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Abstract—Software safety standards are commonly used to guide the 
development of safety-critical software systems. However, given the 
existence of multiple competing standards, it is critical to select the 
most appropriate one for a given project. We have developed a set of 15 
criteria to evaluate each standard in terms of its usage, strengths, and 
limitations. Five standards are studied, including  a NASA Software 
Safety Standard, an FAA System Safety Handbook, MIL-STD-882D 
(US Department of Defense), DEF-STAN 00-56 (UK Ministry of 
Defense), and DO-178B (Commercial avionics). Results of our 
evaluation suggest that different standards score differently with respect 
to each evaluation criterion. No standard performs better than others on 
all the criteria. The lessons learned from software-related accidents in 
which the standards were involved provide further insights on the pros 
and cons of using each standard.  
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1. Introduction 

Areas crucial to life such as medicine, transportation, nuclear-
energy, aeronautics, and communications all use software in one 
way or another. An intensive application of software to these 
domains also implies that the software has become even more 
safety-critical such that an error in the software or an error in its 
use could have devastating consequences, including significant 
financial loss, property damage, or even human casualties 
[23,24]. More challengingly, today’s software systems are much 
larger and more complicated than ever before, and at the same 
time the pressure to produce safe and dependable software at a 
reduced cost keeps increasing. As a result, we urgently need 
good practices which help us not only achieve high quality but 
also reduce the development and maintenance cost. Without 
other solid guidance, many projects take an approach by 
appealing to authority and adopt certain safety standards to 
guide their development process. The rationale is that if one 
software system developed following a safety standard could 
meet all the expectations (functional and safety requirements, as 
well as budget constraint), a similar successful story could also 
be reproduced for another software system. 

Indeed, to build software systems with high safety requirements, 
it is important to approach the process in a certain way to 
maintain efficiency and ensure with a high degree of confidence 
that the requirements are met effectively. However, given the 

existence of multiple competing safety standards, it is critical to 
select the one that is most appropriate for a given project. We 
have developed a set of 15 criteria (as detailed in Section 2) to 
evaluate each standard in terms of usage, strengths, and 
limitations. In this paper, five popular safety standards are 
selected including a NASA Software Safety Standard − NASA 
STD 8719.13B [18] (hereafter, simply refer to as NASA STD), 
an FAA (Federal Administration Aviation) System Safety 
Handbook [12] (refer to as FAA Handbook), two Military 
Standards: MIL-STD-882D [9] used by the U.S. Department of 
Defense and DEF-STAN 00-56 [17] used by the Ministry of 
Defense of the United Kingdom, as well as DO-178B [22] − a 
standard widely used for commercial avionics. 

Results of our evaluation (see Section 3) suggest that different 
standards score differently with respect to each evaluation 
criterion and no standard is superior to others on all the criteria. 
As a result, each project should carefully select a standard that 
best matches its environments and meets the level of safety 
requirements it has to achieve.   

The lessons learned (see Section 4) from software-related 
accidents in which the above standards were involved provide 
further insights on the pros and cons of using each standard. Our 
conclusion and future work appear in Section 5. 

2. Fifteen evaluation criteria 

We present a set of 15 criteria as described below to evaluate a 
software safety standard from different perspectives.  

C1) Does the standard discuss splitting software into safety-
critical components? 

Software which resides within a larger system cannot be 
evaluated without looking at the system as a whole. In this 
criterion we are looking for preliminary hazard analysis of both 
the system and the software that contributes to the hazards 
found. The standard should require system level hazard analysis, 
prior to undertaking software analysis, to identify any 
subsystems that are safety-critical. Next, the standard should 
discuss the identification of software that either contributes to or 
avoids/mitigates a hazard. Then end result should be the 
identification and documentation of all software components 
involved in the overall system safety. 
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C2) Does the standard utilize integrity or risk levels? 

Integrity and risk levels provide a means of categorizing a 
software component or a hazard based on the overall risk posed. 
Integrity levels are generally applied to the software components 
and describe the certainty with which the software must 
perform. Risk levels are applied to hazards and indicate the 
severity of a hazard and probability that it will occur. After 
identifying safety-critical software components and system level 
hazards, the standard should assign each component an integrity 
or risk level. Each level has appropriate design and verification 
activities, defined by the standard, to ensure the software attains 
the desired integrity. As the risk software can cause to system 
safety increases, so does the integrity level and the amount of 
effort put into assuring its safety.  

C3) Does the standard discuss requirements and traceability? 

Software safety analysis should produce new, or identify 
existing, software requirements. Any software requirements 
necessary to mitigate or avoid a hazard are designated software 
safety requirements. The standard should discuss both reactive 
and proactive requirements, responding to hazards as well as 
monitoring the system for signs of hazards to come. The 
software safety requirements must be either uniquely identified 
in the software requirements document, or be separated into a 
software safety requirements document. As many of the 
software safety requirements originate in system hazard analysis 
it is important that they are linked backwards to the specific 
hazards. The standard should require traceability in all 
directions, from the hazards to safety requirements to 
implementation and back. This practice is vital to ensure full 
satisfaction of the requirements, as well as to identify unused 
code not fulfilling a requirement. In addition, all tests cases 
created should also trace back to the requirements they are 
testing. Maintenance of documentation and reviews of software 
safety requirements should be an ongoing process.  

C4) Does the standard require consistent testing and validation? 

System and software development consists of multiple steps, 
from gathering requirements all the way to maintenance, where 
the output of one step is used as the input for another. Testing 
for software safety should take advantage of this fact and test the 
output of each step to catch any errors early in the development 
process. The standard should require testing at the unit, 
component, and system levels. The standard should require that 
testing, usually at the unit level, covers all software paths as well 
as expected/unexpected inputs. At the component level, all 
interfaces should be tested. Ultimately, system testing should 
verify that the system operates in a safe manner even in the 
event of any failures or faults. Test case creation should be 
guided by the previously defined safety requirements and 
integrity levels. Finally, the standard should require proper 

documentation of all test data, including but not limited to test 
cases, simulators, drivers, and results. Each test should trace 
back to a software safety requirement to ensure full coverage.  

C5) Does the standard discuss complexity management? 

The general consensus in the software-safety industry is that 
safety assurance activities increase as the complexity of a safety-
critical system increases. Despite the acknowledgement that 
complexity increases the amount of work required to verify 
safety, the majority of standards in use today fail to discuss the 
issue. As mentioned by Squair in his paper [21] titled “Issues in 
the Application of Software Safety Standards,” it is only 
reasonable for a standard to require the simplest software 
possible to meet the system’s needs. Simplicity should be a 
governing philosophy, not just a footnote. Where complexity is 
unavoidable, the standard should discuss how to separate the 
software into some sort of modules. Each module will be easier 
to understand and verify, and then the modules can be combined 
to verify they interact correctly. Finally, at the lower level, the 
standard should require that the software’s source code be 
reasonably free of any unnecessarily complex syntax. 

C6) Does the standard address quality assurance? 

It is expected that the standard does not define quality assurance 
(QA) practices itself, but that it requires compliance with a 
separate quality assurance standard. Two of the most well 
known QA standards are the ISO 9000 and the Software 
Capability Maturity Model (SW-CMM). The standard should 
require compliance with a well developed QA standard. The 
standard should define any extra requirements as well as any 
exceptions to the QA standard chosen. 

C7) Does the standard address configuration management? 

The standard should appoint a single “configuration manager” to 
develop a configuration management process for the project. 
The configuration management should control all project 
development tools and environments, test tools and 
environments, source code, and data. The process should be 
practiced during all steps of the development lifecycle to ensure 
any changes made are uniform.  

C8) Does the standard incorporate the safety benefit versus the 
cost benefit? 

Safety assurance activities can significantly extend the 
development time, and thus cost, of a project. The decision of 
how much work is necessary often comes down to the cost of 
the additional safety activities versus necessary level of safety 
required. The application of a rigorous safety standard to a low-
risk system should be avoided as the added cost, and subsequent 
safety, is unnecessary. The standard should provide guidance as 
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to the minimum level of risk the system should pose for the 
application of the standard to be justified. Alternatively, the 
standard could define different levels of assurance required 
based on the severity of the risk posed by the system. This 
information would allow the standard to be tailored to different 
levels of risk, scaling the cost as necessary. 

C9) Does the standard discuss procedures for future updates to 
the software? 

The release of software into its operational phase does not mean 
the end of software safety analysis. The standard should require 
a maintenance plan be developed prior to release for dealing 
with any routine updates, as well as any uncaught failures during 
use. Routine maintenance tasks, for example loading new terrain 
data for a new environment, should undergo the same rigor of 
safety analysis as the initial design. The standard should account 
for the possibility of new personnel being responsible for 
maintenance and should make any relevant documentation 
available. Finally, the standard should require an evaluation 
process to approve any major updates and to conduct scheduled 
reviews of any minor updates.  

C10) Is the standard in use and updated? 

For a standard to stay relevant it needs to be updated in response 
to any industry feedback it receives. A lack of industry feedback 
can lead to an “orphaned standard” where a standard has 
extremely limited support and few developers have experience 
using it. To prevent this, the standard should be under the 

control of a governing organization and be in current use in the 
industry. The standard should be reviewed periodically to make 
any necessary updates or revisions. 

C11) Does the standard provide a means for certification? 

To ensure that all requirements put forth by the standard have 
been met, the standard should require certification, usually from 
the standard’s governing organization. The certification process 
should examine both the finished product, as well as the 
documentation necessary to ensure all development 
requirements were met. It is important to remember that 
certification does not guarantee safety, only that all of the 
standard’s requirements were met.    

C12) Is the standard easy to use? 

Ease of use is not a requirement for a standard, but a standard 
that is easy to use will be better understood. Leveson argues in 
her book, Safeware: System Safety and Computers, that the 
majority of accidents involving software come about due to a 
lack of understanding of the problem domain [16]. If an 
incomplete understanding of the problem domain is detrimental 
to the design of a system, it is only reasonable to assume that an 
incomplete understanding of a standard will be similarly 
detrimental to safety. The standard should be well organized and 
should clearly state its requirements. The standard should also 
provide additional information in appendices or an 
accompanying document.  

Table 1. Scoring table 
Score Description 

1 Standard does not, or only barely, mention the topic. 
2 Standard mentions, but provides no details on, the topic. May provide a reference to other standards or 

documents, but provides no additional information of its own and does not specifically require that the 
recommendations of the referred documents be followed. 

For example, the standard NASA-STD-8713.13B is given a score of 2 for Criterion C2 “does the 
standard utilize integrity or risk levels” because it references a separate document but does not require its 
use. The same standard receives a score of 4 for criterion C6 “Does the standard address quality 
assurance” because it specifically requires compliance with a separate document to which it refers. 

3 Standard mentions the topic and provides some details but does not discuss the topic in depth, nor does it 
provide specific examples or recommendations. 

4 Standard discusses the topic in detail with thorough explanation but may be unspecific or general in its 
recommendations. May provide extensive discussion on most aspects of the topic but be vague on a few 
details. 

5 Standard thoroughly and extensively discusses all aspects of the topic. A complete explanation is given, 
and the standard provides specific examples and/or recommendations for implementation. 
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C13) Lessons Learned 

This part is not expected to be covered in the standard itself. The 
purpose is to list any additional criticisms, from either the 
governing organization or a third party, as well as any 
information about accidents in which the standard was involved. 
To be involved in an accident, the standard must have been used 
to develop the system that caused the hazard. 

C14) Governing Organization 

The criterion examines whether there is an organization that 
developed or is currently maintaining the standard. 

C15) Main Industry/Use 

The objective is to list the industry or specific systems which the 
standard was designed to address.  

A rating of 1 to 5 is used with 1 as the lowest score implying the 
standard does not mention the topic, and 5 as the highest score 

for a standard that closely matches the criterion. This rating is 
applied to all criteria except for the last three (lessons learned, 
governing organization, and main industry/use). Refer to Table 1 
for more details. 

3. Evaluation of each standard with respect to each 
criterion 

We first present the evaluation using Criteria C14 and C15, as 
listed in Table 2, to explain how each standard is most likely 
used by which industry sector(s) in practice and their 
corresponding governing organization. This will help clarify the 
following evaluation as why a standard has a very stringent 
requirement with respect to a given criterion, whereas another 
standard does not seem to care much. 

Results of our evaluation on each the five standards against 
criteria C1 to C12 are listed below. The scores are given based 
on the description in Table 2. 

Table 2. Evaluation with respect to criteria C14 and C15 

Safety Standard Governing Organization Main Industry/Use 

FAA System Safety 
Handbook 

Federal Aviation Administration (FAA) Standard is intended to provide 
recommendations for the design, 
implementation, and improvement of 
system safety programs, especially 
within the aviation industry. 

DO-178B Radio Technical Commission for Aeronautics 
(RTCA) 

Standard is intended to provide 
guidelines for the international aviation 
community in the creation of software 
for airborne systems. 

MIL-STD-882D United States Department of Defense (DOD).  Standard is intended for all DOD 
departments and agencies. 

NASA STD 8719.13B National Aeronautics and Space Administration 
(NASA) Office of Safety and Mission Assurance 
(OSMA) 

Standard is intended for all NASA 
programs, centers, and facilities. 

DEF-STAN 00-56 Created for the Defense Materiel Standardization 
Committee by the Safety Standards Review 
Committee of the UK Ministry of Defense (MOD) 
and overseen by the Directorate of Standardization. 

Standard is intended for all MOD 
projects and authorities. 

�
C1) Does the standard discuss splitting software into safety-

critical components? 

Of the five standards, the FAA Handbook and the NASA STD 
provide the most thorough discussions of this topic, and both of 

these standards receive a score of 5 for this criterion. They 
require the use of a preliminary hazard analysis, in which the 
entire system as a whole must be evaluated, as well as the 
possible contribution of software to potential hazards. In both 
standards, the partitioning of software into safety-critical 
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components is addressed and given proper emphasis in the 
context of the system. 

DO-178B acknowledges the use of partitioning as a way to 
isolate functionally independent software components. However, 
unlike the FAA Handbook and the NASA STD, it does not 
require the use of a system-level hazard analysis prior to 
software analysis, nor does it address the benefits of such a 
practice. In general, DO-178B touches upon, but does not 
address in detail, the splitting of software into safety-critical 
components and thus receives a 3 for this criterion.  

MIL-STD-882D and DEF-STAN 00-56 are the two weakest 
standards, of the five evaluated, in their discussion of this topic. 
In MIL-STD-882D, a system level hazard analysis is required, 
but subsystem and software hazard analysis is not mentioned. 
Similarly, DEF-STAN 00-56 does not discuss the importance of 
splitting a system into safety-critical subsystems, nor does it 
address how to do so. As a result of their general lack of 
information relating to the safety-criticality of software 
components and their partitioning, both of these standards 
receive a 1 for this criterion 

C2) Does the standard utilize integrity or risk levels? 

The FAA Handbook, DO-178B, and MIL-STD-882D all 
thoroughly discuss the use of integrity or risk levels, and as a 
result all three standards receive a score of 5 in this criterion. 
More precisely, the mishap risk categories in MIL-STD-882D 
and the risk levels in the FAA Handbook are based on the 
severity and the probability of a hazard’s occurrence, whereas 
the software levels in DO-178B are only based on the severity of 
the outcome. Table 3 and Table 4 compare these software safety 
criticality levels between the standards. The FAA Handbook and 
DO-178B also provide recommended design and verification 
activities for each risk level. Although MIL-STD-882D does not 
provide these recommended activities, it does provide example 
acceptance levels and suggests that the project team work to 
determine appropriate activities for each mishap level depending 
on the project’s needs. 

Table 3. Comparison of levels of software safety criticality  
based on severity of outcome 

MIL-STD-882D DO-178B FAA System 
Safety Handbook 

I. Catastrophic A. Catastrophic  Catastrophic 
II. Critical B. Hazardous  Hazardous 
III. Marginal C. Major  Major 
IV. Negligible D. Minor  Minor 
N/A E. No Effect   No Safety Effect 

�

Table 4: Comparison of levels of software safety criticality  
based on probability of occurrence 

MIL-STD-882D FAA System  
Safety Handbook 

A. Frequent Probable 
B. Probable Remote 
C. Occasional Extremely Remote 
D. Remote Extremely Improbable 
E. Improbable N/A 

�
Like the three standards previously mentioned, DEF-STAN 00-
56 also determines risk based on an analysis of a hazard’s 
severity and probability. However, DEF-STAN 00-56 does not 
mention specific risk or integrity levels, nor does it provide 
recommended or required activities based on the level of risk. 
The standard provides guidance as to the importance of risk 
estimation, but does not provide specific levels related to 
integrity or risk, and leaves the determination of what actions 
should be taken largely up to the contractor. Overall, the 
standard seems to acknowledge the importance of determining 
risk level, but provides less guidance than the FAA Handbook, 
DO-178B, and MIL-STD-882D regarding how to do so. As a 
result, DEF-STAN 00-56 receives a 3 for this criterion.  

Finally, the NASA STD is the weakest of the five standards 
evaluated for this criterion. Unlike the other four, it does not 
utilize or extensively discuss integrity or risk levels. Risk levels 
are only briefly mentioned, but the use of them is not required 
and information on how to utilize them is not given directly. As 
a result, the NASA STD receives a 1 for this criterion. 

C3) Does the standard discuss requirements and traceability? 

All five standards receive a score of 5 for this criterion. They 
require fully traceable and extensive documentation throughout 
all phases of system development. The FAA Handbook requires 
a safety action record protocol, which must track and measure 
hazards and the measures taken to mitigate them, and requires a 
chronological history of all actions taken with regard to a 
specific requirement. MIL-STD-882D requires a tracking system 
for all hazards, any actions taken in response, and residual risk. 
DO-178B stresses traceability between system requirements and 
software requirements, between high- and low-level 
requirements, and between low-level requirements and source 
code. NASA STD also requires that hazard analyses be used to 
determine and thoroughly document all requirements in order to 
mitigate each hazard identified, and that traceability must be 
ensured in all directions for all requirements. DEF-STAN 00-56 
requires that a hazard log must be created and maintained, which 
should include information on the determination and 
management of all potential hazards and risks of the system, and 
traceability between safety requirements and their source must 
be provided for each safety requirement.  
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C4) Does the standard require consistent testing and 
validation? 

DO-178B and NASA STD are most thorough in addressing 
testing and validation. Both standards require extensive and 
regular testing and validation throughout the system 
development process, including full and thorough 
documentation and traceability of all tests. They both receive a 5 
for this criterion. The FAA Handbook also requires constant 
testing and analysis throughout the design and development 
process. However, it does not discuss the importance of having 
each test trace back to a specific software requirement to ensure 
full coverage. As a result, it receives a score of 4. Although 
MIL-STD-882D also requires consistent testing and validation 
throughout the development process, it does not require or 
recommend the use of system/subsystem testing or unit testing. 
We give it a 3. Finally, DEF-STAN 00-56 is the weakest 
because it only recommends, but does not specifically require, 
consistent testing and validation. The standard recommends the 
use of testing and some analysis-based validation; however, 
detailed guidance on how to achieve this is not provided. As a 
result, it receives a 2 for its fulfillment of this criterion. 

C5) Does the standard discuss complexity management? 

All five standards are relatively weak in their discussions of 
complexity management. The FAA Handbook briefly discusses 
the measurement of complexity, but simplicity is not listed as an 
important concern, and the Handbook does not discuss the 
importance of separating the software into simpler modules for 
ease of understanding and modification. Similarly, both MIL-
STD-882D and NASA STD do not address complexity 
management, nor do they give simplicity an important role in the 
design of software requirements or systems. DEF-STAN 00-56 
acknowledges that more complex systems generally come with 
higher risk, and therefore require more effort in achieving safety. 
However, the importance of purposefully managing this 
complexity is not expressly delineated and further guidelines are 
not given regarding this topic. DO-178B provides the strongest 
discussion of complexity management of the five standards 
evaluated, although it is not as extensive as it could be. It 
discusses partitioning and modularization as techniques for 
isolating faults and decreasing software verification effort, but it 
does not require their use. It suggests that design standards 
should include complexity restrictions such as a maximum level 
of nested calls; however, simplicity does not seem to be an 
important design philosophy. 

C6) Does the standard address quality assurance? 

DO-178B and NASA STD are the strongest in their discussion 
of quality assurance. While DO-178B extensively discusses 
quality assurance in all of its aspects, it falls slightly short by not 
requiring adherence to a more extensive quality assurance 

standard. On the other hand, NASA STD does require 
compliance with a separate quality assurance standard, but does 
not go into as much detail as DO-178B on quality assurance 
activities specifically within the standard itself. However, both 
standards cover the topic of quality assurance relatively strongly 
and thus both receive a score f 4. DEF-STAN 00-56, MIL-STD-
882D, and the FAA Handbook, however, are all weak in the 
quality assurance category. The FAA Handbook and DEF-
STAN 00-56 both briefly mention quality assurance but do not 
go into detail, nor do they provide any details on specific quality 
assurance requirements or how to implement them. Neither 
standard requires compliance with a separate quality assurance 
standard or references quality assurance requirements or 
recommendations from another document. As a result, both the 
FAA Handbook and DEF-STAN 00-56 receive a 2 for their 
fulfillment of this criterion. MIL-STD-882D is the weakest. The 
standard does not mention or address quality assurance, or 
provide reference to another quality assurance standard or 
document. It receives a 1 in this category. 

C7) Does the standard address configuration management? 

NASA STD and MIL-STD-882D are the strongest in their 
discussion of configuration management. Both require that 
software configuration management be addressed by a single 
person, and provide extensive requirements for software 
configuration management. They receive a 5 in this category.  
DO-178B also thoroughly discusses software configuration 
management and mandates that the various aspects of 
configuration management be addressed; however, it does not 
appoint a configuration manager and leaves the details of the 
methodology and process of configuration management up to 
the contractor. Thus, it receives a 4 in this category. DEF-STAN 
00-56 and the FAA Handbook are the weakest. Neither of these 
standards go into detail on the software configuration 
management process, nor do they provide guidance on how to 
achieve any aspects of configuration management. Therefore, 
these two receive a score of 2. 

C8) Does the standard incorporate the safety benefit versus the 
cost benefit? 

MIL-STD-882D and DO-178B are the strongest in their 
discussion of safety benefit versus cost. While MIL-STD-882D 
addresses the safety benefit/cost tradeoff directly, DO-178B 
does not specifically discuss the relationship between the two 
factors but instead provides extensive instructions on how to 
tailor the standard’s requirements and activities to different 
safety criticality levels. Both standards, however, clearly support 
the idea of tailoring a safety program to a project’s particular 
needs in both cost and safety criticality. As a result, they receive 
a 5 for their fulfillment of this category. The FAA Handbook is 
also strong in this category, although it lacks some thoroughness 
found in the previous two standards. It directly addresses the 
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safety benefit versus cost tradeoff, and explicitly acknowledges 
the importance of properly managing this balance. However, it 
does not provide as much guidance as MIL-STD-882D and DO-
178B regarding how to achieve this balance, since it does not 
give recommendations for safety assurance activities for 
different risk or criticality levels. It receives a 3. Finally, neither 
NASA STD nor DEF-STAN 00-56 directly addresses the safety 
benefit versus cost tradeoff, nor do they provide guidance as to 
how to balance these two important aspects of a software 
project. Each standard briefly mentions that a software project 
should tailor its activities to its own size and needs, but further 
discussion of why or how to do so is not provided. As a result, 
they receive a 2 in this category. 

C9) Does the standard discuss procedures for future updates to 
the software? 

NASA STD is the strongest in its discussion of future updates to 
the software. It extensively discusses the process of software 
maintenance and updates, and provides extensive requirements 
and recommendations regarding this topic. It receives a 5 in this 
category. DEF-STAN 00-56, the FAA Handbook, and MIL-
STD-882D are also strong in their discussion of this criterion. 
All three standards explicitly discuss the importance of properly 
managing future updates to the software, but do not provide as 
thorough guidance as NASA STD for how to achieve this goal. 
Thus, these three are given a 4 for this criterion. Finally, DO-
178B is the weakest. It does not discuss procedures for future 
updates to the software, or require any specific methodology for 
maintenance and upkeep of the system after it enters its 
operational phase. Although the standard does require that 
documentation on the use and development of the system be 
kept up to date, its discussion of maintenance and updates to the 
system is relatively weak and thus receives a 2 for this criterion. 

C10) Is the standard in use and updated? 

DEF-STAN 00-56 and NASA STD 8719.13B are the most 
frequently, and recently, updated standards of the five reviewed. 
Both are also in wide use. As a result, both receive a 5 for this 
criterion. DO-178B is also widely in use, and is perhaps the 
most popular software safety standard in the civil aviation 
industry, as well as being heavily used in many other safety-
critical software industries. It has also been updated several 
times, but its updates are less consistent than those of DEF-
STAN 00-56 and NASA STD. It receives a 4 in this category. 
The FAA Handbook and MIL-STD-882D receive a 3, as they 
are the less frequently updated.  

C11) Does the standard provide a means for certification? 

DO-178B and NASA STD both receive a score of 5, because 
both standards extensively address certification and provide 
detailed requirements regarding the certification of software. 

While the NASA STD provides a certification office, the NASA 
OSMA, DO-178B does not specify a particular certification 
authority. However, both standards provide detailed guidance in 
this category. DEF-STAN 00-56 is slightly less strong in this 
category than DO-178B and NASA STD, as it does not require 
independent certification, nor does it provide a certification 
authority. However, it does provide extensive guidance on how 
to document and assess whether a project follows the standard’s 
requirements and recommendations. It receives a score of 4. On 
the other hand, MIL-STD-882D and the FAA Handbook are 
both weak in their discussion of software certification. The FAA 
Handbook does not require, or even recommend, software 
certification. Similarly, MIL-STD-882D does not require 
certification or discuss any aspects of the certification process. 
However, MIL-STD-882D does list some agencies through 
which software certification can be obtained (although the use of 
MIL-STD-882D is not required in those cases), and the FAA 
Handbook requires the use of a system safety program plan 
which can be examined to ascertain that the Handbook’s 
recommendations were followed. Due to their shortcomings, 
both MIL-STD-882D and the FAA Handbook receive a score of 
2 for this criterion. 

C12) Is the standard easy to use? 

All five of the standards evaluated receive high scores in this 
category. DO-178B, MIL-STD-882D, NASA STD, and DEF-
STAN 00-56 are well organized and provide detailed glossaries 
or appendices with definitions of all terms used in the respective 
standards. They all receive a score of 5. The FAA Handbook is 
also clearly written and well organized; however, it is the 
longest of the five standards and contains some repetition that 
may make it longer than necessary. As a result, it is slightly 
more cumbersome to use than the other four standards and 
receives a 4 in this category.  

4. Lessons Learned 

Following criterion C13, here we list some lessons learned from 
using these five safety standards. A common accident theme 
among aviation systems is the unintended effects of updates to 
the system. According to the FAA, this occurs when “an 
initiative, change, new process, or other activity intended to 
improve something actually produces, in addition to 
improvement, an undesirable outcome.” [13] While the FAA 
Handbook does provide guidelines for maintenance and updates 
to the system, specifically in the system safety plan, this 
suggests that more attention should be paid to the importance of 
thorough integrity and risk analysis on any updates and/or 
changes to the system, as well as the management of complexity 
in an updated system, and the Handbook should reflect this 
focus.  
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Similarly, NASA has had accidents tied to software complexity 
management problems. Software bugs were implicated in the 
crash of the Mars Polar Lander in 2000, a system jointly 
developed by NASA and Lockheed Martin Aeronautics [4]. A 
software error caused a sensor signal to incorrectly report that 
the probe had touched down prematurely, causing the descent 
engines to shut down prior to landing. It was speculated that 
ineffective engineering practices for managing complexity 
largely contributed to the error [4]. It is possible that the lack of 
discussion of complexity management in NASA’s Software 
Safety Standard (NASA-STD-8719.13B) [18] caused the 
engineers developing the system to overlook these issues. 

Furthermore, the FAA, in analyzing recent accidents, has 
determined that a “lack of system isolation/ segregation” is a 
common cause of flight accidents [13]. Since many aviation 
systems use the FAA’s System Safety Handbook [12] as a guide, 
these accidents would indicate that updating the Handbook to 
reflect these lessons might help future projects to avoid similar 
problems. Although the Handbook does discuss the importance 
of subsystem analysis and splitting software into safety critical 
components, it might be beneficial to ensure that thorough 
segregation of subsystems and modules is emphasized. 

Another common criticism of software safety standards involves 
cost issues [25]. For DO-178B [22], criticisms have been made 
that developing to the standard can be very expensive for many 
projects. Although it is difficult to collect exact data on the full 
cost of developing to DO-178B for most projects, it has been 
noted that the standard should add only 5% (for level D) to 55% 
(for level A) to development costs. However, sources estimate 
that industry average costs are anywhere from 20%−50% more 
than the aforementioned recommended costs [15], to 
75%−150% more than the cost of non-safety-critical 
applications [14]. Another source estimates that developing to 
Level A of the standard can increase the cost to a factor of five 
over that of non-safety-critical projects [2]. 

In addition, criticisms have been made that the DO-178B 
standard may have contributed to unnecessary delays in the 
delivery of aircraft such as the Boeing 787 [19]. On the other 
hand, Lockheed Martin Aeronautics reported that they were able 
to develop their C-130J aircraft to DO-178B Level A for half the 
cost of non-safety-critical code [1,2]. Additionally, their testing 
process cost was less than a fifth of normal industry costs [2,3]. 

The above examples suggest that there is a tradeoff between the 
safety benefits of the strict and rigorous guidelines provided in 
the standard, and the costs of implementing them. However, it is 
possible to develop to the highest level of the standard for a 
relatively low expense, provided that the correct development 
practices are followed. 

Another common problem with software safety standards is a 
lack of sufficient supporting guidance. In some areas, several 
standards provide strict requirements but lack extensive 
recommendations on how to achieve these goals. For example, 
MIL-STD-882D [9] only defines what is required, rather than 
how to implement the requirements. As a result, the government 
and industry recognized the need for creation of supporting 
recommendations on how to utilize the guidelines set forth in the 
standard [20]. Because this was unavailable, industry often 
supplemented with DO-178B [22] but there was still confusion 
regarding further information. There was also no consensus or 
DoD policy requirement on when to require or utilize the 
standard.  

As a result, in September 2004, the memo “Defense Acquisition 
System Safety” was released, which specifically mandated the 
use of MIL-STD-882D to manage risk [26], and the Defense 
Acquisition University created a course, “System Safety in 
Systems Engineering,” which was the first formal guidance on 
how to effectively use and implement MIL-STD-882D [20]. The 
standard was additionally mandated in the November 2006 
Defense Acquisition Guidebook [5] and the December 2008 
DoD 5000.02 “Operation of the Defense Acquisition System” 
[10]. These updates and additional documents provided 
guidance on issues that were confusing or sparsely illustrated in 
MIL-STD-882D, specifically the importance of integrating the 
safety tasks into the entire systems engineering process.  

Like MIL-STD-882D [9], previous issues of DEF-STAN 00-56 
[17] have been criticized for a lack of sufficient guidance on 
certain requirements and recommendations found in the 
standard. Interim Issue 3 of the standard, published in December 
2004, incorporated some aspects of the old standards DEF-
STAN 00-54 [6], 00-55 [7], and 00-58 [8]. Issue 3 was a major 
departure from the previous issue in that it was a goal-based 
standard. Experience and feedback from Ministry of Defence 
stakeholders and users in industry had shown that the rigorous 
requirements of earlier issues were needlessly strict for 
contractors [11]. The standard had been criticized for not 
allowing contractors the flexibility to tailor their approach for 
each individual project to best achieve the safety requirements. 
Furthermore, experience showed that examples from the 
standard that were intended to provide guidance for how to 
achieve certain techniques were often copied directly, rather 
than altered to fit the project. The new goal-based approach for 
the standard sets out general requirements, but does not mandate 
a specific method for how they are to be met. Contractors must 
propose and justify their chosen method of compliance. This 
puts a higher burden of proof on contractors, but also allows 
them more flexibility in tailoring their approach to safety to fit 
the needs of their specific project. This can also permit 
contractors to use other relevant standards and utilize this in 
their argument for the safety of their system.  
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5. Conclusion and Future Work 

We present a systematic evaluation of five commonly used 
safety standards using 15 proposed criteria to show the strength 
and weakness of each standard. We also discuss the potential 
enhancements based on the comments from practitioners who 
actually use these standards to produce real-life safe software at 
work. Some software-related accidents are also reviewed. 
Although few of them have been directly attributed to the five 
standards examined here, the criticisms listed indicate that the 
software safety industry would benefit from addressing these 
lessons in order to better the software safety landscape as a 
whole. Furthermore, additional lessons could perhaps be found 
by keeping records of all of the projects which use these 
standards, and any failures, cost overruns, or accidents that they 
may face. A current lack of any centralized repository for the 
lessons learned from the use of these standards makes it more 
difficult to fully explore the benefits that may be gained by 
examining any problems to which the standards may have 
contributed. One of our ongoing efforts is to create the 
aforementioned repository to systematically integrate the 
sporadic information with a careful screening and present an 
overall picture of how software safety standards have been 
applied to produce safe software in practice, the limitation of 
using these standards, and how to adjust software processes, 
methods, and tools in response to a specific level of safety 
requirements so that the final products can be delivered in a 
more cost-effective way. 
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