2011 Fifth International Conference on Secure Software Integration and Reliability Improvement

Safe Software: Does it Cost More to Develop?

W. Eric Wong, Andrea Demel, Vidroha Debroy
Department of Computer Science
University of Texas at Dallas, Richardson, Texas
{ewong, axd073000, vxd024000} @utdallas.edu

Abstract

The importance of system safety has intensified in recent years
given the ever-growing use of safety-critical systems in
avionics, medicine, nuclear energy, and other fields. However,
despite the abundance of standards which exist to provide
guidance for the development of safe software for safety-
critical systems, there is no consensus on how to achieve
safety assurance in a cost-effective fashion. This paper
reviews five software safety standards: the FAA System
Safety Handbook, the US DoD MIL-STD-882D, the UK MoD
DEF-STAN 00-56, NASA-STD 8719.13b and the RTCA DO-
178B; and evaluates each in terms of cost effectiveness. It
provides an overview of several safety-critical projects; ones
that have incurred significant cost overruns as well as ones
that have produced safety-critical software in a reasonably
cost-effective manner. By virtue of discussing such projects
we posit that it is possible to develop software, despite
significant safety assurance requirements, without necessarily
sacrificing cost. Specifically, projects can realize savings by
using mature processes and appropriate tools to assist in
development of safety-critical software.

Keywords: safety-critical software, safety standard, software safety,
system safety, cost effectiveness

1. Introduction

The past several decades have seen a rapid increase in the use
of software in safety-critical systems - systems used in the
avionics, medical, nuclear, transportation, and military
industries [13]. Software has vastly extended the capabilities
and flexibility of these systems, but it has come at some cost -
added complexity and difficulty in managing its development.
Safe software is that software that does not contribute to
operational system hazards [31].

In [48], it was shown that software has played an increasingly
significant role in accidents and mishaps which have resulted
in the loss of life, property, and money. For example, the
National Aeronautics and Space Association (NASA) Mars
Climate Orbiter (MCO), launched December 11, 1998, was
assumed lost while in operation around Mars. The spacecraft
was designed to enter an orbit of approximately 140-150
kilometers above the surface of Mars; it may have reached an
altitude as low as 57 kilometers. While the exact cause of
MCO’s demise may never be verified, the MCO accident
investigation board reasoned that the orbiter may have been
lost due to a programming error in software; instead of metric

978-0-7695-4453-3/11 $25.00 © 2011 IEEE
DOI 10.1109/SSIRI.2011.28

198

Michael F. Siok
Lockheed Martin Aeronautics Company
Fort Worth, Texas
mike.f.siok@lmco.com

units (newtons), imperial units (pound-seconds) were
incorrectly used in the navigation module. Thus, the computer
incorrectly estimated the MCO’s thruster forces causing the
spacecraft to veer off its intended path and assume an
incorrect trajectory into the Martian atmosphere. The
spacecraft was assumed destroyed by atmospheric stresses at
low altitude. This programming error and subsequent loss of
the aircraft cost NASA approximately $85 million in
spacecraft development and mission operations costs [48].

Another example of a significant system loss is that of the
European Space Agency’s (ESA) Ariane 5 heavy lift launch
system which was designed as an expendable payload-transfer
system for low Earth orbit transfers. Shortly after liftoff June
4, 1996, the first Ariane 5 deviated from its intended flight
path and exploded, causing the destruction of both the rocket
and its cargo. Similarly to the MCO, the problem was traced to
a relatively simple software error. In the case of the Ariane 5,
the software attempted to convert a 64-bit floating point
number to a 16-bit signed integer. However, the conversion
failed because the value being converted was larger than
32,767 and thus outside the range that could be represented by
a 16-bit signed integer; this caused an overflow error that was
not handled. As a result, both the active and backup computers
shut down and navigation control of the rocket was lost. The
rocket self-destructed, per design. This loss cost the European
Space Agency $500 million in rocket and cargo losses as well
as unrealized development costs estimated at $7 billion [48].
The program has since performed successfully with relatively
few other issues [4].

While these programming errors are relatively easy to
understand, their realization in developed systems have caused
extreme losses for their organizations. In these cases, software
was identified as a contributor to the system realizing a
specific hazard that ultimately resulted in the occurrence of an
accident. Many other software errors in these and other
industries have also led to catastrophic and significant losses
[48]. A lack of software safety assurance in some instances
may contribute to the raising of system hazards. Software can
contribute to system hazards through inappropriate actions,
either automated or operator-assisted, while operating a
system. Software can also contribute to hazards by misleading
system operators through its output or behavior (i.e., providing
Hazardous Misleading Information (HMI)). Flaws or
limitations in the software design are often extremely costly
both in the actions required to fix the problems in the code and
in the potential consequences of its aberrant behavior if the
problem makes it to the field. As a result, industries with a

IEEE
computer
psouety

high reliance on safety-critical systems have increased their
focus on the design and development of safe software through
an effective software safety assurance practice involving the
use of engineering and managerial processes.

The effective management of safety programs for software is
far from trivial. Some software safety assurance activities can
significantly extend development time and cost of a project.
Industry thus faces the challenge of how to reliably develop
safe software at an affordable price; it is a value proposition.
The decision of how much work is necessary often comes
down to the need for a level of safety (i.e., the likely
consequences of certain hazard realizations) versus the cost of
the safety activities needed to mitigate the selected hazards.
Different projects have different risk profiles; these risk
profiles help determine the resources needed for assuring the
safety of the system.

Due to the complexity and range of assurance activities
available to apply to the development of safety-critical
systems, there is a general need for industry guidance on what
software assurance activities are expected. Several standards
exist to provide guidance on system and software safety
assurance. In this paper, five standards are discussed: the
United States (US) Federal Administration Aviation (FAA)
System Safety Handbook [14], the Department of Defense
(DoD) MIL-STD-882D [11], the United Kingdom (UK)
Ministry of Defense (MOD) DEF-STAN 00-56 [9], NASA
STD 8719.13B [37], and the Radio Technical Commission for
Aeronautics (RTCA) DO-178B [41]. These standards provide
requirements and recommendations for ensuring system safety
often in the context of a specific industry or type of system.

In this paper, we discuss the use of these standards with
respect to software and we discuss their use and limitations in
the context of several large-scale safety-critical projects. The
remainder of this paper is organized as follows. In Section 2,
we present the background of each of these five safety
standards. Section 3 provides a discussion of projects that
have faced relatively high costs in the development of their
safety-critical software systems, followed by Section 4 which
discusses projects that have successfully managed safety
assurance processes in an apparent cost-effective manner.
Finally, we present our conclusions on the cost of software
safety in Section 5.

2. Software Safety Standards

Each of the five standards discussed in this paper provides
guidance for safety assurance activities. However, their
approaches to safety engineering vary widely. We discuss
their background and differing approaches to, in particular,
software safety in the sections that follow.

FAA System Safety Handbook
The FAA System Safety Handbook provides recommendations

for implementing safety risk management activities for entities
involved with the FAA. The handbook provides examples and

199

specific guidelines for what is expected in a comprehensive
system safety program. It is not a standard. This handbook is
designed to aid the development and improvement of system
safety programs in organizations and projects. To this end, the
FAA System Safety Handbook provides guidance and
recommendations for processes to improve the safety
assurance of a product being developed for use in civil
aviation systems. The handbook provides examples of
documentation that should be developed and includes
guidelines as to what activities should be included in a
comprehensive system safety program.

The FAA System Safety Handbook discusses the importance
of the safety benefit versus cost tradeoff. The handbook
acknowledges that the safety effort is directly related to the
cost of the safety program and provides a notional illustration
of this relationship as shown in Figure 1. The handbook
indicates that the level of safety effort needed for the project
per the hazard analyses conducted takes into account the
estimated cost of potential accidents as well as the estimated
costs of developing safety programs. (See the discussion on
DO-178B regarding safety levels.) Similarly, the costs of
developing safety programs involve personnel with the
required skill set, available resources, and development time.
As shown in Figure 1, when the safety effort increases, so too
does the total cost of development once the total program cost
reaches its minima. Clearly, the cost of accidents and the cost
of developing safety programs have an inverse relationship;
they sum to the total cost of the project which also includes
the costs for the design, development, and operational phases
of the system. The label ‘X’ in the figure indicates the ideal
safety effort versus cost balance in which the total program
cost including the safety effort is minimized.

Total cost

Cost of developing
safety programs

Cost ($)

Cost of accidents

Safety effort —

Figure 1: Safety effort versus cost analysis [14]

Taking into account these cost concerns, the FAA System
Safety Handbook notes that in some cases a smaller system
safety program may be tailored to reduce costs if the safety
assurance requirements for the system support it. To this end,
the Handbook recommends a minimum set of tasks for small
system safety programs which includes preparing a
preliminary hazard list, conducting a preliminary hazard
analysis, and assigning a risk assessment code [14].

The Handbook also recommends design and verification
parameters for each level of hazard risk in the system.
Assessment of risk is made by combining the severity of
consequence with the probability of occurrence of each hazard
in a matrix and determining the acceptance criteria for the risk
based on its assessed criticality. According to the Handbook,
high-risk hazards are unacceptable and tracking in the FAA
Hazard Tracking System is required until the risk is reduced
and accepted. For medium-risk hazards, the hazard is
acceptable with review by the appropriate management
authority and tracking in the FAA Hazard Tracking System is
required until the risk is accepted. Low-risk hazards are
acceptable without review; the Handbook does not require
these low risk hazards be tracked. [14]

The FAA Handbook provides a Comparative Safety
Assessment process for measuring and determining safety
benefit versus cost. This assessment is provided as an aid for
decision-making when choosing an appropriate safety design
from specified design alternatives. The handbook requires the
assessment be used to examine the costs and safety risks
associated with each design alternative under consideration. It
requires that hazards associated with each design alternative
proposed be listed and written so that decision-makers can
clearly distinguish the relative safety merits of each
alternative. These alternatives are then rank-ordered by how
they best satisfy the safety requirements of the project. In this
way, the most appropriate alternative may be selected.

Unfortunately, data is not available on the amount of cost use
of the FAA System Safety Handbook contributes to an
aviation project. However, its discussion of the cost versus
safety benefit indicates that the FAA acknowledges such
tradeoffs exist and that these trade-offs should be taken into
account when applying a system safety protocol to the project.

MIL-STD-882D

MIL-STD-882D is a system safety standard produced for the
DoD under the authority and oversight of the system safety
committee of the Government Electronic and Information
Technology Association (GEIA). This standard describes the
requirements for system safety procedures and practices
applicable to the development, test, production, use, and
disposal of DoD systems, subsystems, equipment, and
facilities. The standard is recommended for use by all
departments and agencies within the DoD. [11]

MIL-STD-882D provides a full life-cycle approach to system
safety in which hardware and software safety tasks are
addressed in combination as a system. The standard is a goal-
based, performance-oriented standard which aims to ensure
that zero mishaps occur in DoD systems. To this end, the
standard focuses on the identification, analysis, and mitigation
of mishap risks. Additionally, the standard requires that a
system safety approach be defined and thoroughly
documented by the system developer and it requires thorough
traceability of requirements throughout the development
process. Furthermore, the standard provides extensive

200

guidance on the use of mishap levels and

requirements analysis.

severity

However, this system safety standard is also relatively brief
(i.e., compared to the other safety standards reviewed). As it is
a standard designed to address overall system safety rather
than software safety in particular, it also lacks information in
some software-specific areas such as partitioning the software
into safety-critical and non-safety components so that potential
faults in non-safety-critical software sections do not affect the
operation of software in the safety-critical partition.

MIL-STD-882D discusses the issue of safety benefit versus
cost. It stresses the importance of considering total life cycle
cost in any decision and ensuring that neither inadequate nor
overly restrictive safety requirements be used. However, this
standard provides little detail on how this cost versus safety
benefit tradeoff is to be specifically implemented and
analyzed. It acknowledges the existence of the tradeoff, but it
does not devote many resources to describing its nature nor
does it provide specific tools or processes for navigating the
details of this issue.

Although MIL-STD-882D is not required for project
certification by any governing body, it is still recommended
for use in military aviation and US DoD projects. However,
data is not available on the specific costs associated with using
this standard.

DEF-STAN 00-56

DEF-STAN-00-56 is a safety standard that describes the
requirements for safety management of UK MoD defense-
related systems. This standard specifies safety management
procedures, analysis techniques, and safety verification
techniques intended to aid in ensuring system safety. These
procedures and practices are applicable to all MoD authorities
and any projects for which they may be responsible. The
standard has been produced for the MoD Defence Materiel
Standardization Committee by the Safety Standards Review
Committee and is solely intended for the MoD. [9]

This standard is split into two parts. Part 1 provides the
specific requirements mandatory for any project following the
standard. Part 2 is not mandatory but provides more detailed
guidance and recommendations on how to fulfill the
obligations described in Part 1. The standard’s safety
requirements in Part 1 center on the use of a safety case to
show that an acceptable level of safety has been reached. The
safety case consists of an argument, created by the contractor,
for how system safety will be achieved in the specific case,
followed by supporting evidence such as hazard analyses,
hazard logs, testing logs, and other documentation intended to
argue that a thorough safety process was followed and that the
risk of a hazard occurring relative to this safety case is as low
as reasonably practicable. The requirements for the design,
production, and delivery of the safety case are discussed
extensively in Part 1 of the standard and supporting
guidelines, such as recommendations for hazard analysis, are

provided in Part 2. Part 2 of the standard also includes
recommendations specifically pertaining to software, such as
the use of detailed software safety requirements, quantitative
risk-based testing, and interface verification and validation. [9]

Overall, DEF-STAN 00-56 is a goal-based standard that
requires the creation of and proof of adherence to a contractor-
created safety case. Rather than describing process-based
requirements and techniques for safety assurance, the standard
provides general safety requirements for the final product but
does not direct how they are to be met. The contractor must
propose and justify their chosen method of compliance. This
puts the burden of proof on the contractor but also allows them
flexibility in tailoring their approach to safety to fit the needs
of their specific project.

NASA-STD 8719.13B

NASA-STD 8719.13B is a software safety standard that
describes the requirements for technical procedures and
practices for all NASA programs. This standard was produced
by the NASA Office of Safety and Mission Assurance; a
companion guidebook provides guidance on implementing the
software safety program.

NASA-STD 8719.13B provides a systematic approach to
software safety within the context of the safety of the total
system. The standard considers a total life-cycle approach to
software safety including the generation of requirements,
design, coding, test, and operation of the software. The
standard extensively addresses several aspects of software
planning and development, including hazard analysis,
traceability, testing, and validation. Requirements for software
safety personnel qualifications and training are also
thoroughly discussed. Unlike many other standards, NASA-
STD 8719.13B thoroughly discusses the use of Commercial
Off-The-Shelf (COTS) software tools and the evaluation,
support, and approval of these tools in safety-critical systems
and their development. [37]

This standard does not directly or explicitly discuss the issue
of the safety benefit versus the cost of a safety program.
However, it should be noted that the standard is intended only
for use in NASA systems; NASA systems often require a high
level of safety assurance. Although the standard does make a
few concessions to cost concerns, such as allowing the size of
the documentation and the traceability system chosen to
reflect the size and criticality of the project, overall it does not
directly address cost concerns or allow for much process
tailoring.

It is difficult to determine the cost of software development
using this standard. However, several high profile NASA
projects, for which the use of this standard is mandatory, have
had significant losses related to software and/or software-
related problems.

201

DO-178B Guidelines

DO-178B is a software safety guidelines document jointly
prepared by Special Committee 167 of the RTCA and the
European Organization for Civil Aviation Equipment
(EOCAE). This document offers guidance for the aviation
community in producing reliable software that complies with
airworthiness requirements. These recommendations reflect
the avionics software community’s consensus regarding best
practices for development of safety-critical software. As a
result, this document has strongly influenced much of software
development in the civil aviation industry and some steps have
been taken to use this guidance in military contexts as well
[25]. The FAA recognizes this document as the primary
means (but not the only means) of showing compliance to US
law with respect to avionics computer software used in US
civil aircraft airworthiness certification activities [42].

DO-178B is an evidence-based approach supporting
certification for avionics systems and it requires a well-
documented and executed system safety process based on
engineering best practices. While DO-178B provides
guidance on many safety issues, such as the use of integrity
levels and testing, it also lacks information on other issues
such as complexity management. Industry complaints have
described insufficient discussion of configuration
management, insufficient guidance for requirements definition
and analysis, and inadequate and ambiguous guidance for
partitioning, tool qualification, and COTS software.
Furthermore, some have questioned the effectiveness of some
activities discussed in the standard, including preparing
documentation, tracing requirements to code, establishing
independence, and demonstrating structural coverage [20]. In
response to many of these issues over the years, the FAA has
issued various Certification Authorities Software Team
(CAST) position papers providing additional guidance and
expectations for some of these key topic areas [15]. Overall,
however, the objective-based approach of DO-178B makes it
both rigorous and flexible for individual projects.

DO-178B introduces five different levels of safety criticality,
ranging from Level A (most critical) to Level E (least critical).
As the criticality level of the system increases, so too do the
number of requirements for design, reviews, implementation,
and verification/validation activities. As a result, cost often
increases as well. Each increasing level of criticality of the
standard could add significant costs to the development
program.

Although there may be added expense for using DO-178B
with respect to each level of safety criticality, these costs are
balanced by the many benefits of using the approach,
including greater requirements clarity, decreased coding
iterations (“churn”), fewer bugs in critical code sections, and
greater consistency of the software. These requirements and
specific recommendations for safety in software have made
DO-178B the ‘de facto’ standard in airborne software for
commercial, and in some cases, military avionics projects. It

is, however, widely believed in industry that compliance with
DO-178B objectives can be expensive.

Software development using the DO-178B guidelines is often
thought to contribute to the high costs of commercial aviation
systems. The FAA, which requires showing compliance to
DO-178B (or equivalent) requirements for civil aviation
certification, has received many industry complaints regarding
the time and expense involved with certification for high-
criticality systems. As a result, the FAA created the
Streamlining Software Aspects of Certification (SSAC)
program in which industry and technical experts collaborated
to examine whether the cost and time associated with
certifying aircraft could be reduced [20].

In the SSAC program, anonymous opinions and feedback
were solicited from over 400 industry representatives
representing more than 70 companies regarding the cost,
effectiveness, and efficiency of DO-178B [21]. Several major
areas of concern were highlighted. First, issues related to
inconsistency in the FAA’s certification offices and program
offices were an oft-cited concern. These issues included
problems with varying and unclear documentation
requirements, a lack of clear definition of when documents are
due for certification, and unreasonable overly-conservative
demands for compliance [20,21]. Second, it was noted that the
lack of collaboration between companies contributed to
increasing costs for software development and certification as
there is no large industry-wide group that gathers data or
researches new topics in these areas [20]. Finally, one of the
greatest cost drivers cited was “poor requirements” [20].

In general, it is difficult to determine the exact costs
introduced by using DO-178B. However, one source notes
that many companies spend between 75% to 150% more for
developing safety-critical software to meet the safety
guidelines specified by DO-178B than for developing non-
safety-critical software applications [23]. To cite another
example, it is stated that developing software to show
compliance to Level A of DO-178B raises the cost by a factor
of five over non-critical software [2]. There is also a clear
industry consensus that DO-178B is often very costly. These
high costs often occur for many reasons. For example, the
level of criticality chosen may be too high for the project and
there may be a lack of understanding of how to effectively and
efficiently manage the rigorous documentation and testing
processes. Additionally, a poor application of software
engineering best practices, such as proper requirements
definition and management, can also play a significant role in
cost issues.

3. Projects Incurring More Cost for Safety-Critical
Software
Several high-profile projects have encountered budget

overruns and schedule delays while developing safety-critical
software. Although each of these projects claimed to follow
one or more software safety standards, they faced significant

202

challenges in their attempts to comply with their safety
requirements and to comply in a cost-effective manner.

For example, the first McDonnell Douglas (now Boeing) C-17
military aircraft was delivered to flight test a year late and
over budget in 1991. Development of the C-17 required use
of MIL-STD-882D. McDonnell Douglas faced both design
and production problems with the C-17 aircraft development;
the development team chose not to use a computer-aided
design approach to design the aircraft and manufacturing
system. While the initial design approach of the aircraft was
to use off-the-shelf components and software, the aircraft
mission requirements ended up driving new ways for these
off-the-shelf technologies to be used (e.g., complex avionics
system to reduce crew size, new wing design for range and
payload requirements). A change from a mechanical flight
control system to an electronic fly-by-wire system was
decided late in development. Integration of the on-board
software-intensive avionics system was challenging [39]. The
use of a clear, rigorous testing program is key to development
of a safe system. It is suggested that the uncertainty of flight
test program requirements is one of three key errors that
caused the C-17’s cost and schedule problems; technical risk
in software and avionics integration and structural deficiencies
in the wings were the other two [39].

One of the most important aspects of safety-critical software
development is the effective determination and communication
of requirements early in the design phase. In the early phases
of the project, the C-17 project team failed to specify a single
programming language to the various subcontractors who
were developing different parts of the software [39]. Today
companies can successfully use different programming
languages to develop software for the same computing system.
However, McDonnell Douglas faced significant cost and
schedule delays in their software integration for the C-17.
Over 3,500 subcontractors were identified on the team of
which 33 were considered critical; management and
integration of the subcontracted software proved extremely
problematic for them [26].

Some aircraft development projects required to comply with
DO-178B have also encountered significant cost and schedule
issues. The Airbus SAS A380 super-jumbo jet was over 2
years behind schedule as of 2006 [33] and even after
production start, is unable to reach profitability in 2010 due to
cost overruns and the previous delays [45]. Building this jet
aircraft cost over 50% more than originally planned due to
software glitches in testing [45] and incompatible software
used to design the aircraft at different factories [33]. The A380
team has been criticized for making the software too complex
[16]. The widespread software problems plaguing this project
would indicate that Airbus software developers may have
experienced some difficulty in wusing best software
development practices.

The Boeing 787 Dreamliner has also faced issues with the
development and certification of their safety-critical software
showing compliance to DO-178B. The 787 project has

experienced seven separate delays and is currently expected to
enter production in the first quarter of 2011 over 2 years
behind its original schedule. Initially, Boeing faced delays due
to flight-control code and other crucial software provided by
GE Aviation [17,18,27]. More recently, the software for the
braking system did not meet traceability requirements
specified in DO-178B and parts of the software had to be
rewritten [44].

The Airbus A400M transport aircraft has also faced significant
delays and expense. The aircraft is currently several years
behind schedule and more than 7 billion Euros (about 9.5B
USD) over budget [10,38]. The A400M is undergoing civil
aviation certification which includes showing compliance with
DO-178B [36]. For its engine, the Airbus A400M team
planned to use an engine and engine controller that were
qualified to military standards, not civil aviation standards. In
order to obtain the civil aviation certification, the engine
manufacturer was required to revamp the engine controller
software and documentation to conform to the civil standards
[43]. Airbus indicated that the engine controller software
redesign is blamed for some of the 4-year delays experience
by the program [43].

Navia Aviation of Norway developed a GPS-based Instrument
Landing System for the civil aviation domain and planned to
show compliance with DO-178B, Level B. Navia noted that
their first attempt at certification failed; they continued,
however, to improve their software development practices in
order to show compliance [30]. During the inspection for
certification, the approval rate of their documentation was
only 25%. Navia attributed this low acceptance percentage to
their underestimation of the rigorous nature of the approval
process and the fact that the internal examinations prior to
formal inspection were insufficient [30]. Navia recognized
there was a problem, performed an analysis, and subsequently
made changes to their inspection process; significant
improvements in the accept rate of documents was observed.
Finally, Navia stressed the importance of stability in the
organizational environment (i.e., at the time of the project,
Navia was reorganizing and resizing their workforce) and
noted that change control was a difficult and expensive aspect
of the process that was not previously considered [30].

Several FAA modernization programs have also faced cost
and schedule problems such as the Wide Area Augmentation
System (WAAS), Standard Terminal Automation
Replacement System (STARS), and Airport Movement Area
Safety System (AMASS) programs [22]. In all of these cases,
software problems had significantly contributed to cost and
schedule overruns. “Sofiware development — the most critical
component of key FAA modernization programs — has been
the Achilles’ heel of FAA'’s efforts to deliver programs on time
and within budget,” according to Gerald Dillingham of the
United States General Accounting Office [46].

Overall, the observations related to these projects suggest that
development of safety-critical software is far from a trivial
issue and can often be prohibitively expensive. Because

203

several of the projects previously discussed are still in
progress, as well as facing significant issues, complete reports
and detailed descriptions of the methods and processes used
for producing their software are not generally available.
However, it is clear that in many, if not most of these cases,
more careful planning and more rigor in the software practices
could have alleviated some of the problems and issues faced
by these project teams. For example, the Airbus A400M,
Boeing C-17, and Boeing 787 discussions indicated that if
specific safety requirements are not determined and
understood from the beginning, problems will inevitably
follow. Traceability and careful documentation, as well as
complete and thorough determination of these requirements
among all software teams and subcontractors, must be
provided from the beginning if development of safe software
is to be achieved cost-effectively. And finally, lack of rigorous
configuration and change control has been shown to play a
key role in contributing to cost overruns for many projects.

4. Projects Incurring Less Cost to Produce Safety-
Critical Software

On the positive side of this issue, evidence exists that
developing software following rigorous software safety
practices, such as embodied by DO-178B, does not have to be
as expensive as previously expected. The use of appropriate
development processes and mature methods designed to
decrease development effort can enable projects to achieve
certification in a much more cost-effective manner. In addition
to using software engineering best practices, it has been shown
that by using COTS software tools under the right conditions,
organizations showing compliance to DO-178B can decrease
project development times by as much as 25% and reduce the
associated costs by as much as 70-80% [19]. Commercial
tools specific to DO-178B and the aerospace industry have
become available which automate some required safety
processes. For example, VAPS, developed by Engenuity,
enables automated display code generation, the Integrity”-
178B Real Time Operating System (RTOS) from Green Hills"”
Software provides a DO-178B certification package with their
software, VectorCast by Vector Software helps automate
software unit testing and code coverage analysis, and Regtify"
from Greensoft facilitates requirements traceability and
change analysis [24].

One such example of automation and methods helping with
software development is the Lockheed Martin C-130J
Hercules II aircraft development [2], which entered production
in early 2001. Beginning in September 1992, the C-130J was a
project that completely updated the very successful Lockheed
Martin C-130 Hercules transport aircraft. Most of the changes
involved updating avionics systems and software, including
the advanced systems monitoring and navigation as well as an
extensive integrated diagnostics system [8]. While the C-130
Hercules aircraft were largely mechanical systems, the C-130]
Hercules 11 is a software-intensive system which uses mission
computer software to improve its overall mission performance

[8].

The C-130J was developed to Level A (the highest assurance
level) of DO-178B for some parts of the software [8]. The
project team reported that their development process for the
safety-critical software was conducted for half the cost of non
safety-critical code [1,2]. Additionally, Lockheed Martin
reported that their testing process for the C-130]J was
conducted for less than a fifth of normal industry costs [2, 3].
Lockheed Martin saw additional benefits through their
development approach: code quality improved by a factor of
10 over industry norms and productivity improved by a factor
of 4 [3]. The C-130J approach to development bears
examination to determine the various decisions that helped
Lockheed Martin achieve such striking gains in both cost and
safety. The factors that helped them achieve these lower cost
and increased safety benefits included: (a) their choice of
programming language, (b) a focus on software reuse, (c) a
rigorous, requirement-based automated testing process, and
(d) static code analysis. Development was driven by
verification emphasizing “Correctness by Construction,” and
formality was introduced early in the specification phase. The
programming language chosen for the project was SPARK, a
subset of Ada with properties specifically designed for
embedded and safety-critical applications. SPARK is
unambiguous, free from implementation dependencies, all rule
violations are detectable, and it is formally defined and tool
supported [8]. The behavior of a program written in SPARK
is entirely defined by and predictable by its source code.

One aspect of the language that made it most useful to
Lockheed Martin was the SPARK Examiner, a development
tool which emphasized static analysis as a way of ensuring
correctness and reliability in the code. Static analysis performs
a syntactic check of the code and ensures that coding errors
recognized by the tool have been minimized. The SPARK
Examiner automates a portion of the code review process and
many problems are caught early during coding, allowing the
developer to focus on more broad and higher-level issues with
the code such as whether the code meets its specification.

Static analysis is most cost-effective when applied during
software code development rather than in retrospect during the
integration and testing process. The testing phase of a project
is frequently a bottleneck and can be expensive for many
projects [3], while static analysis can be conducted early
during the coding and unit test phases. Errors can be caught at
the developer’s desk automatically. It has been argued that
DO-178B has an undue emphasis on testing activities and
places too little importance on analysis and review [3].
SPARK allowed Lockheed Martin to perform analysis on
source code before the test phase of the project was entered,
greatly decreasing the amount of time and resources spent on
verification.

Overall, the C-130J project met its safety objectives and
decreased its development costs through its “Correctness by
Construction” and testing and verification processes.
Objectives and requirements were specified and verified early
in the development process and test cases were always based
on requirements and were traced. Automated tools were used

204

as much as possible to generate test cases and re-run these
tests [8]. Software reuse was at the center of the C-130J
development process. Through use of template-based design,
Lockheed Martin reported productivity gains, improved
reliability, and reduced testing overhead [8]. Source code, test
scripts, and documentation were often reused among devices
which allowed different teams to share data. In part due to the
template-based design, source code could be reused for
different device interfaces with only minor modifications
resulting in vastly decreased development cost and time.
Traceability and documentation reuse was also heavily
emphasized throughout the project. In general, reuse
significantly contributed to a lowered program cost [8].

Lockheed Martin observed efficiency gains through the use of
common software development tools. These tools, which were
configuration managed, allowed the company to save in terms
of purchase expense and personnel training [8]. Lockheed
Martin was able to allocate personnel among multiple teams
due to their common knowledge and the common tools that
were used throughout the projects. Automated tools for data
collection assisted with the certification process. The C-130J
team found certification activities challenging but reported
that the introduction of automated data collection made it
much easier to meet certification requirements and it saved
additional development costs [8].

Following the successful development of the C-130J project,
Lockheed Martin used the same development principles in a
smaller project for the C-27] aircraft, which required Level B
DO-178B software assurance. It was another successful use of
the “Correctness by Construction” development method.
During the C-27J project, the process used to develop the
software for the C-130J project was reused and some code was
re-used as well. The company reported an additional 4-fold
productivity improvement over the C-130J project which gave
a total of 16-fold productivity improvement [40].

Like the Lockheed Martin C130J and C27J, the UK MoD Ship
Helicopter Operating Limits Information System (SHOLIS)
project also achieved success in lowering cost and efforts in
their testing process through the use of SPARK for code and
static analysis. This project was created for the MoD to be
used on the UK Royal Navy and Royal Fleet Auxiliary vessels
by Ultra Electronics PMES with Praxis Critical Systems as a
subcontractor responsible for all application software. This
system was developed to comply with MoD DEF-STAN 00-
55 and Interim DEF-STAN 00-56.

The development process for the SHOLIS used SPARK in the
software design specification and code. The SHOLIS project
used the Z notation for construction of the required formal
specification and design with formal arguments linking the
specification to the design to the code [29]. The SHOLIS team
kept track of the number of faults found at different stages in
the development process; the percentages are shown in Table 1
below. In this case, a fault is defined as an error in the system
development that, if undetected, could lead to a fault in the
final delivered system.

Table 1. Faults Found, Effort Spent During Project Phases [29
Project phase Faults found (%) Effort (%)
Specification 3.25 5
Z proof 16 2.5
High-level design 1.5 2
Detalled design, code & 26.25 17
informal test
Unit test 15.75 25
Integration test 1.25 1
Code proof 5.25 4.5
System validation test 21.5 9.5
Acceptance test 1.25 1.5
Other* 8 32

*Staff familiarization (1%), project management and planning (20%), safety
management and engineering (7%) and IV&V non testing activities (4%)

A comparison of the percentage of faults found to the
percentage of development effort expended shows which
phases were the most cost and effort efficient. It is clear that
the detailed design, code, and informal test, as well as the unit
test and system validation test phases were highly effective at
finding a significant number of faults, but these activities also
took a relatively large amount of development effort. In
contrast, the SHOLIS team noted that the Z proof was
effective at finding a significant number of faults with
relatively little effort early in the development process. The
major fault types found by the Z proofs were: incorrect
functionality specified, contradictory operations, lack of
mode/history information modeled, missing cases, and
incorrectly loose specifications. SPARK proof work was
accomplished by the SPARK examiner, simplifier and proof
checker [29]. In general, it appears that the formal method of
fault-finding employed by the SHOLIS project was a cost-
effective and effort-efficient process.

An international survey conducted between November 2007
and December 2008 on the use of formal methods in safety-
critical industrial projects found that on the whole, formal
methods had a beneficial effect on time, cost, and quality.
Three times as many respondents reported a reduction in time,
rather than an increase, and five times as many respondents
reported reduced, rather than increased, costs. 92% of all
respondents believed that formal methods had a beneficial
effect on the quality of their projects [49]. Based on these
results, it seems that formal methods are finding their place as
an effective and perhaps cost-efficient form of assurance in
safety-critical software systems.

In addition to the formal methods and software development
practices described above, carefully considered application of
COTS tools has also helped several large projects reduce their
costs in developing safety-critical software. = One such
example is the Eurocopter EC135 project. Eurocopter is a
large producer of both civil and military helicopters with over
11,000 aircraft sold around the world. The EC135 and EC155
civil helicopters, with extensive autopilot systems, were both
developed to show compliance to DO-178B Level A.
Eurocopter used the SCADE specification and code generation
tool from Esterel Technologies [7] in order to reduce
development time, certification time, and costs. As a result,

205

90% of the code was generated by the SCADE tool and
development time was reduced to 50% of the time needed to
manually code an equivalent system. The certification was
successfully completed [6,7].

Airbus also used the SCADE automatic code generation tool
to develop the software for the Flight Control Secondary
Computer used by its A340/500 aircraft. The amount of
automatically generated code on the A340 was as high as 70%
of the total code [35]. Moreover, there were no errors found in
the SCADE generated code. Airbus reported a reduction in
modification cycle time by a factor of 3 to 4 compared to
manual coding through use of code generation. As a result,
time-to-market was reduced for the A340 and the project
successfully showed compliance to DO-178B Level A [6,7].

Success at employing DO-178B has also been observed
through the use of other development and testing tools. For
example, MDS Technology, based in South Korea, was able to
develop their NEOS real-time operating system to comply
with Level A of DO-178B in a cost-effective way by using the
commercial VectorCAST testing tool. MDS Technology
reported an 83% reduction in testing time and were able to
complete their project within a short period despite the
rigorous DO-178B guidelines [47]. Ulta Electronics Datel was
able to show DO-178B Level B compliance for a significant
upgrade to its previous avionics display computer. The
upgrade involved moving from a proprietary hardware system
to a COTS-based solution, using the Wind River VxWorks
DO-178B safety-critical subset operating system, and re-
engineering pre-existing software and device drivers to meet
the higher software assurance requirements required to show
compliance to DO-178B. Datel used the VAPS code
generation tool [28] and the LDRA tool suite to successfully
reduce the amount of effort for the requirements specification,
design, and test phases of their avionics display development
when compared to the previous development effort. As a
result, they reported 25% faster time to market and 87% lower
development costs [28].

Many of these successful projects used COTS tools in order to
achieve some of their cost savings. Starting in the second half
of the 1990s, NASA too began to study the use of COTS tools
in order to save on development costs in their Software
Engineering Laboratory (SEL). The process improvements
that resulted from this change caused the SEL to decrease
costs by 10% and shorten schedules by 5-20% [5]. However,
despite these obvious benefits, the use of COTS in safety-
critical applications is a relatively new phenomenon and most
safety standards offer little guidance on the development of
safety assurance for COTS software [32]. Despite the
potential benefits offered by COTS products, the usage and
integration of these products into safety-critical systems
should be approached carefully with a thorough understanding
of the risks involved. For example, given the long shelf-life of
many safety-critical systems, concerns about vendor tie-in and
future availability are an issue to consider. If a COTS system
is used in a project, the project may have to rely on the COTS
vendor for support, modifications, and future availability [12].

Furthermore, the integration effort required may add
considerable overhead and increase development costs [1, 34].
Due to the increasing trend towards the use of COTS software
in safety-critical systems, safety standards committees should
likely consider including further practical guidance on the
proper use of these tools.

These successful examples indicate that it is possible to
develop software with significant safety assurance
requirements without sacrificing project cost effectiveness.
Specifically, projects can realize cost savings by using mature
processes and appropriate tools to assist in their development
and certification.

5. Conclusions

The increasing flexibility, extensibility, and automation
capabilities of software have caused a growing number of
industries to depend on it in the development and operation of
safety-critical systems. Due to the nature of these systems,
safety is paramount and the development of safe software is
therefore a high priority. However, designing for safety comes
with some costs. Despite the abundance of software safety
standards which exist to provide guidance for the development
of safe software in safety-critical systems, there is no
consensus on how to achieve safety in a cost-effective fashion.

In this paper we have reviewed five software safety standards:
the FAA System Safety Handbook, the US DoD MIL-STD-
882D, the UK MoD DEF-STAN 00-56, NASA STD
8719.13b, and the RTCA DO-178B. We have reviewed each
of these documents in terms of their cost effectiveness and the
tradeoff between cost and safety. Furthermore, we have
examined several projects which have encountered significant
cost and schedule issues in their development of safety-critical
software. It is clear from these examples that high costs in
safety-critical software development are often incurred due to
insufficient communication, poor requirements, and poor or
ineffective planning. This indicates that although insufficient
guidance in some software safety standards may have played a
role in cost and schedule problems faced, numerous technical,
managerial, and company environmental factors all can
contribute to project difficulties. No single factor can be
identified as ‘the’ contributing cause; however, in most of the
projects studied, a lack of rigor using the company
documented software engineering processes and practices
seemed to be a recurring theme.

We have reviewed several large projects which have managed
to cost-effectively develop safety-critical software which
adhered to relevant safety standards. These projects
demonstrated that it is clearly possible to achieve software
safety objectives without sacrificing cost and schedule and
that this can be achieved through a reliance on effective
planning and the application of software engineering practices
throughout the development lifecycle. Additionally,
techniques are making their way into general practice that
provide for further potential cost reduction, including use of
formal methods and COTS tools. The risks and benefits of

206

these techniques are an important point for further study and
the rapid adoption of these methods in many industry contexts
means that similar focus should be placed on ensuring that
effective guidance is provided in software safety standards,
many of which do not address the certification of tools or
COTS software. The movement towards results-oriented
rather than process-based standards does provide some
flexibility for industry projects to use these methods, but a
lack of thorough guidance on their proper use, as well as their
advantages and disadvantages could pose cost, schedule, and
safety issues for future product developments. In general,
however, software safety standards provide useful and
effective guidance but should not necessarily be blindly
followed. Each organization must carefully plan and tailor
their safety approach to the particular needs of the project
focusing on safety engineering best practices as evidenced in
their company documented engineering practices in order to
cost effectively deliver safe software.

Acknowledgements

This work is supported by the National Science Foundation
(NSF CCF-0851848). The authors would also like to thank the
Industrial Advisory Board members of the Net Centric
Industry/University Collaborative Research Center for
providing additional funding for the research reported here.

References

1. Abts, C., Boehm, B. W., and Clark, E. B. (2000). COCOTS: A COTS
Software Integration Lifecycle Cost Model — Model Overview and
Preliminary Data Collection Findings. USC Center for Software
Engineering.

Amey, P. (2002) Correctness by construction: better can also be
cheaper, CrossTalk Journal, March 2002.

Amey, P. and A. Hilton. (2001) Practical experiences of safety- and
security-critical technologies, Ada User Journal, March 2001.
ArianeSpace. (2011). Ariane 5 Milestones.
http://www.arianespace.com/launch-services-ariane5/milestones.asp
Basili, V. R., McGarry, F. E., Pajerski, R., & Zelkowitz, M. V. Lessons
learned from 25 years of process improvement: The rise and fall of the
NASA Software Engineering Laboratory. (2002). In: Proceedings of the
24™ International Conference on Software Engineering.

Camus, Jean-Louis. Esterel Technologies, (2002). Efficient Development
of Avionics Sofiware with DO-178B Safety Objectives.

Camus, Jean-Louis, and Bernard Dion. Esterel Technologies, (2002).
Efficient Development of Airborne Sofiware with SCADE Suite.

Conn, R. and S. Traub and S. Chung. (2001) Avionics modernization
and the C-130J software factory, CrossTalk Journal, September 2009.
Defence Standard 00-56. Safety Management Requirements for Defence
Systems. Issue 4, 1 June 2007.

Defense Industry Daily. (Nov. 2010). Airbus’ A400M Aerial Transport:
Delays and Development.
http://www.defenseindustrydaily.com/A400M-Delays-Creating-
Contract-Controversies-05080

Department of Defense. (2000). MIL-STD-882D Standard Practice for
System Safety.

Dewar, Robert B. K. (Nov. 2000). COTS sofiware in critical systems:
The case for Freely Licensed Open Source Software. Military Embedded
Systems.

DOD Software Tech News (2011), Tech Views — Challenges Dominate
Our Future, Ellen Walker.

Federal Aviation Administration. (2000). FAA4 System Safety Handbook.
Federal Aviation Administration. (2009). Cast Position Papers.
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/
cast_papers/

14.
15.

21.

27.

28.

29.

30.

31.

32.

Flightglobal, (2010). A380 In-service report: Technical issues.
http://www.flightglobal.com/page/A380-In-Service-Report/Airbus-
A380-In-Service-Technical-issues/

Gates, Dominic. The Seattle Times, (2007). 787 flight delay blamed on
unfinished structures, software.

Greising and Johnsson. Chicago Tribune, (2007). Behind Boeing’s 787
delays.

Hawthornethwaite, Mark, and Luc Marcil. VME and Critical Systems,
(2007). Paving the road to DO-178B compliance with COTS tools.
Hayhurst, K., Holloway, C., Dorsey, C., Knight, J., Leveson, G.,
McCormick, G., and Yang, J. (1998). Streamlining Software Aspects of
Certification: Technical Team Report on the First Industry Workshop.
National Aeronautics and Space Administration, Langley Research
Center. NASA/TM-1998-207648

Hayhurst, K., Holloway, C., Dorsey, C., Knight, J., Leveson, G., and
McCormick, G. (1999). Streamlining Software Aspects of Certification:
Report on the SSAC Survey. National Aeronautics and Space
Administration, Langley Research Center. NASA/TM-1999-209519.
Hayhurst, K., and Holloway, C. (2001). Challenges in Software Aspects
of Aerospace Systems. Proceedings of the 26" Annual IEEE NASA
Software Engineering Workshop.

HighRely Inc. (2005) DO-178B and DO-254: Big Bang or Evolution?
HighRely Inc. (2005). DO-178B Costs versus Benefits

Hilderman, V. (2009). DO-178B and DO-254: A unified aerospace-field
theory? Military Embedded Systems Magazine.

Hopkins, J.R. and De Keyrel, C.R. Master’s Thesis, US Air Force. 4n
Analysis of the Root Causes of Delays and Deficiencies in the
Development of Embedded Software for Air Force Weapons Systems.
December 1993.

Inca Group War and Peace, (2007). Boeing 787, the new US flying
coffin.

James, Parkinson, and Roberts. Wind River Systems, (2009). Case
Study: Ultra Datel Safety-Critical Avionics Upgrade Using COTS

King, S., Hammond, J., Chapman, R., Pryor, A. Is Proof More Cost
Effective Than Testing? (August 2000). IEEE Transactions on Software
Engineering, vol 26, no. 8.

Kvinnesland, Kenneth. Navia Aviation, (2002). Implementation of
metrics in development of highly safety-critical SW.

Leveson, N. Safeware: System Safety and Computers. Addison-Wesley,
September 1995.

Lindsay, P. and G. Smith. Technical Report No. 00-17. Safety
Assurance of Commercial-Off-The-Shelf Software. (May 2000).
Software Verification Research Center, University of Queensland,
Australia.

207

33.

34.

35.

36.

37.

39.

40.

41.

42.

43.
44,

45.

46.

47.

48.

49.

Matlack, Carol. Business Week, (2006). Airbus: First, Blame the
Software

Maxey, Burke. COTS Integration in Safety Critical Systems Using
RTCA/DO-178B Guidelines. H. Erdogmus and T. Weng (Eds.): ICCBSS
2003, LNCS 2580, pp. 134-142.

Menendez, Jose K. Building Software Factories in the Aerospace
Industry. MS Thesis, Massachusetts Institute of Technology, February
1997.

Mikro Elektronik, (2010). In-flight equipment for Airbus A400M.
National Aeronautics and Space Administration. NASA-STD 8719.13.
Software Safety. Revision B with Change 1, 8 July 2004.

People's Daily, (2010). France, Britain rule out sharing aircraft carriers.
Pike, John. GlobalSecurity.org, (2005). C-17 Globemaster III - History.
http://www.globalsecurity.org/military/systems/aircraft/c-17-history.htm
Praxis Critical Systems. SPARK: A successful contribution to the
Lockheed C130J Hercules 11

Radio Technical Commission for Aeronautic, Inc. (Dec. 1, 1992).
RTCA/DO-178B, Software Considerations in Airborne Systems and
Equipment Certification.

Radio Technical Commission for Aeronautic, Inc. (1993). FAA4 Advisory
Circular 20-115B.

Reuters, (2009). Airbus A400M software revamp almost ready.

Rigby and Hepher. Reuters, (2008). Brake software latest threat to
Boeing 787.

Rothman, Kammel, and Harris. Bloomberg, (2010). Airbus A380 Order
Dearth Risks Double-Decker-Dud Fate (Updatel).

United States General Accounting Office. National Airspace System:
Problems Plaguing the Wide Area Augmentation System and the FAA's
Actions to Address Them. Statement of Gerald L. Dillingham, Associate
Director, Transportation Issues, Resources, Community, and Economic
Development Division before the Subcommittee on Aviation,
Committee on Transportation and Infrastructure, House of
Representatives GAO/T-RCED-00-229, June 29 2000.

Vector Software, (2010). MDS Technology relies on VectorCAST for
DO-178B Level A certification testing.

Wong, E.W., Debroy, V., Surampudi, A., Kim, H. Department of
Computer Science, University of Texas at Dallas. With Mike F. Siok,
Lockheed Martin Aeronautics Company. Recent Catastrophic
Accidents: Investigating How Sofiware Was Responsible. Fourth IEEE
Conference on Secure Software Integration and Reliability
Improvement, 2010.

Woodcock, J., Larsen, P. G., Bicarregui, J., & Fitzgerald, J. Formal
Methods: Practice and Experience. (October 2009). ACM Computing
Surveys, Vol. 41, No. 4, pp. 1-40.

