from the super-state of a given state (a 
given state is included in a source state of transition). When 
exiting from a composite state, the active sub-states 
(including a given state) are exited [9]. Outgoing transitions 
from the composite state are also treated as implicit outgoing 
transitions from all of its sub-states. The third case indicates 

Boolean default(State s){ 

if(localDefaultState(s)){ 
 element e=s.getGrandParent(); 

if(type of e is state) 
  return default(e); 
 else //type of e is state machine 
  return true; 
} 
else{ 
 return false; 
} 

} 
Boolean localDefaultState(State s){ 

Region r=s.getParent(); 
Vertex v=r.getInitialPseudoState(); 

 If(s==v.outgoingTransition()->target()) 
return true; 

 return false; 
} 

 Transition[] getIncomingTransitions(State s){ 
Transition [] incoming; 
 
//direct incoming transitions 
incoming.add(s.getIncomingTransitions()); 
 
//indirect incoming transition #1 
if(s.isComposite()==true){ 
 Transition t  s.getParent(); 

if(t->target() s&&t->source()  s) 
  incoming.add(t); 
} 
while(localDefaultState(s)){ 
 Element e=s.getGrandParent(); 
 //indirect incoming transitions #2 
 incoming.add(s.getIncomingTransitions()); 
 
 //indirect incoming transitions #3 
 Transition t  e.getParent(); 

                  if(t->target() e&& t->target() s.getParent() 
  && t->source() e) 
  incoming.add(t); 
 s=e; 
} 
return incoming; 

 } 
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when a given state is active, and there is an outgoing 
transition to a state in other regions of its super-state 
(orthogonal composite state). When exiting from an 
orthogonal composite state, each of its regions is exited [9]. 
Therefore, if a transition from a state inside of other 
orthogonal regions, to outside the orthogonal composite state 
is fired, each region of the orthogonal state are exited and its 
active states are exited. 

Transition[] getOutgoingTransitions(State s){
Transition [] outgoing;

//direct outgoing transitions
outgoing.add(s.getOutgoingTransitions());

//indirect outgoing transition #1
if(s.isComposite()==true){

Transition t s.getParent();
if(t->source() s && t->target() s)

outgoing.add(t);
}
Element e=s.getGrandParent();
while(type of e is a state){

//indirect incoming transitions #2
outgoing.add(e.getOutgoingTransitions());

//indirect outgoing transitions #3
Transition t e.getParent();
if(t->source() e && t->target() e

&& t->source() s.getParent())
outgoing.add(t);

s=e;
e=s.getGrandParent();

}
return outgoing;

}
 

 

Figure 11. Pseudo code for retrieving outgoing transitions 

IV. AN ILLUSTRATIVE EXAMPLE 
We now describe how our approach helps engineers bridge 
the gap between fault tree analysis and system specification 
using the example of a microwave oven. The software 
system is described as a UML state machine diagram (as 
shown in Figure 12) and one hazard is defined in a fault tree 
(as shown in Figure 13 (a)). States and transitions in the 
UML state machine diagram and primary events in fault tree 
are specified with their own identifiers (e.g., s1, t1, or p1). 
We depict two parts of a microwave oven: microwave and 
door. The microwave describes how the user sets the 
cooking time, and operates it (as per Figure 12 (a)); and 
door specifies how the system understands the user’s control 
to open or close the door (as per Figure 12 (b)). The fault 
tree shows the hazard that involves user exposure to 
microwave radiation, because the microwave produces 
radiation without the door being closed, and the radiation 
may harm humans.  

Figure 13 (b) shows the result after identifying the types 
of primary events in fault tree (which is the first step). p1 is 
matched to one of doActivity in state cooking of state 
machine microwave, and p2 is mapped to state closed of 

state machine door. If one primary event has more than one 
possible element in original state machine diagram, it should 
be developed to have all possible candidates as its input and 
PIs of fault tree should be retrieved again. For instance, 
suppose that there is another state s4 including micro 
waving() in its entry. p1 should be an intermediate event and 
it has OR gate and its two inputs: p3-‘d<microwave, 
cooking> micro-waving()’ and p4-‘en<microwave, paused> 
microwaving().’ Then, the fault tree consists of one top 
event, one OR gate, and two PIs: p3 AND ~ p2 (PI1), and p4 
AND ~p2 (PI2).  

 

s1: off
entry/ 
time:=0;

s2: ont1: timing(n)/
time.append(n)

s3:
timing_set

t5: timing(n)/
time.append(n)

s5: operating

s6: 
idle doActivity/

time--; microwaving();

s7:cooking

t4: 
clear(), 
cancel()

t2: autocook() 
[door.close==true]/
time+=30;

t3: [time==0]/
alarm();

t6: start() 
[door.close==true]

t10: [door.closed==true]

t11: 
[door.opened
==true]

s4:
paused

t8: pause()

t7: resume() 
[door.close==true]

t9: autocook()/
time+=30;

Microwave

 
(a) State machine diagram for microwave 

 

Door

s8: closed

s9: closing

s10: opened

s11: opening

t12: door_open()

t13: [sensor==open]
/door_opened();

t16: [sensor==close]/
open_failed()

t14: door_close()

t17: [sensor==open]
/close_failed()

t15: [sensor==close]/
door_closed();

Door

s8: closed

s9: closing

s10: opened

s11: opening

t12: door_open()

t13: [sensor==open]
/door_opened();

t16: [sensor==close]/
open_failed()

t14: door_close()

t17: [sensor==open]
/close_failed()

t15: [sensor==close]/
door_closed();

 
(b) State machine diagram for door 

Figure 12. UML state machine diagram for microwave 

p1: engine.
microwaving()

p2: door.
closed

p3: exposure_
of_microwave

~

p1:
d<engine,
cooking>

microwaving()

p2:
s<door>
closed

p3: exposure_
of_microwave

~

 
(a) Original                                         (b) Mapped 

Figure 13. Fault tree for hazard of microwave 

Figure 13 (b) is an input for the second step and Figure 14 
shows a result after transforming the input. The rule for an 
intermediate event having AND gate is applied first and it 
decides the shape of the orthogonal composite state 
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‘s7_d_and_not_s8’ (for inputs of the gate), join pseudo state 
(for AND gate), and simple state ‘exposure_of_microwave’ 
(an output of the gate). Each region in the composite state 
provides space to expand each input (s7_d or not_s8). While 
the region s7_d is applied a transition rule for s.d (Figure 1 
(b)), the region not_s8 is applied a transition rule for s and a 
NOT gate (switching ‘*’ on the states in the region). 

  

Not_s7 s7.d
microwaving*

outgoing(s7)

incoming(s7)

s8 Not_s8*
outgoing(s8)

incoming(s8)

s7_d_and_not_s8

exposure_
of_microwave*

s7_d

not_s8

Not_s7 s7.d
microwaving*

outgoing(s7)

incoming(s7)

s8 Not_s8*
outgoing(s8)

incoming(s8)

s7_d_and_not_s8

exposure_
of_microwave*

s7_d

not_s8

 
Figure 14. Transformed state machine diagram for the hazard without 

information from original state machine diagram 
 
 

Not_s7 s7.d
microwaving*

t3, t4, t8, t11

t2, t6, t7, t10

s8 Not_s8*
t12

t15, t16

s7_d_and_not_s8

exposure_
of_microwave*

s7_d

not_s8

Not_s7 s7.d
microwaving*

t3, t4, t8, t11

t2, t6, t7, t10

s8 Not_s8*
t12

t15, t16

s7_d_and_not_s8

exposure_
of_microwave*

s7_d

not_s8

 
Figure 15. Transformed state machine diagram for describing the hazard 

with information 
 

Figure 15 shows the result after retrieving all the transitions 
(the third step). Except t10 (direct incoming), t3 and t11 
(direct outgoing), all transitions to be derived in region s7_d 
are indirect incoming or outgoing transitions of s7. s2 
includes s5 and s5 includes s7, so incoming and outgoing 
transitions of s2 and s5 should be considered. They are not 
orthogonal composite states and s7 is their inner most state, 
so there exist only the second type of indirect transitions 
(which start from or terminate on the outside edge of the 
composite state). s5 includes s7 as a default state; all 
incoming transitions (i.e., t2, t6, and t7) to s5 are also 
treated as incoming transitions to s7. Since s5 is not a 
default state, s7 does not accept incoming transition to s2 
even though s2 is super-state of s5 and s7. If the outgoing 
transitions from s2 (t4) and s5 (t8) are fired, s7 becomes 
inactive.  

While the original state machine diagram (as shown in 
Figure 12) describes the normal behaviors of microwave, 
our transformed state machine diagram (as shown in Figure 
15) focuses on describing the abnormal behaviors (hazards) 
of microwave, which consists of wrong combination or 
wrong sequences of normal behaviors. The transformed 

diagram depicts the required elements that are sufficient to 
cause the hazard to occur, and so it acts a basis to produce 
the test scenarios to examine if software does not have any 
defined hazard in the fault tree. For instance, we can 
combine a set of test scenarios using s7.d_microwaving (i.e., 
{t2, t6, t7, and t10}) and not_s8 (i.e., {t12}) in Figure 15. 
As a result of combination (referring to Figure 12 and 
Figure 15), ‘t2  t12,’ ‘t1  t6  t12,’ ‘t2  t8  t7  
t12,’ and ‘t2  t11  t10  t12’ can be derived as test 
scenarios. With these test scenarios, we can find a remaining 
hazard in software, and thus we can prevent the hazard from 
occurring, for example by changing the guard condition of 
t11 to ‘door.closed==false’ or the triggering event of t11 to 
‘door.door_open().’  

Even though engineers define the hazards using fault 
trees, the gap between fault tree and original state machine 
diagram makes it hard to use the fault tree for safety 
analysis. For instance, we cannot trace what triggers p1 only 
with the fault tree (of Figure 13). If t10 is a primary event in 
the fault tree, the original diagram is inappropriate to 
describe s7’s being active only due to firing t10 because s7 
has other three defined incoming transitions. The 
transformed diagram can link this gap between the fault tree 
and the original diagram.  

Safety-critical software may have a very complicated 
structure in its model, and so analyzing the large and 
complicated model manually is time consuming and effort 
intensive work. Furthermore, it is easy to make unexpected 
errors or miss hazards to be analyzed. Especially, dealing 
with the implicit information related to depth and 
othogonality manually make these problems worse. Thus, 
providing the rules and algorithm to semi-automate (if not 
fully automate) the transformation helps significantly to 
reduce effort, time, and errors in interpreting the hazards in 
fault tree with respect to the original state machine diagram.  

V. RELATED WORK 
Several studies have tried to bridge the gap between fault 
tree and system modeling [1,2,5,7,10]. Kaiser provided an 
integrated approach to add the notion of states and events to 
fault trees, which are called State/Event Fault Trees (SEFTs) 
[1,2]. SEFT adopts the state/event concept to depict the 
system behavior, and the fault tree concept to describe the 
faults which are connected to states or events. It has a 
combined view for both system specification and fault. 
However, the engineer manually identifies the causes of 
fault tree and manually connects them to state or event. 
Constructing SEFT is very difficult, error-prone, and time 
consuming especially when the system is very complicated 
and large. Furthermore, because both system specification 
and hazard are defined in one model together, the engineers 
should require additional effort to divide a view for a 
specific purpose.  

Some researchers have tried to combine fault tree and 
state-based model (Petri-net [5,7] or state machine [10]). 
They provided the method to convert the fault tree to state-
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based model. It provides simple transformation without 
connecting the fault with information in state-based 
modeling. Consequently, the converted result conveys 
exactly the same meaning as the fault tree. To use the 
transformed information, the engineer should identify and 
connect each cause with model element manually. 

VI. THREATS TO VALIDITY 
We expand the fault tree for capturing all possible causes, 
when we identify types of primary events in fault tree. 
Domain experts should get rid of false causes among 
primary events. If the domain experts are not involved in 
elimination, the normal behaviors may be treated as 
abnormal behaviors and the engineer may try to remove or 
block normal behaviors, which might lead to unexpected 
hazards. Therefore, we rely on the domain experts’ opinion 
for the elimination. 

In the second step, we re-classify and transform each 
type of primary event which are identified in the first step. 
Re-classification is in accordance with conditions sufficient 
to lead to a cause, which excludes exact time when it 
happens or data dependencies. For example, firing a 
transition is a moment, but we accept the target state after 
the transition is fired rather than the firing moment. Instead 
of adopting the moment, we separate and abstract one state 
(in original diagram) into two states according to possibility 
of being a cause of hazard. For example, if the target state is 
active due to other incoming transition (in transformation of 
transition t), we do not accept it as the cause because the 
given transition is not fired. The transformed state machine 
admits only the active target state after the given transition 
is fired.  

Our example is based on a microwave-oven system, and 
not a complex safety-critical system. This may affect our 
confidence in our abilities to generalize. However, if safety-
critical system is described in UML state machine diagram, 
regardless of high the complexity, the transformation rules 
and algorithm for extracting the information can be 
applicable because we consider the meta-structure (i.e., 
depth and orthogonality) of the diagram (defined in UML 
superstructure [9]).  

VII. CONCLUSIONS AND FUTURE WORK 
We develop an algorithm to transform the hazard from a 
fault tree to a state machine diagram, which bridges the gap 
between hazard analysis and system specification. It helps 
the engineer to develop the primary events of the fault tree 
by matching them with elements of state machine diagram. 
The algorithm provides an automatic transformation, and it 
deals with implicit transitions of the state machine diagram 
that the engineers can overlook. The resultant state machine 
diagram focuses on the causes of the hazard and shows the 
direct paths to the causes, which can potentially help to 
identify the test scenarios. 

As far as future work is concerned, we will work on 
extracting test scenarios from transformed state machine 

diagram with larger and more complex safety critical 
software systems, and also work on developing a tool to 
support automation from transformation to extraction of test 
scenarios. Unlike previous work which aims to extract test 
scenarios [13], we can focus on undesired behavior as well 
as normal behavior.  
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