
Software Safety Standards: Evolution and Lessons Learned†

Shou-Yu Lee, W. Eric Wong, Ruizhi Gao
Department of Computer Science

University of Texas at Dallas
Richardson, Texas, USA

{sxl128630, ewong, gxr116020}@utdallas.edu

Abstract—As safety issues occur in many domains, software safety
standards provide guidelines for development of software systems
that operate in safety-critical environments. However, evolution of
existing software safety standards diverges under various
circumstances and environments. To understand the purpose of
these standards on their domains and the effect of changing the
environment on evolution of these standards, we conducted a
survey on the history of the families of DO-178 (Commercial
avionics), MIL-STD-882 (US Department of Defense), and DEF-
STAN 00-56 (UK Ministry of Defense). Additionally, we learned
that even in different environments, there are certain features in
common that are preferred by industry and would likely be added
to newer versions of the standard. In other words, these features
are very likely to be must-haves when constructing new standards
in the future.

Keywords-software safety; system safety; safety standard; safety-
critical software; hazards1

I. INTRODUCTION

As software is becoming a critical part of many vital
environments such as the transportation, nuclear energy,
defenses, and aeronautics industries, erroneous or faulty
design can be disastrous, potentially resulting in not only
immense financial loss but also human casualties [52][53].
However, rapidly growing software technology also makes
the system architecture more bulky and complicated, thus
bring about inflated software development efforts and system
maintenance budgets. As a result, software safety standards
are established to provide guidelines to meet the
requirements in constructing safe and reliable systems and
ease the workload of software engineers within the
development process while following the system constraints.
In other words, once these software safety standards are
properly obeyed by the developer, the risk of disaster can be
reduced.

In this paper, the evolution history of three popular
standards are reviewed, especially their advantages in
distinct backgrounds and the effect of changing requirements
and new technologies on their evolution. In section II of this
paper, DO-178 [42], a standard that is commonly used in
various commercial avionics industries, will be introduced in
detail. In section III, the properties of DEF STAN 00-56
[11], a standard constructed by the U.S. Department of
Defense, will be presented. MIL-STD-882 [31], which was

†1This paper appeared in the Proceedings of the First International Conference on
Trustworthy Systems and Their Applications (TSA 2014), June 2014.

developed by the U. K. Ministry of Defense, will be shown
in section IV. In section V, we will evaluate the evolution
history of these standards in a more comprehensive way and
try to identify similar properties in developing such
standards. Finally, our conclusion and future work will be
given in Section VI.

II. EVOLUTION OF DO-178

First created in 1980, DO-178 [42] was the first software
safety standard for the avionics industry [28]. It was created
to establish a basis for software certification approval by
identifying and documenting the software development best
practices known at the time. From its inception to its
evolution through DO-178A [43], DO-178B [44], and DO-
178C [45], the standard has faced various challenges and
made significant changes to its requirements and
recommendations.

DO-178 [42] introduced the idea that the rigor applied to
software development and safety assurance of a system
could vary by the criticality of the system [22]. In DO-178, a
system could be classified as critical, essential, and non-
essential. Furthermore, DO-178 established the need for a
safety certification plan, which would include software
requirements. However, DO-178 was written in a highly
conceptual manner, and projects achieved compliance by
meeting the “intent” of the standard [38]. It failed to provide
specific guidance regarding the methods, processes, and
techniques for the development of safety-critical software.

Published in 1985, DO-178A intended to incorporate the
lessons learned and experiences gained from the use of DO-
178 in the avionics industry. It was a significant departure
from the previous version, DO-178. Unlike the vague
guidelines found in the earlier DO-178, DO-178A planned to
establish specific techniques and methods for the creation of
safety-critical software [22].

DO-178A [43] introduced the use of specific software
integrity levels based on the criticality and intended
application of the system. It included more structured
development and verification activities and varied the level
of effort required for the different software levels [22][38].

However, DO-178A was weak in several areas.
Diagrams and examples were often misinterpreted, and items
necessary for certification were often contended. The
required level of effort was also in contention. The reasons
behind the requirements for certification were not understood
or appreciated [22].

By the late 1980s, the avionics industry was also making
rapid advances in technology. Most avionics systems were
much more complex, and the industry was transitioning from
the use of analog to digital systems [22]. DO-178A was
unable to keep up with these increasing demands.

In 1989, the RTCA convened a new committee, SC-167,
to address these issues and update DO-178A to provide
further guidance in developing safety-critical software [27].
SC-167 intended to address significant safety-related
shortcomings for avionics software found in DO-178A [21].
The committee focused on five key areas for improvement:
(1) document integration and production, (2) system issues,
(3) software development, (4) software verification, (5)
software configuration management and software quality
assurance [24]. DO-178B, published in 1992, provided
extensive guidance on these topics and was a major update to
DO-178A.

In DO-178B [44], the failure condition categories were
changed from non-essential, essential, and critical, to no
effect, minor, major, hazardous, and catastrophic. This also
caused the number of software levels to change from 3 to 5.
Traceability was also added as a major aspect of software
development, and various software development and
verification activities were clarified [38].

Although it has become the de-facto standard for
avionics software, DO-178B has nevertheless also come with
some problems. The DO-178B process model progresses
from requirements to design and code to integration and test
in a linear fashion, much like the software development
“waterfall” model [48]. The distinction between the
requirements and software development process has often
caused problems with a lack of discrimination between low-
level requirements and design. Furthermore, DO-178B
focuses primarily on top-down testing and does not stress the
importance of testing early in the software development
process. As a result, beneficial techniques such as static
analysis and formal testing are not addressed [48]. The
qualification of development tools is also difficult under DO-
178B, since there is no guidance on how to achieve
compliance with the standard for tools used to develop a
system [24]. In general, DO-178B has been criticized for
inadequately allowing for innovation in software
development practices [20].

DO-178C [45] is the next iteration of the standard and
plans to address these issues. While DO-178B was a
significant update to DO-178A, the core of DO-178C is
expected to be only a minor change to DO-178B [21][27].
The changes to the core of the standard address some
inconsistencies in wording and incorporate the errata of DO-
178B [41]. However, these changes are relatively modest
and do not make up the bulk of the updates which are found
in DO-178C.

The most significant change to be incorporated into DO-
178C is the inclusion of technology-specific supplements
that provide guidance for the use of new methods and
advanced technologies in software development. These
supplements address model-based development, object-
oriented technology, tool qualification, and the use of formal
methods for verification and validation [27][37][48]. DO-

178C details the activities needed for these processes, as well
as the certification criteria for software utilizing them.

DO-178B was created before model-based development
and object-oriented technology came into widespread use for
avionics software systems, so it assumes the use of
procedural programming languages such as Ada 83 or C
[27]. However, modeling and object-oriented techniques
have gradually become more popular in the avionics
industry. As a result, the FAA has accepted these methods
for use in safety-critical software, and DO-178C allows for
the controlled use of modeling and object-oriented software
in all avionics systems, including Level A (the highest level)
[21]. DO-178C addresses the use of object-oriented
programming languages and their potential pitfalls, as well
as guidelines for acceptable use. The standard also provides
guidance as to the specific acceptability criteria for the use of
modeling techniques, and traceability is highly emphasized.

Furthermore, unlike DO-178B, DO-178C officially
accepts the use of formal methods in the development of
safety-critical avionics software to reduce software testing. It
allows formal methods to verify requirements correctness
and consistency. Furthermore, the standard accepts the use of
formal methods to augment code reviews and to verify or
replace test cases used for low-level requirements [21]. DO-
178C also addresses the qualification of tools used for
automating development and verification activities, including
third-party commercial off-the-shelf tools, which are
becoming increasingly popular [27]. In general, the revision
is expected to allow avionics projects to adopt modern
safety- and software-engineering practices.

Transitioning from DO-178B to DO-178C is not
expected to be difficult for pre-existing systems or those
currently in development to DO-178B. In general, the core
DO-178B document is unchanged in DO-178C, and the
major updates are to be found in the additional technology
supplements. Furthermore, compatibility with DO-178B has
been a major concern in the formulation of DO-178C. As a
result, systems certified to DO-178B does not require re-
certification to DO-178C, and projects currently in-
development should encounter minimal costs related to the
transition [27].

III. EVOLUTION OF DEF STAN 00-56

DEF STAN 00-56 [11] is a safety standard created by the
UK Ministry of Defense (MOD) that describes the
requirements for the management of the safety of defense-
related systems. The standard specifies safety management
procedures, analysis techniques, and safety verification
techniques that are intended to aid in ensuring system safety.
This standard is applicable to all Ministry of Defense
authorities and projects, and is intended to provide guidance
for the development of safety-critical projects.

The current version of DEF STAN 00-56, Issue 4 [11],
covers both hardware and software safety issues, and its
safety requirements are broadly applicable to all MOD
projects. However, the expansive scope of this standard is
relatively recent and previously overlapped with the use of
other MOD standards such as DEF STAN 00-54 [7], 00-55
[8], and 00-58 [12].

Issue 3 of DEF STAN 00-56 [10] was a significant
departure from Issue 2. In addition to changing its focus
from a requirements-based to a goal-based standard, it
incorporated aspects of DEF STAN 00-55, rendering that
standard obsolete. Several major criticisms of DEF STAN
00-55, as well as previous issues of DEF STAN 00-56,
contributed to this major overhaul.

Experience and feedback from MOD stakeholders and
users in industry had shown that the rigorous requirements of
DEF STAN 00-55 and earlier issues (namely, Issues 1 and 2)
of DEF STAN 00-56 were needlessly strict for contractors
[14]. Both DEF STAN 00-55 and Issue 2 of DEF STAN 00-
56 [9] had focused on the use of Safety Integrity Levels
(SILs), which were determined by analyzing both the
consequence and probability of failure of system risks.
However, these SILs proved difficult to allocate and highly
specific in the techniques they required for proof of safety
[6]. Moreover, SILs were widely misunderstood and misused
in industry applications [6][46][47].

Additionally, DEF STAN 00-55 and Issues 1 and 2 of
00-56 had been criticized for not allowing contractors the
flexibility to tailor their approach for each individual project
to best achieve the safety requirements [14]. In general, the
standards were disparaged for heavily over-emphasizing
process rather than product [18], imprecise requirements
[18], and not sufficiently addressing safety issues [26]. DEF
STAN 00-55 was considered too long and unclear
[3][39][40], and experience showed that examples given by
Issues 1 and 2 of 00-56 which were intended to provide
guidance were often copied directly by contractors rather
than altered to fit the project [14].

As a result of these criticisms, the MOD released Issue 3
of DEF STAN 00-56 [10], a major departure from both 00-
55 and the previous issue of 00-56 [9]. The new goal-based
approach for the standard provides general requirements but
does not mandate a specific method for how they are to be
met [6][11][14]. Furthermore, the use of SILs has been
completely eliminated. In Issues 3 and 4 of DEF STAN 00-
56, instead of following a specific process to ensure safety,
contractors must propose and justify their chosen methods of
compliance and provide evidence for the safety of their
systems in a safety case [11]. Rather than requiring a pre-
determined methodology, the standard now requires
evidence-based proof of safety of the system. This puts a
higher burden of proof on contractors but also allows them
more flexibility in tailoring their safety approach to fit the
needs of their specific project. This flexibility can also
permit contractors to use other relevant standards and utilize
their recommendations in their argument for proof of the
safety of their system.

As previously noted, Issue 3’s publication of DEF STAN
00-56 made several other MOD standards obsolete (00-54
[7], 00-55 [8]), and 00-58 [12]). However, DEF-STAN 00-
55 was chiefly concerned with the production of safety-
critical software, while the new DEF STAN 00-56 is broadly
applicable to all safety-critical defense systems and does not
stress software specifically. Due to this change, there were
some industry concerns that Issue 3 of DEF STAN 00-56 did
not provide enough detailed guidance regarding how safety-

critical software should comply with the standard in the
absence of DEF-STAN 00-55’s guidance [5][7].

Issue 4 of DEF-STAN 00-56, published in June 2007,
clarified Interim Issue 3 of the standard. It removed the
“Interim” status but did not introduce any significant new
requirements or policies [11]. However, in response to the
criticisms regarding the lack of guidance for safety-critical
software and electronic systems, in August 2007 Part 1 of the
standard was updated to include a section on “Additional
Guidance Regarding the Safety of Systems Containing
Complex Electronic Elements”, which included
recommendations for how to deal with safety-critical
software [11]. This added section provided guidance for
contractors in how to achieve safety of systems containing
safety-critical software, but retained the goal- and evidence-
based approach of the standard.

The evolution of DEF STAN 00-55 and 00-56 has not
received much criticism. However, the changes to the
standards have posed some challenges for both pre-existing
and future projects.

First, since Issues 3 and 4 of DEF STAN 00-56 are goal-
based, there is some uncertainty in how exactly to achieve
compliance with the standard. Since specific methods and
processes are no longer required, contractors must determine
for themselves how to ensure and prove safety. Furthermore,
Issues 3 and 4 of DEF-STAN 00-56 include some ambiguity
as to the level of evidence that is sufficient to prove safety. A
safety case is required, but the standard does not in detail
describe what is sufficient for meeting its goals. Issues 3 and
4 of 00-56 do not prescribe required methods or types of
proof, so it is not entirely clear how to comply with the
standard [23]. As a result, contractors are faced with the
challenge of determining what constitutes sufficient safety
evidence.

Furthermore, the removal of SILs from Issues 3 and 4 of
00-56 means that there is also no pre-determined risk
acceptability scheme. Thus, it becomes a burden on the
contractor to determine acceptable or tolerable levels of risk,
which can be a problematic moral question. Since the
standard does not strictly define the level of risk that is
acceptable, the details for risk tolerance for the project must
be negotiated among the various parties involved, among
which it may be difficult to find agreement. Contractors may
also lack sufficient expertise in order to make judgments on
risk acceptability [23].

Another challenge that may result from the evolution of
the standards is that of cost estimation and program
management. In the UK, projects are often contracted on a
fixed-price basis. Previously, the process-based nature of the
standards ensured that most projects were approached in
fairly similar ways, and some of the cost could be estimated
based on knowledge of the necessary safety activities.
However, with Issues 3 and 4 of 00-56, methods for
compliance are open, and what constitutes sufficient safety
evidence is not entirely clear. As a result, contracting at a
fixed price may be high-risk [23].

On the other hand, the new versions of the standard are a
benefit to projects utilizing new technologies or safety
strategies [19]. The specific methods for safety assurance

provided in process-based standards such as Issues 1 and 2
of DEF STAN 00-56 and 00-55 could prove potentially
restrictive as safety- and software-engineering practices
evolve. Furthermore, some prescribed approaches to
determining safety may not be appropriate to all projects.
The goal-based approach in Issues 3 and 4 of 00-56 allows
for contractors to utilize new techniques, choose which
methods are applicable to ensure safety for their project, and
incorporate recommendations from other relevant safety
standards as needed. As a result, it is expected that the
current issue of DEF STAN 00-56 will be widely applicable
and less affected when technology changes [19].

For projects previously using DEF STAN 00-55 and
Issues 1 or 2 of 00-56, transition to Issues 3 and 4 of 00-56 is
not expected to be difficult. The goal-based nature of Issues
3 and 4 of 00-56 allows contractors to choose and justify
their safety methodology. As a result, it is compatible with
previous versions of the standard, since the required
practices established under DEF STAN 00-55 and Issues 1
and 2 of 00-56 can be justified by the contractor in a safety
case. For example, the HEAT/ACT project, by UK-based
Westland Helicopters, was in development when Issue 3 of
00-56 was released [4]. This project involved significant
revisions to a helicopter’s aircraft systems, including changes
to the hydraulics and the migration of the flight controls from
a mechanical system to two new software-intensive fly-by-
wire computers. Although the project was initially conceived
when Issue 2 of 00-56 was in use, the creators of the project
noted that the safety plan could be easily converted to
comply with Issue 3 of the standard. Instead of referring to
specific clauses in Issue 2 of 00-56, they could provide an
explanation and analysis of their safety processes and
principles to achieve compliance with Issue 3 of the
standard. However, the actual processes used to ensure safety
did not need to be changed [4]. The general safety case, as
well as the sub-system safety cases, would remain largely the
same in their arguments.

IV. EVOLUTION OF MIL-STD-882

US Department of Defense (DoD) MIL-STD-882 [31],
the first standard for the assessment of system safety, was
published in 1969 and made the use of a system safety
program mandatory for all DoD projects. Since its release,
this standard has been the primary reference for system
safety for the DoD, while experiencing significant updates
and revisions throughout its history.

MIL-STD-882’s 1969 release was the result of the
defense industry’s new focus on system safety engineering in
the 1950s and 1960s as military systems increased in
complexity. At the time, much documented guidance existed
for how to achieve safety of technologically complex
systems.

To fill this void, in 1962 the US Air Force Ballistic
Missile Division published the first system safety
specification, BSD Exhibit 62-41 [1]. This document
discussed basic safety engineering concepts, including
hazard classification, design order of precedence, and
systematic analysis through the design and development
phases of a project. However, BSD Exhibit 62-41 was only

designed for ballistic missile systems. The scope of this
document was expanded in 1963, when the US Air Force
released MIL-S-38130 [29], which increased the intended
audience to include the creators of aeronautical, space,
missile, and electronic systems [17][25]. MIL-S-38130 also
further discussed the definitions of hazards and their
classifications.

In 1966, MIL-S-38130 was revised to MIL-S-38130A
[30], which expanded the safety engineering lifecycle and
introduced the Gross Hazard Study (now known as the
Preliminary Hazard Analysis). Furthermore, the revision
began the focus on the importance of management control of
the system safety program [51].

In 1967, the DoD took steps to formalize the safety
engineering principles discussed in the MIL-S-38130A
specification. The culmination of this process was MIL-
STD-882, released in July 1969, which made a system safety
program mandatory for all DoD projects and systems [55].
The new standard greatly expanded the guidance provided in
the previous documents, and adopted a phase-oriented
approach to system safety, in which safety activities were
associated with the various phases of system development.

MIL-STD-882 was revised in 1977 to MIL-STD-882A
[32]. The primary change was a focus on risk acceptance as a
criterion for system safety programs. The update also added
the concept of hazard probability and frequency of
occurrence in order to refine the hazard severity categories
[25]. Management responsibilities also became more specific
due to an increased focus on contract definition [17].

The standard continued its evolution with the publication
of MIL-STD-882B [33] in 1984. This update was a major
change to the previous version, expanding the guidance on
risk acceptance, tailoring, and off-the-shelf acquisition.
Furthermore, MIL-STD-882B was the first version of the
standard to include a detailed discussion of software
[17][51]. The DoD added Notice 1 to MIL-STD-882B in
1987, which further discussed software tasks and their
relation to system safety.

The next revision of the standard, MIL-STD-882C [34],
was published in 1993 and integrated hardware and software
into the system safety effort. This update got rid of separate
software tasks and addressed safety analysis as a system-
wide process rather than one that focused on hardware and
software separately [25].

MIL-STD-882D [35], published in 2000, was a
significant revision to the previous versions of the standard.
It reflected the DoD Military Specifications and Standards
Reform initiative, which focused on performance rather than
process [17]. As a result, MIL-STD-882D was a goal- and
performance-based standard, which focused on the intended
safety results rather than specific processes or activities (in
other words, “what to do” rather than “how to do it”) [55].
The new revision required the use of a System Safety
Program, but removed the recommended hazard analysis
tasks found in previous versions [2]. This change allowed for
greater freedom to contractors for how to meet safety
expectations, but removed guidance as to the tasks that can
be used to satisfy the requirements of the standard. This has
led to some confusion among contractors due to the

decreased step-by-step guidance, and the new performance-
based focus of the standard requires more understanding and
up-front planning to ensure that a properly structured system
safety program is followed [2].

However, government and industry found difficulties on
utilizing the guidelines provided in the standard without
expertise instructions and lack of specific implementation
steps for the safety requirements [50]. Therefore, MIL-STD-
882C, sometimes with supplemented DO-178B, is treated as
the alternative [49] while brought about some confusion on
recommended task for safety engineering. Furthermore, DoD
did not have any policy or agreement for software
development to mandate any safety standards back then. The
demands for these standards are significantly lowered by
these issues [50].

Fortunately, in September, 2004, DoD published a memo
“Defense Acquisition System Safety” to request risk
management in software system development by using MIL-
STD-882D [54], and a course of “System Safety in Systems
Engineering” was created at the Defense Acquisition
University, which was the very first exceptional training for
the standard [50]. Also, in the updated information and
documents found in November, 2006 Defense Acquisition
Guidebook [13] and December 2008 DoD 5000.02
“Operation of the Defense Acquisition System” [15][16],
more guidance are provided to resolve the confusing issues
of integrating MIL-STD-882D safety tasks into the system
development process [50].

In November 2009, the Environmental Support Office
met to discuss criticism of and potential changes to MIL-
STD-882D. Change 1 was the revision that resulted from the
discussion. Due to a lack of standardization and some
confusion regarding hazard risk identification found in the
standard, Change 1 sought to improve these issues as well as
to further discuss health and environmental risk
management.

In May 2012, important changes were introduced in the
newer revision of the standard, MIL-STD-882E [36],
including a deeper emphasis on software related technology,
emphasis on reducing confusion between Mishap, Hazard,
and Risk, and new or updated definitions [50]. Furthermore,
risk assessment matrices and software safety matrices have
been added to the standard [25] in order to provide more
standardized guidance, which was lacking in the previous
version and is present in several other standards such as DO-
178B and the FAA System Safety Handbook. Safety
integrity levels, such as those found in DO-178B, have also
been included [2].

V. LESSONS LEARNED

After examination of these three software safety
standards, four lessons for developing useful standards in
software safety can be learned:

A. Levelized Effort

These software safety standards tend to categorize
criticality based on risk assessment of the system, and
require greater levels of effort for more highly critical
categories in system development and verification processes.

For example, both DO-178 and DEF STAND 00-56 use
software integrity levels to rank hazards caused by software
failures. Furthermore, the latest issue of MIL-STD-882E also
includes the leveling feature.

B. Expertise

Though justified schemas and notations such as software
levels have been commonly used in constructing software
safety standards, these schemas and notations have
sometimes been misunderstood or misused when confronting
different situations. To resolve the problem, we may:
• Consult a trained expert.
• Establish a unified standard with exclusive property

lists for different interpretations.
• Replace the schemes with simpler and more flexible

methods.

C. Flexibility

As mentioned above, older standards tend to have
rigorous schemes to restrict the system development process.
However, due to the increasing complexity of software
systems and rapidly evolving new technology, highly
flexible and widely applicable standards are preferred when
developing new systems or introducing new features into a
legacy system. To provide this flexibility, goal-based
guidelines considering both software safety and cost
efficiency can be used.

D. Backward compatibility

Backward compatibility is also an important feature. For
those pre-existing projects migrating to a new environment
or introducing new technology, older standards sometimes
do not include the views and experience needed for emerging
software safety issues. Newer versions of software safety
standards (such as Issues 2 and 3 of 00-56) may have
different schemes. Thus, some conversion techniques must
be provided. For example, the “required practices” in older
versions of 00-56 can be defined as a safety case.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented the history of three major
software safety standards that provide either guidelines to
follow during the development process or goals to achieve
for safety purposes. After evaluating the evolution of these
standards, we found four major properties that are most
likely to exist in the current version of software safety
standards or to be included in future versions. First, it is most
efficient to categorize the risk level and put effort on the
more critical issues. Second, it is helpful to seek expertise to
clarify the schemes of standards. Third, goal-based
guidelines provide flexibility for new technology in newer
versions of standards. Finally, compatibility of newer
standards with older versions is beneficial for developers of
pre-existing projects.

In future work, we plan to propose criteria to evaluate the
performance of different software safety standards, and to
demonstrate the application of such criteria to standards
selection for a given project.

ACKNOWLEDGMENT

This paper is based on the work by the students who
participated in the REU (Research for Undergraduate
Students) program at the University of Texas at Dallas from
2009 to 2013. The program is funded by the National
Science Foundation (NSF CNS-1156977). More details of
our REU program can be found at http://paris.utdallas.
edu/reu.

REFERENCES
[1] BSD Exhibit 62-41, System Safety Engineering: Military

Specification for the Development of Air Force Ballistic Missiles,
USAF Ballistics System Division (BSD), April 1962.

[2] M. E. Caro, “Lessons Learned with the Application of MIL-STD-
882D at the Weapon System Explosives Safety Review Board,” 8th
Systems Engineering Conference, 26 October 2005.

[3] P. R. Caseley, N. Tudor, and C. O’Halloran. The Case for An
Evidence Based Approach to Software Certification, MOD
Equipment Safety Assurance, 2003.

[4] P. Chinneck, D. Pumfrey, and J. McDermid. The HEAT/ACT
Preliminary Safety Case: A case study in the use of Goal Structuring
Notation, 2004.

[5] Cobham Technical Services., The Certification of Software
Developed to DO-178B.

[6] R. M. Connor, Vetronics Standards and Guidelines, QINETIQ
/EMEA/TS/CR0702540, Issue 3, October 2009.

[7] Defence Standard 00-54, Requirements for Safety Related Electronic
Hardware in Defence Equipment, Issue 2, 13 December 1996.

[8] Defence Standard 00-55, Requirements for Safety Related Software in
Defence Equipment, Issue 2, 1 Aug 1997.

[9] Defence Standard 00-56, Safety Management Requirements for
Defence Systems, Issue 2, 13 Dec 1996. (Now at Issue 4 as of 1 June
2007)

[10] Defence Standard 00-56 (Interim), Safety Management Requirements
for Defence Systems, Issue 3, 17 Dec 2004. (Now at Issue 4 as of 1
June 2007)

[11] Defence Standard 00-56, Safety Management Requirements for
Defence Systems, Issue 4, 1 June 2007.

[12] Defence Standard 00-58, HAZOP Studies on Systems Containing
Programmable Electronics, 19 May 2000.

[13] Defense Acquisition University, Defense Acquisition Guidebook, 19
February 2010.

[14] Director General Safety & Engineering, DStan, UK Ministry of
Defence, Standards in Defence News, July 2007, Issue 205.

[15] DoD 5000.2-R, Mandatory Procedures for Major Defense
Acquisition Programs (MDAPS) and Major Automated Information
System (MAIS) Acquisition Programs, US Department of Defense, 5
April 2002.

[16] DoD Instruction 5000.2, Operation of the Defense Acquisition
System, US Department of Defense, 5 April 2002.

[17] C. A. Ericson, “System Safety: What, Why, and How We Got There,”
Naval Sea Systems Command, Volume 7, Issue No. 3, pg. 10-17.

[18] N. Fenton, How to Improve Safety Critical Systems Standards, Center
for Software Reliability, City University, London, 1997.

[19] R. D. Hawkins, Using Safety Contracts in the Development of Safety
Critical Object-Oriented Systems, PhD Thesis, University of York,
Department of Computer Science, March 2006.

[20] K. J. Hayhurst, M. C. Holloway, C. A. Dorsey, J. C. Knight, N. G.
Leveson, G. F. McCormick, and J. C. Yang, Streamlining Software
Aspects of Certification: Technical Team Report on the First Industry
Workshop, National Aeronautics and Space Administration, Langley
Research Center, April 1998.

[21] V. Hilderman, DO-178C Synopsis: DO-178C Facts, DO-178C
Resources, & DO-178C Answers, HighRely Inc., 6 January 2010.

[22] L. A. Johnson, DO-178B, “Software Considerations in Airborne
Systems and Equipment Certification,” Flight Systems, Boeing
Commercial Airplane Group, October 1998.

[23] T, Kelly, J. McDermid, and R. Weaver, “Goal-Based Safety
Standards: Opportunities and Challenges,” University of York,
Heslington, York. In: Proceedings of the 23rd International System
Safety Conference, 2005.

[24] A. J. Kornecki, DOT/FAA/AR-06/35: Software Development Tools for
Safety-Critical, Real-Time Systems Handbook, Office of Aviation
Research and Development, Federal Aviation Administration, June
2007.

[25] B. McAllister and J. Turner, “Evolution of MIL-STD-882E,” 8th
Annual Systems Engineering Conference, San Diego, 26 October
2005.

[26] J. A. McDermid, “Software Safety: Where’s the Evidence?” 6th
Australian Workshop on Industrial Experience with Safety Critical
Systems and Software, Brisbane, 2001.

[27] J. McHale, Upgrade to DO-178B certification -- DO-178C to address
modern avionics software trends, Aerospace and Defense Media
Group, 8 October 2009.

[28] S. Messner, An Overview of RTCA DO-178B. 1997.

[29] MIL-S-38180, Safety Engineering of Systems and Associated
Subsystems and Equipment, General Requirements for. US
Department of Defense, September 1963.

[30] MIL-S-38130A, Safety Engineering of Systems and Associated
Subsystems and Equipment, General Requirements for. US
Department of Defense, June 1966.

[31] MIL-STD-882, System Safety Program Requirements, US
Department of Defense, 15 July 1969.

[32] MIL-STD-882A, System Safety Program Requirements, US
Department of Defense, 28 June 1977.

[33] MIL-STD-882B, System Safety Program Requirements, US
Department of Defense, 30 March 1984.

[34] MIL-STD-882C, System Safety Program Requirements, US
Department of Defense, 19 January 1993.

[35] MIL-STD-882D, Standard Practice for System Safety, US
Department of Defense, 10 February 2000.

[36] MIL-STD-882E, Standard Practice for System Safety, US
Department of Defense, 11 May 2012.

[37] Military Embedded Systems, HighRely Synopsis of National FAA
Software and Hardware Meeting Includes DO-178C Status, July
2006.

[38] J. F. Muller and C. Pinaud, Current use of methods and standards for
development and certification of safety-critical software, Contract N.
14 899/01/NL/JA, Version 1.0, 11 August 2002.

[39] C. O. O’Halloran, “Acceptance Based Assurance,” 16th IEEE
International Conference on Automated Software Engineering, San
Diego, California, November 2001.

[40] C. O. O’Halloran, Recommendations for the New Safety Defence
Standards, QINETIQ/KI/TIM/CR021237/1.0, June 2002.

[41] Qualtech Consulting, Inc. Summary of Difference Between DO-178B
and DO-178C.

[42] Radio Technical Commission for Aeronautic, Inc., Document
RTCA/DO-178, RTCA, Inc. 1980.

[43] Radio Technical Commission for Aeronautic, Inc., Document
RTCA/DO-178A, RTCA, Inc. 1985

[44] Radio Technical Commission for Aeronautic, Inc., Document
RTCA/DO-178B, RTCA, Inc., 1992.

[45] Radio Technical Commission for Aeronautic, Inc., Document
RTCA/DO-178C, RTCA, Inc., 2012.

[46] F. Redmill, Understanding the Use, Misuse, and Abuse of Safety
Integrity Levels, Safety-Critical Systems Symposium, Southampton,
UK, 2000.

[47] M. Squair, Are Safety Integrity Levels Pseudo-Science? June 2009.

[48] B. StClair, DO-178C will arrive, then drive safety-critical software,
Special Interview, VME and Critical Systems, June 2009. B. StClair,
“Growing Complexity Drives Need for Emerging DO-178C
Standard,” COTS Journal, November 2009.

[49] Savive Pty Ld., MIL-STD-882 “System Safety Program
Requirements” / ”Standard Practice for System Safety,” Retrieved 14
November 2010.

[50] R. E. Smith and S. G. Forbes, Overview of Draft MIL-STD-882D
w/Change 1, NDIA Systems Engineering Conference, San Diego,
CA. 28 October 2009.

[51] G. Tarajiki, Tools of Risk Management, 23 April 2003.

[52] W. E. Wong, V. Debroy, and A. Restrepo, “The Role of Software in
Recent Catastrophic Accidents,” IEEE Transactions on Reliability,
Volume 59, Issue 3, pp. 469-473, September 2010

[53] W. E. Wong, V. Debroy, A. Surampudi, H. Kim, and M. F. Siok,
“Recent Catastrophic Accidents: Investigating How Software Was
Responsible,” in Proceedings of the 4th IEEE International
Conference on Secure Software Integration and Reliability
Improvement (SSIRI), pp. 14-22, Singapore, June 2010

[54] M. Wynne, Memorandum for Defense Acquisition System Safety, 23
September 2004.

[55] T. C. Yin, Architecting the Safety Assessment of Large-Scale Systems
Integration, Master’s Thesis, Naval Postgraduate School, December
2009.

