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Abstract—As safety issues occur in many domains, software safety 
standards provide guidelines for development of software systems 
that operate in safety-critical environments. However, evolution of 
existing software safety standards diverges under various 
circumstances and environments. To understand the purpose of 
these standards on their domains and the effect of changing the 
environment on evolution of these standards, we conducted a 
survey on the history of the families of DO-178 (Commercial 
avionics), MIL-STD-882 (US Department of Defense), and DEF-
STAN 00-56 (UK Ministry of Defense). Additionally, we learned 
that even in different environments, there are certain features in 
common that are preferred by industry and would likely be added 
to newer versions of the standard. In other words, these features 
are very likely to be must-haves when constructing new standards 
in the future. 

Keywords-software safety; system safety; safety standard; safety-
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I.  INTRODUCTION 

As software is becoming a critical part of many vital 
environments such as the transportation, nuclear energy, 
defenses, and aeronautics industries, erroneous or faulty 
design can be disastrous, potentially resulting in not only 
immense financial loss but also human casualties [52][53]. 
However, rapidly growing software technology also makes 
the system architecture more bulky and complicated, thus 
bring about inflated software development efforts and system 
maintenance budgets. As a result, software safety standards 
are established to provide guidelines to meet the 
requirements in constructing safe and reliable systems and 
ease the workload of software engineers within the 
development process while following the system constraints. 
In other words, once these software safety standards are 
properly obeyed by the developer, the risk of disaster can be 
reduced. 

In this paper, the evolution history of three popular 
standards are reviewed, especially their advantages in 
distinct backgrounds and the effect of changing requirements 
and new technologies on their evolution. In section II of this 
paper, DO-178 [42], a standard that is commonly used in 
various commercial avionics industries, will be introduced in 
detail. In section III, the properties of DEF STAN 00-56 
[11], a standard constructed by the U.S. Department of 
Defense, will be presented. MIL-STD-882 [31], which was 
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developed by the U. K. Ministry of Defense, will be shown 
in section IV. In section V, we will evaluate the evolution 
history of these standards in a more comprehensive way and 
try to identify similar properties in developing such 
standards. Finally, our conclusion and future work will be 
given in Section VI. 

II. EVOLUTION OF DO-178 

First created in 1980, DO-178 [42] was the first software 
safety standard for the avionics industry [28]. It was created 
to establish a basis for software certification approval by 
identifying and documenting the software development best 
practices known at the time. From its inception to its 
evolution through DO-178A [43], DO-178B [44], and DO-
178C [45], the standard has faced various challenges and 
made significant changes to its requirements and 
recommendations. 

DO-178 [42] introduced the idea that the rigor applied to 
software development and safety assurance of a system 
could vary by the criticality of the system [22]. In DO-178, a 
system could be classified as critical, essential, and non-
essential. Furthermore, DO-178 established the need for a 
safety certification plan, which would include software 
requirements. However, DO-178 was written in a highly 
conceptual manner, and projects achieved compliance by 
meeting the “intent” of the standard [38]. It failed to provide 
specific guidance regarding the methods, processes, and 
techniques for the development of safety-critical software. 

Published in 1985, DO-178A intended to incorporate the 
lessons learned and experiences gained from the use of DO-
178 in the avionics industry. It was a significant departure 
from the previous version, DO-178. Unlike the vague 
guidelines found in the earlier DO-178, DO-178A planned to 
establish specific techniques and methods for the creation of 
safety-critical software [22].  

DO-178A [43] introduced the use of specific software 
integrity levels based on the criticality and intended 
application of the system. It included more structured 
development and verification activities and varied the level 
of effort required for the different software levels [22][38].  

However, DO-178A was weak in several areas. 
Diagrams and examples were often misinterpreted, and items 
necessary for certification were often contended. The 
required level of effort was also in contention. The reasons 
behind the requirements for certification were not understood 
or appreciated [22].  



By the late 1980s, the avionics industry was also making 
rapid advances in technology. Most avionics systems were 
much more complex, and the industry was transitioning from 
the use of analog to digital systems [22]. DO-178A was 
unable to keep up with these increasing demands. 

In 1989, the RTCA convened a new committee, SC-167, 
to address these issues and update DO-178A to provide 
further guidance in developing safety-critical software [27]. 
SC-167 intended to address significant safety-related 
shortcomings for avionics software found in DO-178A [21]. 
The committee focused on five key areas for improvement: 
(1) document integration and production, (2) system issues, 
(3) software development, (4) software verification, (5) 
software configuration management and software quality 
assurance [24]. DO-178B, published in 1992, provided 
extensive guidance on these topics and was a major update to 
DO-178A.  

In DO-178B [44], the failure condition categories were 
changed from non-essential, essential, and critical, to no 
effect, minor, major, hazardous, and catastrophic. This also 
caused the number of software levels to change from 3 to 5. 
Traceability was also added as a major aspect of software 
development, and various software development and 
verification activities were clarified [38].  

Although it has become the de-facto standard for 
avionics software, DO-178B has nevertheless also come with 
some problems. The DO-178B process model progresses 
from requirements to design and code to integration and test 
in a linear fashion, much like the software development 
“waterfall” model [48]. The distinction between the 
requirements and software development process has often 
caused problems with a lack of discrimination between low-
level requirements and design. Furthermore, DO-178B 
focuses primarily on top-down testing and does not stress the 
importance of testing early in the software development 
process. As a result, beneficial techniques such as static 
analysis and formal testing are not addressed [48]. The 
qualification of development tools is also difficult under DO-
178B, since there is no guidance on how to achieve 
compliance with the standard for tools used to develop a 
system [24]. In general, DO-178B has been criticized for 
inadequately allowing for innovation in software 
development practices [20].  

DO-178C [45] is the next iteration of the standard and 
plans to address these issues. While DO-178B was a 
significant update to DO-178A, the core of DO-178C is 
expected to be only a minor change to DO-178B [21][27]. 
The changes to the core of the standard address some 
inconsistencies in wording and incorporate the errata of DO-
178B [41]. However, these changes are relatively modest 
and do not make up the bulk of the updates which are found 
in DO-178C.  

The most significant change to be incorporated into DO-
178C is the inclusion of technology-specific supplements 
that provide guidance for the use of new methods and 
advanced technologies in software development. These 
supplements address model-based development, object-
oriented technology, tool qualification, and the use of formal 
methods for verification and validation [27][37][48]. DO-

178C details the activities needed for these processes, as well 
as the certification criteria for software utilizing them. 

DO-178B was created before model-based development 
and object-oriented technology came into widespread use for 
avionics software systems, so it assumes the use of 
procedural programming languages such as Ada 83 or C 
[27]. However, modeling and object-oriented techniques 
have gradually become more popular in the avionics 
industry. As a result, the FAA has accepted these methods 
for use in safety-critical software, and DO-178C allows for 
the controlled use of modeling and object-oriented software 
in all avionics systems, including Level A (the highest level) 
[21]. DO-178C addresses the use of object-oriented 
programming languages and their potential pitfalls, as well 
as guidelines for acceptable use. The standard also provides 
guidance as to the specific acceptability criteria for the use of 
modeling techniques, and traceability is highly emphasized.  

Furthermore, unlike DO-178B, DO-178C officially 
accepts the use of formal methods in the development of 
safety-critical avionics software to reduce software testing. It 
allows formal methods to verify requirements correctness 
and consistency. Furthermore, the standard accepts the use of 
formal methods to augment code reviews and to verify or 
replace test cases used for low-level requirements [21]. DO-
178C also addresses the qualification of tools used for 
automating development and verification activities, including 
third-party commercial off-the-shelf tools, which are 
becoming increasingly popular [27]. In general, the revision 
is expected to allow avionics projects to adopt modern 
safety- and software-engineering practices. 

Transitioning from DO-178B to DO-178C is not 
expected to be difficult for pre-existing systems or those 
currently in development to DO-178B. In general, the core 
DO-178B document is unchanged in DO-178C, and the 
major updates are to be found in the additional technology 
supplements. Furthermore, compatibility with DO-178B has 
been a major concern in the formulation of DO-178C. As a 
result, systems certified to DO-178B does not require re-
certification to DO-178C, and projects currently in-
development should encounter minimal costs related to the 
transition [27]. 

III.  EVOLUTION OF DEF STAN 00-56 

DEF STAN 00-56 [11] is a safety standard created by the 
UK Ministry of Defense (MOD) that describes the 
requirements for the management of the safety of defense-
related systems. The standard specifies safety management 
procedures, analysis techniques, and safety verification 
techniques that are intended to aid in ensuring system safety. 
This standard is applicable to all Ministry of Defense 
authorities and projects, and is intended to provide guidance 
for the development of safety-critical projects.  

The current version of DEF STAN 00-56, Issue 4 [11], 
covers both hardware and software safety issues, and its 
safety requirements are broadly applicable to all MOD 
projects. However, the expansive scope of this standard is 
relatively recent and previously overlapped with the use of 
other MOD standards such as DEF STAN 00-54 [7], 00-55 
[8], and 00-58 [12].  



Issue 3 of DEF STAN 00-56 [10] was a significant 
departure from Issue 2. In addition to changing its focus 
from a requirements-based to a goal-based standard, it 
incorporated aspects of DEF STAN 00-55, rendering that 
standard obsolete. Several major criticisms of DEF STAN 
00-55, as well as previous issues of DEF STAN 00-56, 
contributed to this major overhaul. 

Experience and feedback from MOD stakeholders and 
users in industry had shown that the rigorous requirements of 
DEF STAN 00-55 and earlier issues (namely, Issues 1 and 2) 
of DEF STAN 00-56 were needlessly strict for contractors 
[14]. Both DEF STAN 00-55 and Issue 2 of DEF STAN 00-
56 [9] had focused on the use of Safety Integrity Levels 
(SILs), which were determined by analyzing both the 
consequence and probability of failure of system risks. 
However, these SILs proved difficult to allocate and highly 
specific in the techniques they required for proof of safety 
[6]. Moreover, SILs were widely misunderstood and misused 
in industry applications [6][46][47]. 

Additionally, DEF STAN 00-55 and Issues 1 and 2 of 
00-56 had been criticized for not allowing contractors the 
flexibility to tailor their approach for each individual project 
to best achieve the safety requirements [14]. In general, the 
standards were disparaged for heavily over-emphasizing 
process rather than product [18], imprecise requirements 
[18], and not sufficiently addressing safety issues [26]. DEF 
STAN 00-55 was considered too long and unclear 
[3][39][40], and experience showed that examples given by 
Issues 1 and 2 of 00-56 which were intended to provide 
guidance were often copied directly by contractors rather 
than altered to fit the project [14]. 

As a result of these criticisms, the MOD released Issue 3 
of DEF STAN 00-56 [10], a major departure from both 00-
55 and the previous issue of 00-56 [9]. The new goal-based 
approach for the standard provides general requirements but 
does not mandate a specific method for how they are to be 
met [6][11][14]. Furthermore, the use of SILs has been 
completely eliminated. In Issues 3 and 4 of DEF STAN 00-
56, instead of following a specific process to ensure safety, 
contractors must propose and justify their chosen methods of 
compliance and provide evidence for the safety of their 
systems in a safety case [11]. Rather than requiring a pre-
determined methodology, the standard now requires 
evidence-based proof of safety of the system. This puts a 
higher burden of proof on contractors but also allows them 
more flexibility in tailoring their safety approach to fit the 
needs of their specific project. This flexibility can also 
permit contractors to use other relevant standards and utilize 
their recommendations in their argument for proof of the 
safety of their system.  

As previously noted, Issue 3’s publication of DEF STAN 
00-56 made several other MOD standards obsolete (00-54 
[7], 00-55 [8]), and 00-58 [12]). However, DEF-STAN 00-
55 was chiefly concerned with the production of safety-
critical software, while the new DEF STAN 00-56 is broadly 
applicable to all safety-critical defense systems and does not 
stress software specifically. Due to this change, there were 
some industry concerns that Issue 3 of DEF STAN 00-56 did 
not provide enough detailed guidance regarding how safety-

critical software should comply with the standard in the 
absence of DEF-STAN 00-55’s guidance [5][7].  

Issue 4 of DEF-STAN 00-56, published in June 2007, 
clarified Interim Issue 3 of the standard. It removed the 
“Interim” status but did not introduce any significant new 
requirements or policies [11]. However, in response to the 
criticisms regarding the lack of guidance for safety-critical 
software and electronic systems, in August 2007 Part 1 of the 
standard was updated to include a section on “Additional 
Guidance Regarding the Safety of Systems Containing 
Complex Electronic Elements”, which included 
recommendations for how to deal with safety-critical 
software [11]. This added section provided guidance for 
contractors in how to achieve safety of systems containing 
safety-critical software, but retained the goal- and evidence-
based approach of the standard. 

The evolution of DEF STAN 00-55 and 00-56 has not 
received much criticism. However, the changes to the 
standards have posed some challenges for both pre-existing 
and future projects. 

First, since Issues 3 and 4 of DEF STAN 00-56 are goal-
based, there is some uncertainty in how exactly to achieve 
compliance with the standard. Since specific methods and 
processes are no longer required, contractors must determine 
for themselves how to ensure and prove safety. Furthermore, 
Issues 3 and 4 of DEF-STAN 00-56 include some ambiguity 
as to the level of evidence that is sufficient to prove safety. A 
safety case is required, but the standard does not in detail 
describe what is sufficient for meeting its goals. Issues 3 and 
4 of 00-56 do not prescribe required methods or types of 
proof, so it is not entirely clear how to comply with the 
standard [23]. As a result, contractors are faced with the 
challenge of determining what constitutes sufficient safety 
evidence. 

Furthermore, the removal of SILs from Issues 3 and 4 of 
00-56 means that there is also no pre-determined risk 
acceptability scheme. Thus, it becomes a burden on the 
contractor to determine acceptable or tolerable levels of risk, 
which can be a problematic moral question. Since the 
standard does not strictly define the level of risk that is 
acceptable, the details for risk tolerance for the project must 
be negotiated among the various parties involved, among 
which it may be difficult to find agreement. Contractors may 
also lack sufficient expertise in order to make judgments on 
risk acceptability [23].   

Another challenge that may result from the evolution of 
the standards is that of cost estimation and program 
management. In the UK, projects are often contracted on a 
fixed-price basis. Previously, the process-based nature of the 
standards ensured that most projects were approached in 
fairly similar ways, and some of the cost could be estimated 
based on knowledge of the necessary safety activities. 
However, with Issues 3 and 4 of 00-56, methods for 
compliance are open, and what constitutes sufficient safety 
evidence is not entirely clear. As a result, contracting at a 
fixed price may be high-risk [23]. 

On the other hand, the new versions of the standard are a 
benefit to projects utilizing new technologies or safety 
strategies [19]. The specific methods for safety assurance 



provided in process-based standards such as Issues 1 and 2 
of DEF STAN 00-56 and 00-55 could prove potentially 
restrictive as safety- and software-engineering practices 
evolve. Furthermore, some prescribed approaches to 
determining safety may not be appropriate to all projects. 
The goal-based approach in Issues 3 and 4 of 00-56 allows 
for contractors to utilize new techniques, choose which 
methods are applicable to ensure safety for their project, and 
incorporate recommendations from other relevant safety 
standards as needed. As a result, it is expected that the 
current issue of DEF STAN 00-56 will be widely applicable 
and less affected when technology changes [19]. 

For projects previously using DEF STAN 00-55 and 
Issues 1 or 2 of 00-56, transition to Issues 3 and 4 of 00-56 is 
not expected to be difficult. The goal-based nature of Issues 
3 and 4 of 00-56 allows contractors to choose and justify 
their safety methodology. As a result, it is compatible with 
previous versions of the standard, since the required 
practices established under DEF STAN 00-55 and Issues 1 
and 2 of 00-56 can be justified by the contractor in a safety 
case. For example, the HEAT/ACT project, by UK-based 
Westland Helicopters, was in development when Issue 3 of 
00-56 was released [4]. This project involved significant 
revisions to a helicopter’s aircraft systems, including changes 
to the hydraulics and the migration of the flight controls from 
a mechanical system to two new software-intensive fly-by- 
wire computers. Although the project was initially conceived 
when Issue 2 of 00-56 was in use, the creators of the project 
noted that the safety plan could be easily converted to 
comply with Issue 3 of the standard. Instead of referring to 
specific clauses in Issue 2 of 00-56, they could provide an 
explanation and analysis of their safety processes and 
principles to achieve compliance with Issue 3 of the 
standard. However, the actual processes used to ensure safety 
did not need to be changed [4]. The general safety case, as 
well as the sub-system safety cases, would remain largely the 
same in their arguments. 

IV.  EVOLUTION OF MIL-STD-882 

US Department of Defense (DoD) MIL-STD-882 [31], 
the first standard for the assessment of system safety, was 
published in 1969 and made the use of a system safety 
program mandatory for all DoD projects. Since its release, 
this standard has been the primary reference for system 
safety for the DoD, while experiencing significant updates 
and revisions throughout its history.  

MIL-STD-882’s 1969 release was the result of the 
defense industry’s new focus on system safety engineering in 
the 1950s and 1960s as military systems increased in 
complexity. At the time, much documented guidance existed 
for how to achieve safety of technologically complex 
systems.  

To fill this void, in 1962 the US Air Force Ballistic 
Missile Division published the first system safety 
specification, BSD Exhibit 62-41 [1]. This document 
discussed basic safety engineering concepts, including 
hazard classification, design order of precedence, and 
systematic analysis through the design and development 
phases of a project. However, BSD Exhibit 62-41 was only 

designed for ballistic missile systems. The scope of this 
document was expanded in 1963, when the US Air Force 
released MIL-S-38130 [29], which increased the intended 
audience to include the creators of aeronautical, space, 
missile, and electronic systems [17][25]. MIL-S-38130 also 
further discussed the definitions of hazards and their 
classifications.  

In 1966, MIL-S-38130 was revised to MIL-S-38130A 
[30], which expanded the safety engineering lifecycle and 
introduced the Gross Hazard Study (now known as the 
Preliminary Hazard Analysis). Furthermore, the revision 
began the focus on the importance of management control of 
the system safety program [51].  

In 1967, the DoD took steps to formalize the safety 
engineering principles discussed in the MIL-S-38130A 
specification. The culmination of this process was MIL-
STD-882, released in July 1969, which made a system safety 
program mandatory for all DoD projects and systems [55]. 
The new standard greatly expanded the guidance provided in 
the previous documents, and adopted a phase-oriented 
approach to system safety, in which safety activities were 
associated with the various phases of system development. 

MIL-STD-882 was revised in 1977 to MIL-STD-882A 
[32]. The primary change was a focus on risk acceptance as a 
criterion for system safety programs. The update also added 
the concept of hazard probability and frequency of 
occurrence in order to refine the hazard severity categories 
[25]. Management responsibilities also became more specific 
due to an increased focus on contract definition [17]. 

The standard continued its evolution with the publication 
of MIL-STD-882B [33] in 1984. This update was a major 
change to the previous version, expanding the guidance on 
risk acceptance, tailoring, and off-the-shelf acquisition. 
Furthermore, MIL-STD-882B was the first version of the 
standard to include a detailed discussion of software 
[17][51]. The DoD added Notice 1 to MIL-STD-882B in 
1987, which further discussed software tasks and their 
relation to system safety. 

The next revision of the standard, MIL-STD-882C [34], 
was published in 1993 and integrated hardware and software 
into the system safety effort. This update got rid of separate 
software tasks and addressed safety analysis as a system-
wide process rather than one that focused on hardware and 
software separately [25]. 

MIL-STD-882D [35], published in 2000, was a 
significant revision to the previous versions of the standard. 
It reflected the DoD Military Specifications and Standards 
Reform initiative, which focused on performance rather than 
process [17]. As a result, MIL-STD-882D was a goal- and 
performance-based standard, which focused on the intended 
safety results rather than specific processes or activities (in 
other words, “what to do” rather than “how to do it”) [55]. 
The new revision required the use of a System Safety 
Program, but removed the recommended hazard analysis 
tasks found in previous versions [2]. This change allowed for 
greater freedom to contractors for how to meet safety 
expectations, but removed guidance as to the tasks that can 
be used to satisfy the requirements of the standard. This has 
led to some confusion among contractors due to the 



decreased step-by-step guidance, and the new performance-
based focus of the standard requires more understanding and 
up-front planning to ensure that a properly structured system 
safety program is followed [2].  

However, government and industry found difficulties on 
utilizing the guidelines provided in the standard without 
expertise instructions and lack of specific implementation 
steps for the safety requirements [50]. Therefore, MIL-STD-
882C, sometimes with supplemented DO-178B, is treated as 
the alternative [49] while brought about some confusion on 
recommended task for safety engineering. Furthermore, DoD 
did not have any policy or agreement for software 
development to mandate any safety standards back then. The 
demands for these standards are significantly lowered by 
these issues [50]. 

Fortunately, in September, 2004, DoD published a memo 
“Defense Acquisition System Safety” to request risk 
management in software system development by using MIL-
STD-882D [54], and a course of “System Safety in Systems 
Engineering” was created at the Defense Acquisition 
University, which was the very first exceptional training for 
the standard [50]. Also, in the updated information and 
documents found in November, 2006 Defense Acquisition 
Guidebook [13] and December 2008 DoD 5000.02 
“Operation of the Defense Acquisition System” [15][16], 
more guidance are provided to resolve the confusing issues 
of integrating MIL-STD-882D safety tasks into the system 
development process [50]. 

In November 2009, the Environmental Support Office 
met to discuss criticism of and potential changes to MIL-
STD-882D. Change 1 was the revision that resulted from the 
discussion. Due to a lack of standardization and some 
confusion regarding hazard risk identification found in the 
standard, Change 1 sought to improve these issues as well as 
to further discuss health and environmental risk 
management. 

In May 2012, important changes were introduced in the 
newer revision of the standard, MIL-STD-882E [36], 
including a deeper emphasis on software related technology, 
emphasis on reducing confusion between Mishap, Hazard, 
and Risk, and new or updated definitions [50]. Furthermore, 
risk assessment matrices and software safety matrices have 
been added to the standard [25] in order to provide more 
standardized guidance, which was lacking in the previous 
version and is present in several other standards such as DO-
178B and the FAA System Safety Handbook. Safety 
integrity levels, such as those found in DO-178B, have also 
been included [2]. 

V. LESSONS LEARNED 

After examination of these three software safety 
standards, four lessons for developing useful standards in 
software safety can be learned: 

A. Levelized Effort 

These software safety standards tend to categorize 
criticality based on risk assessment of the system, and 
require greater levels of effort for more highly critical 
categories in system development and verification processes. 

For example, both DO-178 and DEF STAND 00-56 use 
software integrity levels to rank hazards caused by software 
failures. Furthermore, the latest issue of MIL-STD-882E also 
includes the leveling feature. 

B. Expertise 

Though justified schemas and notations such as software 
levels have been commonly used in constructing software 
safety standards, these schemas and notations have 
sometimes been misunderstood or misused when confronting 
different situations. To resolve the problem, we may: 
• Consult a trained expert. 
• Establish a unified standard with exclusive property 

lists for different interpretations. 
• Replace the schemes with simpler and more flexible 

methods. 

C. Flexibility 

As mentioned above, older standards tend to have 
rigorous schemes to restrict the system development process. 
However, due to the increasing complexity of software 
systems and rapidly evolving new technology, highly 
flexible and widely applicable standards are preferred when 
developing new systems or introducing new features into a 
legacy system. To provide this flexibility, goal-based 
guidelines considering both software safety and cost 
efficiency can be used. 

D. Backward compatibility 

Backward compatibility is also an important feature. For 
those pre-existing projects migrating to a new environment 
or introducing new technology, older standards sometimes 
do not include the views and experience needed for emerging 
software safety issues. Newer versions of software safety 
standards (such as Issues 2 and 3 of 00-56) may have 
different schemes. Thus, some conversion techniques must 
be provided. For example, the “required practices” in older 
versions of 00-56 can be defined as a safety case. 

VI.  CONCLUSION AND FUTURE WORK 

In this paper, we presented the history of three major 
software safety standards that provide either guidelines to 
follow during the development process or goals to achieve 
for safety purposes. After evaluating the evolution of these 
standards, we found four major properties that are most 
likely to exist in the current version of software safety 
standards or to be included in future versions. First, it is most 
efficient to categorize the risk level and put effort on the 
more critical issues. Second, it is helpful to seek expertise to 
clarify the schemes of standards. Third, goal-based 
guidelines provide flexibility for new technology in newer 
versions of standards. Finally, compatibility of newer 
standards with older versions is beneficial for developers of 
pre-existing projects. 

In future work, we plan to propose criteria to evaluate the 
performance of different software safety standards, and to 
demonstrate the application of such criteria to standards 
selection for a given project.  
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