

Evaluating Software Safety Standards:
A Systematic Review and Comparison

 W. Eric Wong, Tej Gidvani, Alfonso Lopez, Ruizhi Gao Matthew Horn
 Department of Computer Science Department of Computer Science
 University of Texas at Dallas Muhlenberg College
 {ewong, gxr116020}@utdallas.edu

Abstract—Software safety standards are commonly used to guide the
development of safety-critical software systems. However, given the
existence of multiple competing standards, it is critical to select the
most appropriate one for a given project. We have developed a set of 15
criteria to evaluate each standard in terms of its usage, strengths, and
limitations. Five standards are studied, including a NASA Software
Safety Standard, an FAA System Safety Handbook, MIL-STD-882D
(US Department of Defense), DEF-STAN 00-56 (UK Ministry of
Defense), and DO-178B (Commercial avionics). Results of our
evaluation suggest that different standards score differently with respect
to each evaluation criterion. No standard performs better than others on
all the criteria. The lessons learned from software-related accidents in
which the standards were involved provide further insights on the pros
and cons of using each standard.

Keywords�software safety; system safety; safety standard; safety-
critical software; hazards; mishap

1. Introduction

Areas crucial to life such as medicine, transportation, nuclear-
energy, aeronautics, and communications all use software in one
way or another. An intensive application of software to these
domains also implies that the software has become even more
safety-critical such that an error in the software or an error in its
use could have devastating consequences, including significant
financial loss, property damage, or even human casualties
[23,24]. More challengingly, today’s software systems are much
larger and more complicated than ever before, and at the same
time the pressure to produce safe and dependable software at a
reduced cost keeps increasing. As a result, we urgently need
good practices which help us not only achieve high quality but
also reduce the development and maintenance cost. Without
other solid guidance, many projects take an approach by
appealing to authority and adopt certain safety standards to
guide their development process. The rationale is that if one
software system developed following a safety standard could
meet all the expectations (functional and safety requirements, as
well as budget constraint), a similar successful story could also
be reproduced for another software system.

Indeed, to build software systems with high safety requirements,
it is important to approach the process in a certain way to
maintain efficiency and ensure with a high degree of confidence
that the requirements are met effectively. However, given the

existence of multiple competing safety standards, it is critical to
select the one that is most appropriate for a given project. We
have developed a set of 15 criteria (as detailed in Section 2) to
evaluate each standard in terms of usage, strengths, and
limitations. In this paper, five popular safety standards are
selected including a NASA Software Safety Standard − NASA
STD 8719.13B [18] (hereafter, simply refer to as NASA STD),
an FAA (Federal Administration Aviation) System Safety
Handbook [12] (refer to as FAA Handbook), two Military
Standards: MIL-STD-882D [9] used by the U.S. Department of
Defense and DEF-STAN 00-56 [17] used by the Ministry of
Defense of the United Kingdom, as well as DO-178B [22] − a
standard widely used for commercial avionics.

Results of our evaluation (see Section 3) suggest that different
standards score differently with respect to each evaluation
criterion and no standard is superior to others on all the criteria.
As a result, each project should carefully select a standard that
best matches its environments and meets the level of safety
requirements it has to achieve.

The lessons learned (see Section 4) from software-related
accidents in which the above standards were involved provide
further insights on the pros and cons of using each standard. Our
conclusion and future work appear in Section 5.

2. Fifteen evaluation criteria

We present a set of 15 criteria as described below to evaluate a
software safety standard from different perspectives.

C1) Does the standard discuss splitting software into safety-
critical components?

Software which resides within a larger system cannot be
evaluated without looking at the system as a whole. In this
criterion we are looking for preliminary hazard analysis of both
the system and the software that contributes to the hazards
found. The standard should require system level hazard analysis,
prior to undertaking software analysis, to identify any
subsystems that are safety-critical. Next, the standard should
discuss the identification of software that either contributes to or
avoids/mitigates a hazard. Then end result should be the
identification and documentation of all software components
involved in the overall system safety.

2014 Eighth International Conference on Software Security and Reliability - Companion

978-1-4799-5843-6/14 $31.00 © 2014 IEEE

DOI 10.1109/SERE-C.2014.25

78

2014 Eighth International Conference on Software Security and Reliability - Companion

978-1-4799-5843-6/14 $31.00 © 2014 IEEE

DOI 10.1109/SERE-C.2014.25

78

2014 Eighth International Conference on Software Security and Reliability - Companion

978-1-4799-5843-6/14 $31.00 © 2014 IEEE

DOI 10.1109/SERE-C.2014.25

78

C2) Does the standard utilize integrity or risk levels?

Integrity and risk levels provide a means of categorizing a
software component or a hazard based on the overall risk posed.
Integrity levels are generally applied to the software components
and describe the certainty with which the software must
perform. Risk levels are applied to hazards and indicate the
severity of a hazard and probability that it will occur. After
identifying safety-critical software components and system level
hazards, the standard should assign each component an integrity
or risk level. Each level has appropriate design and verification
activities, defined by the standard, to ensure the software attains
the desired integrity. As the risk software can cause to system
safety increases, so does the integrity level and the amount of
effort put into assuring its safety.

C3) Does the standard discuss requirements and traceability?

Software safety analysis should produce new, or identify
existing, software requirements. Any software requirements
necessary to mitigate or avoid a hazard are designated software
safety requirements. The standard should discuss both reactive
and proactive requirements, responding to hazards as well as
monitoring the system for signs of hazards to come. The
software safety requirements must be either uniquely identified
in the software requirements document, or be separated into a
software safety requirements document. As many of the
software safety requirements originate in system hazard analysis
it is important that they are linked backwards to the specific
hazards. The standard should require traceability in all
directions, from the hazards to safety requirements to
implementation and back. This practice is vital to ensure full
satisfaction of the requirements, as well as to identify unused
code not fulfilling a requirement. In addition, all tests cases
created should also trace back to the requirements they are
testing. Maintenance of documentation and reviews of software
safety requirements should be an ongoing process.

C4) Does the standard require consistent testing and validation?

System and software development consists of multiple steps,
from gathering requirements all the way to maintenance, where
the output of one step is used as the input for another. Testing
for software safety should take advantage of this fact and test the
output of each step to catch any errors early in the development
process. The standard should require testing at the unit,
component, and system levels. The standard should require that
testing, usually at the unit level, covers all software paths as well
as expected/unexpected inputs. At the component level, all
interfaces should be tested. Ultimately, system testing should
verify that the system operates in a safe manner even in the
event of any failures or faults. Test case creation should be
guided by the previously defined safety requirements and
integrity levels. Finally, the standard should require proper

documentation of all test data, including but not limited to test
cases, simulators, drivers, and results. Each test should trace
back to a software safety requirement to ensure full coverage.

C5) Does the standard discuss complexity management?

The general consensus in the software-safety industry is that
safety assurance activities increase as the complexity of a safety-
critical system increases. Despite the acknowledgement that
complexity increases the amount of work required to verify
safety, the majority of standards in use today fail to discuss the
issue. As mentioned by Squair in his paper [21] titled “Issues in
the Application of Software Safety Standards,” it is only
reasonable for a standard to require the simplest software
possible to meet the system’s needs. Simplicity should be a
governing philosophy, not just a footnote. Where complexity is
unavoidable, the standard should discuss how to separate the
software into some sort of modules. Each module will be easier
to understand and verify, and then the modules can be combined
to verify they interact correctly. Finally, at the lower level, the
standard should require that the software’s source code be
reasonably free of any unnecessarily complex syntax.

C6) Does the standard address quality assurance?

It is expected that the standard does not define quality assurance
(QA) practices itself, but that it requires compliance with a
separate quality assurance standard. Two of the most well
known QA standards are the ISO 9000 and the Software
Capability Maturity Model (SW-CMM). The standard should
require compliance with a well developed QA standard. The
standard should define any extra requirements as well as any
exceptions to the QA standard chosen.

C7) Does the standard address configuration management?

The standard should appoint a single “configuration manager” to
develop a configuration management process for the project.
The configuration management should control all project
development tools and environments, test tools and
environments, source code, and data. The process should be
practiced during all steps of the development lifecycle to ensure
any changes made are uniform.

C8) Does the standard incorporate the safety benefit versus the
cost benefit?

Safety assurance activities can significantly extend the
development time, and thus cost, of a project. The decision of
how much work is necessary often comes down to the cost of
the additional safety activities versus necessary level of safety
required. The application of a rigorous safety standard to a low-
risk system should be avoided as the added cost, and subsequent
safety, is unnecessary. The standard should provide guidance as

797979

to the minimum level of risk the system should pose for the
application of the standard to be justified. Alternatively, the
standard could define different levels of assurance required
based on the severity of the risk posed by the system. This
information would allow the standard to be tailored to different
levels of risk, scaling the cost as necessary.

C9) Does the standard discuss procedures for future updates to
the software?

The release of software into its operational phase does not mean
the end of software safety analysis. The standard should require
a maintenance plan be developed prior to release for dealing
with any routine updates, as well as any uncaught failures during
use. Routine maintenance tasks, for example loading new terrain
data for a new environment, should undergo the same rigor of
safety analysis as the initial design. The standard should account
for the possibility of new personnel being responsible for
maintenance and should make any relevant documentation
available. Finally, the standard should require an evaluation
process to approve any major updates and to conduct scheduled
reviews of any minor updates.

C10) Is the standard in use and updated?

For a standard to stay relevant it needs to be updated in response
to any industry feedback it receives. A lack of industry feedback
can lead to an “orphaned standard” where a standard has
extremely limited support and few developers have experience
using it. To prevent this, the standard should be under the

control of a governing organization and be in current use in the
industry. The standard should be reviewed periodically to make
any necessary updates or revisions.

C11) Does the standard provide a means for certification?

To ensure that all requirements put forth by the standard have
been met, the standard should require certification, usually from
the standard’s governing organization. The certification process
should examine both the finished product, as well as the
documentation necessary to ensure all development
requirements were met. It is important to remember that
certification does not guarantee safety, only that all of the
standard’s requirements were met.

C12) Is the standard easy to use?

Ease of use is not a requirement for a standard, but a standard
that is easy to use will be better understood. Leveson argues in
her book, Safeware: System Safety and Computers, that the
majority of accidents involving software come about due to a
lack of understanding of the problem domain [16]. If an
incomplete understanding of the problem domain is detrimental
to the design of a system, it is only reasonable to assume that an
incomplete understanding of a standard will be similarly
detrimental to safety. The standard should be well organized and
should clearly state its requirements. The standard should also
provide additional information in appendices or an
accompanying document.

Table 1. Scoring table
Score Description

1 Standard does not, or only barely, mention the topic.
2 Standard mentions, but provides no details on, the topic. May provide a reference to other standards or

documents, but provides no additional information of its own and does not specifically require that the
recommendations of the referred documents be followed.

For example, the standard NASA-STD-8713.13B is given a score of 2 for Criterion C2 “does the
standard utilize integrity or risk levels” because it references a separate document but does not require its
use. The same standard receives a score of 4 for criterion C6 “Does the standard address quality
assurance” because it specifically requires compliance with a separate document to which it refers.

3 Standard mentions the topic and provides some details but does not discuss the topic in depth, nor does it
provide specific examples or recommendations.

4 Standard discusses the topic in detail with thorough explanation but may be unspecific or general in its
recommendations. May provide extensive discussion on most aspects of the topic but be vague on a few
details.

5 Standard thoroughly and extensively discusses all aspects of the topic. A complete explanation is given,
and the standard provides specific examples and/or recommendations for implementation.

808080

C13) Lessons Learned

This part is not expected to be covered in the standard itself. The
purpose is to list any additional criticisms, from either the
governing organization or a third party, as well as any
information about accidents in which the standard was involved.
To be involved in an accident, the standard must have been used
to develop the system that caused the hazard.

C14) Governing Organization

The criterion examines whether there is an organization that
developed or is currently maintaining the standard.

C15) Main Industry/Use

The objective is to list the industry or specific systems which the
standard was designed to address.

A rating of 1 to 5 is used with 1 as the lowest score implying the
standard does not mention the topic, and 5 as the highest score

for a standard that closely matches the criterion. This rating is
applied to all criteria except for the last three (lessons learned,
governing organization, and main industry/use). Refer to Table 1
for more details.

3. Evaluation of each standard with respect to each
criterion

We first present the evaluation using Criteria C14 and C15, as
listed in Table 2, to explain how each standard is most likely
used by which industry sector(s) in practice and their
corresponding governing organization. This will help clarify the
following evaluation as why a standard has a very stringent
requirement with respect to a given criterion, whereas another
standard does not seem to care much.

Results of our evaluation on each the five standards against
criteria C1 to C12 are listed below. The scores are given based
on the description in Table 2.

Table 2. Evaluation with respect to criteria C14 and C15

Safety Standard Governing Organization Main Industry/Use

FAA System Safety
Handbook

Federal Aviation Administration (FAA) Standard is intended to provide
recommendations for the design,
implementation, and improvement of
system safety programs, especially
within the aviation industry.

DO-178B Radio Technical Commission for Aeronautics
(RTCA)

Standard is intended to provide
guidelines for the international aviation
community in the creation of software
for airborne systems.

MIL-STD-882D United States Department of Defense (DOD). Standard is intended for all DOD
departments and agencies.

NASA STD 8719.13B National Aeronautics and Space Administration
(NASA) Office of Safety and Mission Assurance
(OSMA)

Standard is intended for all NASA
programs, centers, and facilities.

DEF-STAN 00-56 Created for the Defense Materiel Standardization
Committee by the Safety Standards Review
Committee of the UK Ministry of Defense (MOD)
and overseen by the Directorate of Standardization.

Standard is intended for all MOD
projects and authorities.

�
C1) Does the standard discuss splitting software into safety-

critical components?

Of the five standards, the FAA Handbook and the NASA STD
provide the most thorough discussions of this topic, and both of

these standards receive a score of 5 for this criterion. They
require the use of a preliminary hazard analysis, in which the
entire system as a whole must be evaluated, as well as the
possible contribution of software to potential hazards. In both
standards, the partitioning of software into safety-critical

818181

components is addressed and given proper emphasis in the
context of the system.

DO-178B acknowledges the use of partitioning as a way to
isolate functionally independent software components. However,
unlike the FAA Handbook and the NASA STD, it does not
require the use of a system-level hazard analysis prior to
software analysis, nor does it address the benefits of such a
practice. In general, DO-178B touches upon, but does not
address in detail, the splitting of software into safety-critical
components and thus receives a 3 for this criterion.

MIL-STD-882D and DEF-STAN 00-56 are the two weakest
standards, of the five evaluated, in their discussion of this topic.
In MIL-STD-882D, a system level hazard analysis is required,
but subsystem and software hazard analysis is not mentioned.
Similarly, DEF-STAN 00-56 does not discuss the importance of
splitting a system into safety-critical subsystems, nor does it
address how to do so. As a result of their general lack of
information relating to the safety-criticality of software
components and their partitioning, both of these standards
receive a 1 for this criterion

C2) Does the standard utilize integrity or risk levels?

The FAA Handbook, DO-178B, and MIL-STD-882D all
thoroughly discuss the use of integrity or risk levels, and as a
result all three standards receive a score of 5 in this criterion.
More precisely, the mishap risk categories in MIL-STD-882D
and the risk levels in the FAA Handbook are based on the
severity and the probability of a hazard’s occurrence, whereas
the software levels in DO-178B are only based on the severity of
the outcome. Table 3 and Table 4 compare these software safety
criticality levels between the standards. The FAA Handbook and
DO-178B also provide recommended design and verification
activities for each risk level. Although MIL-STD-882D does not
provide these recommended activities, it does provide example
acceptance levels and suggests that the project team work to
determine appropriate activities for each mishap level depending
on the project’s needs.

Table 3. Comparison of levels of software safety criticality
based on severity of outcome

MIL-STD-882D DO-178B FAA System
Safety Handbook

I. Catastrophic A. Catastrophic Catastrophic
II. Critical B. Hazardous Hazardous
III. Marginal C. Major Major
IV. Negligible D. Minor Minor
N/A E. No Effect No Safety Effect

�

Table 4: Comparison of levels of software safety criticality
based on probability of occurrence

MIL-STD-882D FAA System
Safety Handbook

A. Frequent Probable
B. Probable Remote
C. Occasional Extremely Remote
D. Remote Extremely Improbable
E. Improbable N/A

�
Like the three standards previously mentioned, DEF-STAN 00-
56 also determines risk based on an analysis of a hazard’s
severity and probability. However, DEF-STAN 00-56 does not
mention specific risk or integrity levels, nor does it provide
recommended or required activities based on the level of risk.
The standard provides guidance as to the importance of risk
estimation, but does not provide specific levels related to
integrity or risk, and leaves the determination of what actions
should be taken largely up to the contractor. Overall, the
standard seems to acknowledge the importance of determining
risk level, but provides less guidance than the FAA Handbook,
DO-178B, and MIL-STD-882D regarding how to do so. As a
result, DEF-STAN 00-56 receives a 3 for this criterion.

Finally, the NASA STD is the weakest of the five standards
evaluated for this criterion. Unlike the other four, it does not
utilize or extensively discuss integrity or risk levels. Risk levels
are only briefly mentioned, but the use of them is not required
and information on how to utilize them is not given directly. As
a result, the NASA STD receives a 1 for this criterion.

C3) Does the standard discuss requirements and traceability?

All five standards receive a score of 5 for this criterion. They
require fully traceable and extensive documentation throughout
all phases of system development. The FAA Handbook requires
a safety action record protocol, which must track and measure
hazards and the measures taken to mitigate them, and requires a
chronological history of all actions taken with regard to a
specific requirement. MIL-STD-882D requires a tracking system
for all hazards, any actions taken in response, and residual risk.
DO-178B stresses traceability between system requirements and
software requirements, between high- and low-level
requirements, and between low-level requirements and source
code. NASA STD also requires that hazard analyses be used to
determine and thoroughly document all requirements in order to
mitigate each hazard identified, and that traceability must be
ensured in all directions for all requirements. DEF-STAN 00-56
requires that a hazard log must be created and maintained, which
should include information on the determination and
management of all potential hazards and risks of the system, and
traceability between safety requirements and their source must
be provided for each safety requirement.

828282

C4) Does the standard require consistent testing and
validation?

DO-178B and NASA STD are most thorough in addressing
testing and validation. Both standards require extensive and
regular testing and validation throughout the system
development process, including full and thorough
documentation and traceability of all tests. They both receive a 5
for this criterion. The FAA Handbook also requires constant
testing and analysis throughout the design and development
process. However, it does not discuss the importance of having
each test trace back to a specific software requirement to ensure
full coverage. As a result, it receives a score of 4. Although
MIL-STD-882D also requires consistent testing and validation
throughout the development process, it does not require or
recommend the use of system/subsystem testing or unit testing.
We give it a 3. Finally, DEF-STAN 00-56 is the weakest
because it only recommends, but does not specifically require,
consistent testing and validation. The standard recommends the
use of testing and some analysis-based validation; however,
detailed guidance on how to achieve this is not provided. As a
result, it receives a 2 for its fulfillment of this criterion.

C5) Does the standard discuss complexity management?

All five standards are relatively weak in their discussions of
complexity management. The FAA Handbook briefly discusses
the measurement of complexity, but simplicity is not listed as an
important concern, and the Handbook does not discuss the
importance of separating the software into simpler modules for
ease of understanding and modification. Similarly, both MIL-
STD-882D and NASA STD do not address complexity
management, nor do they give simplicity an important role in the
design of software requirements or systems. DEF-STAN 00-56
acknowledges that more complex systems generally come with
higher risk, and therefore require more effort in achieving safety.
However, the importance of purposefully managing this
complexity is not expressly delineated and further guidelines are
not given regarding this topic. DO-178B provides the strongest
discussion of complexity management of the five standards
evaluated, although it is not as extensive as it could be. It
discusses partitioning and modularization as techniques for
isolating faults and decreasing software verification effort, but it
does not require their use. It suggests that design standards
should include complexity restrictions such as a maximum level
of nested calls; however, simplicity does not seem to be an
important design philosophy.

C6) Does the standard address quality assurance?

DO-178B and NASA STD are the strongest in their discussion
of quality assurance. While DO-178B extensively discusses
quality assurance in all of its aspects, it falls slightly short by not
requiring adherence to a more extensive quality assurance

standard. On the other hand, NASA STD does require
compliance with a separate quality assurance standard, but does
not go into as much detail as DO-178B on quality assurance
activities specifically within the standard itself. However, both
standards cover the topic of quality assurance relatively strongly
and thus both receive a score f 4. DEF-STAN 00-56, MIL-STD-
882D, and the FAA Handbook, however, are all weak in the
quality assurance category. The FAA Handbook and DEF-
STAN 00-56 both briefly mention quality assurance but do not
go into detail, nor do they provide any details on specific quality
assurance requirements or how to implement them. Neither
standard requires compliance with a separate quality assurance
standard or references quality assurance requirements or
recommendations from another document. As a result, both the
FAA Handbook and DEF-STAN 00-56 receive a 2 for their
fulfillment of this criterion. MIL-STD-882D is the weakest. The
standard does not mention or address quality assurance, or
provide reference to another quality assurance standard or
document. It receives a 1 in this category.

C7) Does the standard address configuration management?

NASA STD and MIL-STD-882D are the strongest in their
discussion of configuration management. Both require that
software configuration management be addressed by a single
person, and provide extensive requirements for software
configuration management. They receive a 5 in this category.
DO-178B also thoroughly discusses software configuration
management and mandates that the various aspects of
configuration management be addressed; however, it does not
appoint a configuration manager and leaves the details of the
methodology and process of configuration management up to
the contractor. Thus, it receives a 4 in this category. DEF-STAN
00-56 and the FAA Handbook are the weakest. Neither of these
standards go into detail on the software configuration
management process, nor do they provide guidance on how to
achieve any aspects of configuration management. Therefore,
these two receive a score of 2.

C8) Does the standard incorporate the safety benefit versus the
cost benefit?

MIL-STD-882D and DO-178B are the strongest in their
discussion of safety benefit versus cost. While MIL-STD-882D
addresses the safety benefit/cost tradeoff directly, DO-178B
does not specifically discuss the relationship between the two
factors but instead provides extensive instructions on how to
tailor the standard’s requirements and activities to different
safety criticality levels. Both standards, however, clearly support
the idea of tailoring a safety program to a project’s particular
needs in both cost and safety criticality. As a result, they receive
a 5 for their fulfillment of this category. The FAA Handbook is
also strong in this category, although it lacks some thoroughness
found in the previous two standards. It directly addresses the

838383

safety benefit versus cost tradeoff, and explicitly acknowledges
the importance of properly managing this balance. However, it
does not provide as much guidance as MIL-STD-882D and DO-
178B regarding how to achieve this balance, since it does not
give recommendations for safety assurance activities for
different risk or criticality levels. It receives a 3. Finally, neither
NASA STD nor DEF-STAN 00-56 directly addresses the safety
benefit versus cost tradeoff, nor do they provide guidance as to
how to balance these two important aspects of a software
project. Each standard briefly mentions that a software project
should tailor its activities to its own size and needs, but further
discussion of why or how to do so is not provided. As a result,
they receive a 2 in this category.

C9) Does the standard discuss procedures for future updates to
the software?

NASA STD is the strongest in its discussion of future updates to
the software. It extensively discusses the process of software
maintenance and updates, and provides extensive requirements
and recommendations regarding this topic. It receives a 5 in this
category. DEF-STAN 00-56, the FAA Handbook, and MIL-
STD-882D are also strong in their discussion of this criterion.
All three standards explicitly discuss the importance of properly
managing future updates to the software, but do not provide as
thorough guidance as NASA STD for how to achieve this goal.
Thus, these three are given a 4 for this criterion. Finally, DO-
178B is the weakest. It does not discuss procedures for future
updates to the software, or require any specific methodology for
maintenance and upkeep of the system after it enters its
operational phase. Although the standard does require that
documentation on the use and development of the system be
kept up to date, its discussion of maintenance and updates to the
system is relatively weak and thus receives a 2 for this criterion.

C10) Is the standard in use and updated?

DEF-STAN 00-56 and NASA STD 8719.13B are the most
frequently, and recently, updated standards of the five reviewed.
Both are also in wide use. As a result, both receive a 5 for this
criterion. DO-178B is also widely in use, and is perhaps the
most popular software safety standard in the civil aviation
industry, as well as being heavily used in many other safety-
critical software industries. It has also been updated several
times, but its updates are less consistent than those of DEF-
STAN 00-56 and NASA STD. It receives a 4 in this category.
The FAA Handbook and MIL-STD-882D receive a 3, as they
are the less frequently updated.

C11) Does the standard provide a means for certification?

DO-178B and NASA STD both receive a score of 5, because
both standards extensively address certification and provide
detailed requirements regarding the certification of software.

While the NASA STD provides a certification office, the NASA
OSMA, DO-178B does not specify a particular certification
authority. However, both standards provide detailed guidance in
this category. DEF-STAN 00-56 is slightly less strong in this
category than DO-178B and NASA STD, as it does not require
independent certification, nor does it provide a certification
authority. However, it does provide extensive guidance on how
to document and assess whether a project follows the standard’s
requirements and recommendations. It receives a score of 4. On
the other hand, MIL-STD-882D and the FAA Handbook are
both weak in their discussion of software certification. The FAA
Handbook does not require, or even recommend, software
certification. Similarly, MIL-STD-882D does not require
certification or discuss any aspects of the certification process.
However, MIL-STD-882D does list some agencies through
which software certification can be obtained (although the use of
MIL-STD-882D is not required in those cases), and the FAA
Handbook requires the use of a system safety program plan
which can be examined to ascertain that the Handbook’s
recommendations were followed. Due to their shortcomings,
both MIL-STD-882D and the FAA Handbook receive a score of
2 for this criterion.

C12) Is the standard easy to use?

All five of the standards evaluated receive high scores in this
category. DO-178B, MIL-STD-882D, NASA STD, and DEF-
STAN 00-56 are well organized and provide detailed glossaries
or appendices with definitions of all terms used in the respective
standards. They all receive a score of 5. The FAA Handbook is
also clearly written and well organized; however, it is the
longest of the five standards and contains some repetition that
may make it longer than necessary. As a result, it is slightly
more cumbersome to use than the other four standards and
receives a 4 in this category.

4. Lessons Learned

Following criterion C13, here we list some lessons learned from
using these five safety standards. A common accident theme
among aviation systems is the unintended effects of updates to
the system. According to the FAA, this occurs when “an
initiative, change, new process, or other activity intended to
improve something actually produces, in addition to
improvement, an undesirable outcome.” [13] While the FAA
Handbook does provide guidelines for maintenance and updates
to the system, specifically in the system safety plan, this
suggests that more attention should be paid to the importance of
thorough integrity and risk analysis on any updates and/or
changes to the system, as well as the management of complexity
in an updated system, and the Handbook should reflect this
focus.

848484

Similarly, NASA has had accidents tied to software complexity
management problems. Software bugs were implicated in the
crash of the Mars Polar Lander in 2000, a system jointly
developed by NASA and Lockheed Martin Aeronautics [4]. A
software error caused a sensor signal to incorrectly report that
the probe had touched down prematurely, causing the descent
engines to shut down prior to landing. It was speculated that
ineffective engineering practices for managing complexity
largely contributed to the error [4]. It is possible that the lack of
discussion of complexity management in NASA’s Software
Safety Standard (NASA-STD-8719.13B) [18] caused the
engineers developing the system to overlook these issues.

Furthermore, the FAA, in analyzing recent accidents, has
determined that a “lack of system isolation/ segregation” is a
common cause of flight accidents [13]. Since many aviation
systems use the FAA’s System Safety Handbook [12] as a guide,
these accidents would indicate that updating the Handbook to
reflect these lessons might help future projects to avoid similar
problems. Although the Handbook does discuss the importance
of subsystem analysis and splitting software into safety critical
components, it might be beneficial to ensure that thorough
segregation of subsystems and modules is emphasized.

Another common criticism of software safety standards involves
cost issues [25]. For DO-178B [22], criticisms have been made
that developing to the standard can be very expensive for many
projects. Although it is difficult to collect exact data on the full
cost of developing to DO-178B for most projects, it has been
noted that the standard should add only 5% (for level D) to 55%
(for level A) to development costs. However, sources estimate
that industry average costs are anywhere from 20%−50% more
than the aforementioned recommended costs [15], to
75%−150% more than the cost of non-safety-critical
applications [14]. Another source estimates that developing to
Level A of the standard can increase the cost to a factor of five
over that of non-safety-critical projects [2].

In addition, criticisms have been made that the DO-178B
standard may have contributed to unnecessary delays in the
delivery of aircraft such as the Boeing 787 [19]. On the other
hand, Lockheed Martin Aeronautics reported that they were able
to develop their C-130J aircraft to DO-178B Level A for half the
cost of non-safety-critical code [1,2]. Additionally, their testing
process cost was less than a fifth of normal industry costs [2,3].

The above examples suggest that there is a tradeoff between the
safety benefits of the strict and rigorous guidelines provided in
the standard, and the costs of implementing them. However, it is
possible to develop to the highest level of the standard for a
relatively low expense, provided that the correct development
practices are followed.

Another common problem with software safety standards is a
lack of sufficient supporting guidance. In some areas, several
standards provide strict requirements but lack extensive
recommendations on how to achieve these goals. For example,
MIL-STD-882D [9] only defines what is required, rather than
how to implement the requirements. As a result, the government
and industry recognized the need for creation of supporting
recommendations on how to utilize the guidelines set forth in the
standard [20]. Because this was unavailable, industry often
supplemented with DO-178B [22] but there was still confusion
regarding further information. There was also no consensus or
DoD policy requirement on when to require or utilize the
standard.

As a result, in September 2004, the memo “Defense Acquisition
System Safety” was released, which specifically mandated the
use of MIL-STD-882D to manage risk [26], and the Defense
Acquisition University created a course, “System Safety in
Systems Engineering,” which was the first formal guidance on
how to effectively use and implement MIL-STD-882D [20]. The
standard was additionally mandated in the November 2006
Defense Acquisition Guidebook [5] and the December 2008
DoD 5000.02 “Operation of the Defense Acquisition System”
[10]. These updates and additional documents provided
guidance on issues that were confusing or sparsely illustrated in
MIL-STD-882D, specifically the importance of integrating the
safety tasks into the entire systems engineering process.

Like MIL-STD-882D [9], previous issues of DEF-STAN 00-56
[17] have been criticized for a lack of sufficient guidance on
certain requirements and recommendations found in the
standard. Interim Issue 3 of the standard, published in December
2004, incorporated some aspects of the old standards DEF-
STAN 00-54 [6], 00-55 [7], and 00-58 [8]. Issue 3 was a major
departure from the previous issue in that it was a goal-based
standard. Experience and feedback from Ministry of Defence
stakeholders and users in industry had shown that the rigorous
requirements of earlier issues were needlessly strict for
contractors [11]. The standard had been criticized for not
allowing contractors the flexibility to tailor their approach for
each individual project to best achieve the safety requirements.
Furthermore, experience showed that examples from the
standard that were intended to provide guidance for how to
achieve certain techniques were often copied directly, rather
than altered to fit the project. The new goal-based approach for
the standard sets out general requirements, but does not mandate
a specific method for how they are to be met. Contractors must
propose and justify their chosen method of compliance. This
puts a higher burden of proof on contractors, but also allows
them more flexibility in tailoring their approach to safety to fit
the needs of their specific project. This can also permit
contractors to use other relevant standards and utilize this in
their argument for the safety of their system.

858585

5. Conclusion and Future Work

We present a systematic evaluation of five commonly used
safety standards using 15 proposed criteria to show the strength
and weakness of each standard. We also discuss the potential
enhancements based on the comments from practitioners who
actually use these standards to produce real-life safe software at
work. Some software-related accidents are also reviewed.
Although few of them have been directly attributed to the five
standards examined here, the criticisms listed indicate that the
software safety industry would benefit from addressing these
lessons in order to better the software safety landscape as a
whole. Furthermore, additional lessons could perhaps be found
by keeping records of all of the projects which use these
standards, and any failures, cost overruns, or accidents that they
may face. A current lack of any centralized repository for the
lessons learned from the use of these standards makes it more
difficult to fully explore the benefits that may be gained by
examining any problems to which the standards may have
contributed. One of our ongoing efforts is to create the
aforementioned repository to systematically integrate the
sporadic information with a careful screening and present an
overall picture of how software safety standards have been
applied to produce safe software in practice, the limitation of
using these standards, and how to adjust software processes,
methods, and tools in response to a specific level of safety
requirements so that the final products can be delivered in a
more cost-effective way.

Acknowledgment

This paper is based on the work by the students who participated
in the REU (Research for Undergraduate Students) program at
the University of Texas at Dallas from 2009 to 2013. The
program is funded by the National Science Foundation (NSF
CNS-1156977). More details of our REU program can be found
at http://paris.utdallas.edu/reu.

References

1. C. Abts, B. W. Boehm, and E. B. Clark, “COCOTS: A
COTS Software Integration Lifecycle Cost Model- Model
Overview and Preliminary Data Collection Findings,” USC
Center for Software Engineering, 2000

2. P. Amey, “Correctness by construction: better can also be
cheaper,” CrossTalk: Journal of Defense Software
Engineering, pp. 24-28, March 2002

3. P. Amey and A. Hilton, “Practical Experience of Safety-
and Safety-Critical Technologies,” Ada User Journal, vol
25, no. 2, pp. 98-105, June 2004

4. G. Clark, “Fatal Error: Buggy Software May Have Crashed
Marks Polar Lander,” TechMediaNetwork, March, 2000

5. Defense Acquisition University, “Defense Acquisition
Guidebook,” February 2010
(http://www.ndia.org/Advocacy/LegislativeandFederalIssue
sUpdate/Documents/March2010/Defense_Acqauisition_Gui
debook_3-10.pdf)

6. Defence Standard 00-54, “Requirements for Safety Related
Electronic Hardware in Defence Equipment,” Issue 2,
December 1996.

7. Defence Standard 00-55, “Requirements for Safety Related
Software in Defence Equipment,” Issue 2, Aug 1997.

8. Defence Standard 00-58, “HAZOP Studies on Systems
Containing Programmable Electronics,” May 2000.

9. Department of Defense, United States, “Standard Practice
for System Safety” (MIL-STD-882D) (http://www.system-
safety.org/Documents/MIL-STD-882D.pdf)

10. Department of Defense, United States, “Operation of the
Defense Acquisition System” (DoD Instruction 5000.2),
April 2002.

11. Director General Safety & Engineering, DStan, Ministry of
Defence, United Kingdom, Standards in Defence News,
Issue 205, July 2007

12. Federal Aviation Administration (FAA), United States,
“System Safety Handbook”
(http://www.faa.gov/regulations_policies/handbooks_manua
ls/aviation/risk_management/ss_handbook/)

13. Federal Aviation Administration (FAA), United States,
“Lessons Learned From Transport Airplane Accidents,”
Release 9, 2013 (http://accidents-ll.faa.gov/)

14. HighRely Inc. “DO-178B and DO-254: Big Bang or
Evolution?”2005

15. HighRely Inc, “DO-178B Costs versus Benefits,” 2005
16. N. G. Leveson, “Safeware, System Safety and Computers,”

Addison Wesley, 1995
17. Ministry of Defence, United Kingdom, “Safety

Management Requirements for Defence Systems” (DEF-
STAN 00-56)

18. National Aeronautics and Space Administration (NASA),
United States, “Software Safety Standard” (NASA-STD-
8719.13B),(http://www.system-safety.org/Documents/
NASA-STD-8719.13B.pdf)

19. B. Rigby and T. Hepher, “Brake Software Latest Threat to
Boeing 787,” Reuters, July 2008

20. R. E. Smith and S. G. Forbes, “Overview of Draft MIL-
STD-882D w/Change 1,” in Proceedings of 12th NDIA
Annual Systems Engineering Conference, San Diego,
October 2009

21. M. J. Squair “Issues in the application of software safety
standards,” in Proceedings of the 10th Australian Workshop
on Safety Critical Systems and Software, pp. 13-26,
Darlinghurst, Australia, August 2005

22. Radio Technical Commission for Aeronautic, Inc.,
“Software Considerations in Airborne Systems and
Equipment Certification” (DO-178B), 1992

868686

23. W. E. Wong, V. Debroy, and A. Restrepo, “The Role of
Software in Recent Catastrophic Accidents,” IEEE
Transactions on Reliability, Volume 59, Issue 3, pp. 469-
473, September 2010

24. W. E. Wong, V. Debroy, A. Surampudi, H. Kim, and M. F.
Siok, “Recent Catastrophic Accidents: Investigating How
Software Was Responsible,” in Proceedings of the 4th IEEE
International Conference on Secure Software Integration
and Reliability Improvement (SSIRI), pp. 14-22, Singapore,
June 2010

25. W. E. Wong, A. Demel, V. Debroy and M. Siok, “Safe
Software: Does it Cost More to Develop?” in Proceedings
of the 5th IEEE International Conference on Secure
Software Integration and Reliability Improvement (SSIRI),
pp. 198-207, Jeju Island, Korea, June 2011

26. M. Wynne, “Memorandum for Defense Acquisition System
Safety,” Acting Undersecretary of Defense, September
2004, (https://acc.dau.mil/adl/en-US/18586/file/740/
Defense%20Acquisition%20System% 20Safety.pdf)

878787

