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Integrating Safety Analysis With
Functional Modeling

Omar El Ariss, Dianxiang Xu, Senior Member, IEEE, and W. Eric Wong, Senior Member, IEEE

Abstract—Functional modeling and safety analysis are two im-
portant aspects of safety-critical embedded systems. However,
they are often conducted separately. In this paper, we present
an approach for integrating fault-tree-based safety analysis into
statechart-based functional modeling. The proposed approach
uses systematic transformation steps that maintain the semantics
of both the fault tree and the statechart. It also provides a set
of conversion rules that transform the gates of fault trees into
statechart notations. The resultant model shows how the system
behaves when a failure condition occurs and acts as a basis model
that ensures safety through requirement validation. Using the
gas burner case study, we demonstrate the advantages of the
integrated model over the use of separate models, such as the lack
of ambiguities, separation of concerns, and taking the order of the
occurrence of faults into consideration.

Index Terms—TFault integration, fault tree analysis (FTA), soft-
ware reliability, software safety, software validation, statecharts.

I. INTRODUCTION

AFETY refers to the lack of a state or a situation that can
cause an accident, which is an unexpected occurrence of
“death, injury, illness, damage to or loss of property, or environ-
mental harm” [1]. When a system is monitored or controlled by
software, a software malfunction might cause failures that can
result in risks and accidents. The wide spread of software and
the criticality of system safety entail that software safety needs
to be addressed throughout the system development process.
Fault tree analysis (FTA) [2] is an engineering practice that
is commonly used for the safety analysis of a system under
development or an existing system. The construction of fault
trees by safety or system analysts usually requires a deep
understanding of the system and its components. The fault tree
notations describe how certain behaviors of system components
can combine to result in a system hazard or a failure. On the
other hand, models that are used to depict system specifications
concentrate on the dynamic behavior of the software and its
components and on how these components interact with each
other and with their environment. Statecharts [3] are a formal-
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ism that has been widely applied to the functional specification
of software. Modeling with statecharts often focuses on the
operational or intended behavior of the system. Therefore, there
is a clear fault coverage gap by the system model. FTA can be
an excellent candidate to narrow this gap.

A system model that takes failures into consideration
is crucial in ensuring that safety is considered throughout
the development process. It will offer the following benefits:
The model will allow engineers to be knowledgeable about the
undesirable conditions and system failures and to understand
how the behavior of the system is affected by these failures.
It will help them to understand the interaction between the
software and other system components. The model will also
identify the components that are responsible for the system
functions that were previously identified by the hazard analysis.
These components should then be given special attention in the
system development process.

Fault trees and statecharts are used by engineers with differ-
ent professional backgrounds. Integrating them raises several
challenges. First, fault trees and statecharts are heterogeneous
models where mismatches might occur due to missing (or ad-
ditional) functionalities between the models or due to different
naming conventions. Second, the leaf nodes of fault trees can
represent the state transition, state occurrence, bounded state,
etc. The interpretation of these nodes can be ambiguous. For
example, does gas leak mean that the gas valve cannot close
or that the valve is functioning normally but was left open
for a longer duration of time which resulted in the excess of
gas? Does Gas Leaks > 4 s mean that the gas should leak
continuously for 4 s or that it could leak discontinuously? In
addition, the interpretation is subjective—it can vary from one
person to another.

The proposed integration method for FTA tries to take into
consideration these problems and to deal with them by using a
systematic set of transformation rules. It builds on our previous
work [4] and directly transforms the FTA into a statechart nota-
tion without the use of an intermediate model (e.g., duration
calculus) as is done by the previously proposed integration
methods [5]-[8]. This direct transformation tries to maintain
the structure of the FTA so that it is amenable to look at the
statechart and clearly identify the components that represent
the fault tree. In addition, the method allows the verification of
whether there are some events and transitions in the fault tree
that are already represented by the system statechart and allows
the identification of those components that should be briefly
modified and those that can be left as they are without being
wrongly represented twice. The integration results in an inte-
grated functional and safety specification (IFSS) model. In the
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TABLE 1
FAULT TREE GATE TYPES
Symbol Gate Meaning
A AND The fault (parent node) occurs only when all the

gate inputs (children nodes) occur.

A PRIORITY  The fault (parent node) occurs only when all the

AND gate inputs (children nodes) occur in a left to right
order.
v OR The fault (parent node) occurs when at least one
of the gate inputs (children nodes) occur.
O INHIBIT  The fault (parent node) occurs only when the gate

input occurs and the enabling condition part is
true.

IFSS model, some integrated failures can help in proving that
the requirements are met by the specification, whereas other
failures can help in identifying inconsistencies, incompleteness,
or missing constraints in the system specifications. As such, the
main contribution of this paper is the set of transformation steps
and conversion rules that integrate fault trees into statecharts.
This allows the validation of safety requirements together with
functional requirements.

The remainder of this paper is organized as follows.
Section II gives some background about fault trees and stat-
echarts. Section III introduces the transformation steps and
conversion rules. The gas burner case study is discussed in
Section IV. Section V reviews the related work. We conclude
in Section VI.

II. BACKGROUND
A. Fault Trees and Fault Tree Semantics

In a safety-critical system, every major failure is represented
by a fault tree. Each fault tree describes how the individual fault
components combine to result in an undesirable system behav-
ior or catastrophic failure. The root of a fault tree represents the
major failure or the most general failure. As we go down the
tree, the nodes represent more specific or detailed faults. Thus,
a fault tree describes the catastrophic event in terms of its causal
factors or faults in a hierarchical fashion.

A fault tree is composed of nodes, edges, and gates. A gate
is a logical connective, whereas nodes are events that are con-
sidered as gate inputs, and edges connect nodes to gates. There
are various types of gates that can be used in a fault tree, but in
this paper, we limit ourselves to the set of gates that are defined
by the Fault Tree Handbook [2] and that produce coherent tree
structures. Table I shows these gate types with their respective
semantics. The NOT gate and the exclusive OR (XOR) gate,
which implicitly uses the NOT gate, are not considered in FTAs
and in this paper because they introduce noncoherent trees and
thus will increase the complexity of the analysis [9].

The analysis of a fault tree could be done either qualitatively
or quantitatively [10]. Quantitative analysis computes the prob-
ability of the occurrence of the root node from the probability
of the basic nodes. Qualitative analysis shows the set of failures
that should occur together in order for the root node to occur.
Although both methods bring useful information to the IFSS
model, qualitative analysis is more important and is an essential
part for introducing faults into the system model. Therefore,
only qualitative analysis will be used.

The semantics of a fault tree can be deduced from the
semantics of the root node, while the semantics of the root node
is defined from the semantics of its intermediate nodes, gates,
and edges. An intermediate node is defined by the semantics of
its leaves, edges, and gates in the subtree where the intermediate
node is considered as a root. Therefore, the semantics of a fault
tree is only defined from the semantics of the edges, gates, and
leaf nodes. The result of the fault tree semantics can then be rep-
resented by a Boolean expression formula [11]. The semantics
of the gates is given in Table I, and the conversion rules to repre-
sent the gates in statechart notations will be given in Section I'V.

B. Statecharts

A statechart [12] is a behavioral model that depicts the func-
tional specifications of a system. A statechart is composed of
states, transitions, and events. States represent the components
and subcomponents of a system. Transitions between the states
depict the system and subsystem interactions, while events
and actions trigger these transitions. Although statecharts are
effective in representing the dynamic behavior of a system, they
lack the capability of qualitative and quantitative analyses of the
behavioral properties [13].

Statecharts were introduced by Harel [12] as an extension
to state machines. The aim was to represent the behavior
of complex systems, such as reactive ones, in a clear and
understandable form without suffering from explosion in the
number of states and edges. Statecharts were not intended to
be a mere specification tool but a formalism or a language
that can be compiled and executed [14], [15]. Orthogonality is
supported through the use of parallel states separated by dashed
lines (AND-states). Communication between orthogonal parts is
done through the use of actions and through the broadcasting of
events. Hierarchy is supported by allowing states to encompass
other states (OR-states). The initial work by Harel did not
define semantics for the statecharts. As statecharts became
more popular, many semantics were introduced [16]-[18].

III. INTEGRATING FAULT TREES INTO STATECHARTS

In this section, we describe how fault trees are integrated into
the system model. The technique focuses on the integration
of one fault tree at a time into the system statechart or the
intermediate IFSS model. The result is a new IFSS model
that incorporates both functional specifications and faults. The
method uses a set of systematic transformation steps (see
Section III-A) that concentrates on gates, where each gate with
its inputs is considered and then integrated into the system
statechart. In Section III-B, we introduce a set of conversion
rules that maps gate representations into statechart notations.
The transformation steps apply these conversion rules in order
to integrate fault trees with statecharts.

This paper focuses on computer-controlled embedded sys-
tems, which consist of subsystem and control components. The
statechart representation used in this paper is based on [12]. The
only difference between the notations used here and those in
[12] is in the representation of a superstate. This is done because
the clear identification of a superstate through the use of dotted
lines from regular states will help in the understanding of the
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‘ <Safety-Requirement-Formula> ::= <Gate> i
<Gate> ;= “(“<operand> “, “ <Gate-Inputs>*)” :
| <Gate-Inputs> ::= <leaf-node> “, * <leaf-node> | <leaf-node> “, ** <Gate> | ;
i <leaf-node> “, “ <Gate-Inputs> | <Gate> “, “ <Gate-Inputs> ;
i <operand>:=A|nA|Vv|QO |

<leaf-node> ::= <simple-definition> | <composite-definition>
<composite-definition> = “&, “ <simple-definition> *,
<composite-definition> =, ” <simple-definition> i
<simple-definition> ::= “conditional statement” | “state occurrence” | “event” ||
“transition” | “elapse of time” | “threshold of some duration” ]

“<simple-definition> |

Fig. 1. BNF notation for the safety requirement formula.

conversion rules. In addition, in order to prevent any confusion
with the term basic event in safety analysis terminology, the
term event used in the subsequent sections will follow the
software engineering terminology.

A. Transformation Steps

The integration process is applied to one fault tree at a
time. Each individual failure (fault tree) is converted into a
statechart representation and then integrated with the system
behavior. The conversion is done by transforming individual
gates (with their inputs) into statechart components. The state-
chart representation of the failure is composed of a set of
orthogonal gate components. The statechart representation of
the gate that triggers the root node will be the main or controller
component for the statechart representation of the fault tree.
This component will keep track of the occurrence of faults (leaf
nodes) and the failure (the root). The rest of the orthogonal
statechart components will represent individual faults.

The proposed method consists of four steps for integrating
one fault tree into a system statechart. In step 1, the semantics of
the fault tree is deduced. Steps 2 and 3 deal with the mismatches
between the two heterogeneous models and gather additional
information that will be used by the last step. In step 2, the
syntactical differences between the two models are considered,
while step 3 deals with the semantic differences of the two
models. The last step uses the additional information that was
derived by steps 2 and 3 in order to merge the failure with
the system specification. Each step will be discussed in the
following sections.

Step 1—Deduce a Safety Requirement Formula (Boolean
Formula) From the Fault Tree: The semantics of a fault tree
can be depicted through a formula that only shows the root node
and how this root node can be reached through a combination
of gates and leaf nodes. The Backus-Naur form (BNF) notation
is shown in Fig. 1.

Step 2—Define Primitive Failure Conditions (Leaf Nodes) in
the Fault Tree: Leaf nodes (basic events) are highly dependent,
during the analysis of a failure, on the chosen scope and resolu-
tion of a fault tree [11]. The scope of the analysis defines which
system components and faults to focus on, while the resolution
defines the failure components that the analysis should stop
on. These failure components are considered as basic events in
a fault tree. Leaf nodes might not stand for the basic cause of a
failure but match the level of detail needed for the analysis of a
particular system. As a result, the level of detail for a particular
system in a statechart and a fault tree representation might be
different.

In order to resolve the ambiguity of the two models, we use
the term “simple definition” when a leaf node can be expressed
by the statechart notations shown in Fig. 2.

Fig. 2. BNF notation for a leaf node.

<Semantic-Table> ::= <simple-definition> <statechart-component> <Transitions>
<statechart-component> ::= “None” | <component> | <sub-component>
<Transitions> ;:= {<transition>}

<transition> ::= <state-occurrence> [<state-nonoccurrence>|

Fig. 3. BNF notation for the semantics table.

When a leaf node has the same level of detail as that of a
statechart, it can be expressed as a simple definition; otherwise,
it is composed of more than one simple definition.

To deduce the semantics table, we decompose the safety
requirement formula into simple definitions. This is to check
every leaf node to see whether it has a simple definition. If not,
then decompose it into simple definitions. The decomposition
will result in an AND gate whose inputs are simple definitions
that define the leaf node. Consider a leaf node stating that a
door should be open for 5 s. It does not have a simple definition
because it combines two simple definitions, a state occurrence
(the occurrence of an open state in the door component), and an
elapse of time (5 s). It can be decomposed into the following:

Door open for 5 s = Door open A elapse of 5 s.

Finally, modify the safety requirement formula (deduced in
step 1) to reflect the changes made.

Step 3—Match the Semantics of the Statechart and the Fault
Tree by Deducing a Semantics Table: Some of the leaf nodes
might refer to hardware components and cannot be represented
by the specifications of the software. Other leaf nodes, such
as normal events which cause a fault, might already be repre-
sented in the statechart. This step helps in identifying whether
the simple definitions in the requirement formula cannot be
represented, are already represented, or can be represented
by the system statechart. Here, functionalities are associated
on a component basis. The need for a safety analyst might
be required to clarify semantic mismatches such as which
statechart component matches the component responsible for
the leaf node.

The semantics table is a table that shows the equivalent inter-
pretation, if available, of the system statechart for every simple
definition in the safety requirement formula (from step 2).
In a statechart, the main emphasis is on the states and their
transitions, while in a fault tree, the emphasis is on the events
and their occurrences. Then, when building the semantics table,
the focus will be on the transitions. Each row has three fields as
shown in Fig. 3: a simple definition, a statechart component,
and equivalent transitions.

A leaf node as an input to a gate can be considered as true
sometimes but false in other times. Representing the leaf node
in the semantics table only as a transition from a state to another
due to the occurrence of the event is not enough. Another



EL ARISS et al.: INTEGRATING SAFETY ANALYSIS WITH FUNCTIONAL MODELING 613

Input ‘Gate >
Initial > Gate triggered Gate
occurrence Representation i g
State | occurs
- NI — Gate halted
o inpu

Fig. 4. Statechart notation for a general gate.

transition is needed to represent the leaf node when it becomes
false (the change in input occurrence from being true to being
false). This transition is indicated in the BNF notation as “state-
nonoccurrence.”

The requirements (or leaf nodes) that are not implemented
by the system should be included as assumptions. Implemented
requirements should be part of the safety commitments. Safety
requirements are met when the assumptions are ensured not to
occur and the system meets its safety commitments.

Step 4—Transformation of Gates in the Fault Tree: The last
step transforms the fault tree into a statechart representation and
then merges this failure with the system specification. This is
done through the following:

1) Construct the new statechart by working on the formula
from left to right starting with the first operand, then the
next one, and so on. When the operand is located, work
on the operand and its inputs according to the conversion
rule that represents the gate as a statechart notation. Work
recursively if the inputs contain any other operands.

2) If the gate inputs (simple definitions) have an equivalent
statechart representation in the semantics table, then use
these equivalent statechart representations during the con-
struction of the statechart notation for the operand.

3) Add the new representations of the fault tree as orthogo-
nal components to the original statechart.

4) Modify the controller component of the system by adding
a transition, where the event that triggers this transition is
the same action event that is produced by the statechart
representation of the fault tree.

B. Conversion Rules

Gate transformation (see Section III-A4) considers every
gate in a fault tree one at a time and converts it into a statechart
notation. The main focus here is to introduce conversion rules
that convert a gate with its inputs into statechart notations. Fig. 4
shows a general statechart notation of a gate. The Initial State
is the state before the occurrence of the gate and any of its
inputs. The Gate Representation is a superstate, represented in
the figure as a dotted state, which represents the gate and its
interaction with its inputs. The next sections will describe the
specific notation for this superstate for every gate that is going
to be represented. The Gate occurs state is reached when the
criteria for the gate inputs are met.

In the following sections, conversion rules will cover all of
the gates in Table I except for the inhibit gate. This is because
the inhibit gate can be represented as an AND gate of two inputs
[6], and thus, the conversion rule for the AND gate can be used
instead. Two additional notations needed to represent two types
of simple definition, an elapse of time and a counter, are also
given a statechart representation. The conversion rules will be

Fig. 5. AND gate representation using method 1.
T
)
N I
1
Initial Entry: Incr |} | Initial Entry: Incr
State Exit Decr 1 | State Exit Decr
]
1
)
S LB ]
Initial R
oceurs
Decr
KA A B(AND component) /
Fig. 6. AND gate representation using method 2.

further understood through their application in the gas burner
case study (see Section IV).

Rule 1 (AND Gate): An AND gate can either be represented
by using the following:

1) Method 1: The AND gate will be transformed into a set of
transition states. This method can be applied to AND gates
with a limited number of inputs. As the number of inputs
increases, the representation becomes more difficult to
use. In addition, method 1 does not have a general or fixed
form of representation as method 2, so as the number of
inputs changes, the representation of method 1 changes.
For an AND gate with two inputs A and B, the represen-
tation, as shown in Fig. 5, is clear and easy to apply. This
ease of use brings with it a drawback if one or more of the
inputs are already represented in the system statechart.
In this case, applying this method will add on to the
existing statechart notations or might even accidently
duplicate their representation without noticing that they
have already been represented. This causes difficulties
in differentiating between the statechart representations
which stand for system functionalities and the statechart
representations which stand for faults. Our intentions are
to maintain as much as possible the structure of both
models so that it is possible to look at the statechart and
clearly identify the components that represent the fault
tree. Therefore, method 2, through the use of orthogonal-
ity, slightly changes the existing statechart components
without adding semantic ambiguities.

2) Method 2: The AND gate will be transformed into a set
of orthogonal states. Using this method, the AND gate
statechart notation can be seen as two parts. The first part
represents the gate inputs, while the second part repre-
sents the AND gate. The first part includes an orthogonal
component for every gate input. The second part, the
AND component, includes an orthogonal component that
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_————

Incr/Ctr=1
Initial >
State

Gate
Occurs

w, Inpy, Inpy, ..., Inpp)

Fig. 7. General representation of an AND gate with n inputs.

Initial }
State HEHtry. Incr]
A

Gate
”| occurs

/

AND gate representation with conditional connective.

Initial

QAB (AND component)

Fig. 8.

combines all the stand-alone inputs. This AND component
shows the interaction of the inputs together. An example
of an AND gate with two inputs A and B is shown in
Fig. 6.

It can be seen that, for every gate input, an orthogonal
state is formed. The event Incr indicates the transition
to a state where one of the inputs (either A or B) is
now present, while a Decr event indicates the loss of
availability of one of these inputs. Therefore, there is a
need for two consecutive Incr events in order for an AND
gate with two inputs to be triggered.

Method 2 has a general or fixed form of representation
independent of the number of inputs. One drawback is that
the representation uses individual states to represent each fault
occurrence as an Incr or Decr event occurs. Therefore, as the
number of AND gate inputs increases, the number of states
in the AND component also increases. An alternative way is
through the use of a counter notation to represent the fault
occurrence states. Fig. 7 shows a general AND gate represen-
tation of n inputs. The representation still needs to include
an orthogonal component for each of the n inputs, but the
occurrence of these inputs is now represented as a counter state.
This counter state exits in two cases: Either the counter Ctr is
equal to n or is decremented to zero. When the Ctr reaches the
value n, then all the n inputs of the AND gate have occurred
and a transition to the Gate occurs state happens. The Ctr is
decremented to zero when all the gate inputs cease to occur.

For an AND gate of two inputs, if one input is a bounded
state or a conditional connective, then there is no need to have
an orthogonal component to represent this input. This input can
be directly represented in the AND component. Fig. 8 shows an
example where input B is a conditional connective.

Rule 2 (OR Gate): The OR gate representation is composed
of a set of transitions (one transition for each input) from the
Initial State to the Gate occurs state. When gate inputs are

Tnitial
State
S

A B
v Vv
N
Gate
occurs
Fig. 9. OR gate representation.
Initial
State

B
> Gate
w| oOccurs

A

Fig. 10. OR gate representation (only B is an event).

not events, the only difference in the representation is that
an additional orthogonal component will be added for each
gate input. Then, the transitions will be triggered by these
orthogonal components. For an OR gate of two inputs A and
B, the transition to the Gate occurs state happens if either A,
B, or both A and B occur. In the statechart representation, the
occurrence of both A and B together is not represented because
no additional information is added. Fig. 9 shows the statechart
representation of an OR gate of two event inputs.

Another example is an OR gate of two inputs A and B where
input A is not an event but a state occurrence. In the case where
one of the two gate inputs is not an event, we can represent
the OR gate in two ways. We can either represent the OR gate
as in Fig. 9 and have an orthogonal component that triggers
A or use the representation in Fig. 10. The only difference
from the representation in Fig. 9 is that, rather than using
an orthogonal component to represent A, this component is
directly integrated with the Initial State. This integration will
result in a superstate. The representation of the A component is
application dependent. If A occurs, then a transition from the A
component to the Gate occurs state will happen. If B occurs at
any time, an immediate transition from any current substate in
the superstate to the Gate occurs state will happen.

Rule 3 (Priority AND Gate): The priority AND gate occurs if
all the gate inputs happen in a specific order. Therefore, the
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Initial
State

Fig. 11. Statechart notation representing a priority AND gate.
Timeout N Gate
occurs
Fig. 12.  Statechart notation representing an elapse of time.
(Cr=0)
Fig. 13.  Statechart representation of a counter.

representation should keep track of the targeted sequence of
gate inputs. When all the inputs stand for events, the priority
AND is represented as a set of consecutive states and transitions
with the following conditions: 1) The number of states is
less than the number of gate inputs by one; 2) the number
of transitions is equal to the number of inputs; and 3) the
transitions should follow the same order of the gate inputs.

An example is a priority AND gate with three inputs A, B,
and C where the input sequence is C followed by A and finally
followed by B. Fig. 11 shows the representation of this gate.

In the case where the inputs are not events, then orthogonal
states will be used to trigger the nonevent gate inputs.

Rule 4 (Elapse of Time): Statecharts are a synchronous
language [3], [18] that is suitable to model real-time, reactive,
and mixed software—hardware systems. The statechart language
follows the synchrony hypothesis [19] which states that reac-
tions should take no time at all and should be instantaneous.
Therefore, the execution of statechart transactions takes zero
time. In this case, continuous time can be modeled through
the use of time-outs [16]. In our statechart notations, we use
the bounded state and time-out event features from the work
of Harel [12]. An elapse of time can be represented, as shown
in Fig. 12, using a bounded state. When the time exceeds the
bounded time, a time-out is triggered, and a transition from the
Initial State to the Gate occurs state happens.

Rule 5 (Counter): A general representation of a counter is
shown in Fig. 13. The counter is represented by a state, two
conditional entrances, a counter variable, and two events that
increment and decrement the counter variable. Every time an
increment or decrement event occurs, represented in the figure
as Incr and Decr, respectively, the counter variable will be
increased or decreased by one. The conditional entrances are
used to check whether the counter variable has reached its
bounds. Therefore, if the counter variable, represented in the
figure as Ctr, is decremented to zero, then it will exit the counter
state. The same thing occurs when the Ctr reaches the desired
count or number, represented in the figure as n. The representa-
tion of the counter could be changed in accordance to the way
that it will be used. An example of an adaptation of a counter

4 i .

] 1 ]

] 1 ]

] 1 ]

Closed : Closed : Off :
]

]

. 1Gason 1gniteOn FlameOn|  |FlameOff]
AirOn AIrOff1 GasOff! IgniteOff ! v
v ' A 4 | A 4 '
1 1 1
[ Open ] E Open i On E Present
Air Valve : Gas Valve : Igniter : Flame Detector
................................... L
NoHeatReq
Timeout / GasOff Ignited
1 sec \ NoHeatReq
. IgniteOff
Not Burning
Burning

NoFlame
Controller FlameOn and HeatReq

Fig. 14.  Statechart for a gas burner.

that differs in its statechart representation is a counter that only
gets incremented but not decremented.

IV. CASE STUDY

This section demonstrates the usefulness and importance of
our approach. We first describe the integration of one failure
into the gas burner system. Then, we explain how our approach
improves the analysis and validation of the underlying system.
We conclude this section with some lessons learned.

A. Gas Burner

In this section, we give a detailed explanation of the integra-
tion process of a fault tree into the system statechart. Fig. 14,
which is based on [5], shows the statechart representation of
a computer-controlled gas burner. The functionality of a gas
burner is to produce heat through the consumption of gas. The
system is composed of the following components: a gas valve
(responsible for the supply of gas), an air valve (responsible for
air), an igniter (responsible for the supply of flame), a flame
detector (monitoring the state of the flame), and a controller
(monitoring the heat request process).

The requirements of a gas burner [20] can be summarized as
follows: 1) At all times, the gas concentration in the surround-
ings of the gas burner should not exceed a certain threshold;
2) when heat is requested, the gas burner should be functioning
correctly and producing heat; and 3) when heat is not requested,
the gas burner should not be working or producing heat.

Fig. 15, which is based on [6], shows a failure in the gas
burner. Fire is caused either through a short circuit in the cables
or due to an ignition attempt while there is an excess of gas and
air is present. The concentration of gas is considered excess
based on the assumptions of the gas burner process [20].

Applying the Transformation Steps: The steps needed to
transform and integrate the fault tree of Fig. 15 into the system
statechart are as follows:

Step 1: Deduce a safety requirement formula from the fault
tree. Here, the fire catastrophe (which is the root node) will
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Fire

Gas Explodes | Electrical short in cables

| Unsafe Environment| | Ignition Attempted|

I Air Present I |Excess of gas|

Gas leaks > 4 sec |Observati0n interval < 30 sec

. 15.  Fault tree for a fire occurrence.

occur only through the combination of the leaf nodes with
the gates as shown in the following:

Fire= (V, (A, (A, Air_Present,

(A, Gas_Leaks >4 s,
Observation_Interval <30's)),
Ignition_Attempted), Electrical_Short) .

Step 2: Check the leaf nodes of the derived formula if they

are all simple definitions. In this case, all of the leaf nodes
in the safety formula have a simple definition except for
Gas_Leaks > 4 s, which needs to be decomposed into
a “state occurrence” and an “elapse of time” (following
Fig. 2)

Gas_Leaks > 4 s = (A, Gas_Present, threshold > 4 s).

That means that, in order for the gas to leak, an excess of
gas should be present. In other words, gas should be present
for a duration or a threshold of more than 4 s. Therefore,
the safety requirement formula is now as follows:

Fire= (V, (A, (A, Air_Present,

(A, (A, Gas_Present, threshold > 4 s),
Observation_Interval < 30s)),
Ignition_Attempted), Electrical_Short).

Step 3: From the statechart in Fig. 14 and the fault tree in

Fig. 15, we deduce the library of semantics, shown in
Table II.

This table will help in the transformation from the fault
tree notations to an equivalent statechart representation.
The table is built by checking every simple definition at
a time and then identifying the component in the statechart
that might be responsible for this simple definition or event.
The next step is to check if this component contains a
transition that has an event with a similar meaning to the
simple definition. If there is one, then this transition “state-

TABLE 1I
SEMANTICS TABLE

Simple Definition Statechart Equivalent Transition
Component

Air Present Air Valve (AirValve.Closed, AirOn, AirValve.Open)
(AirValve.Open, AirOff, AirValve.Closed)

Gas Present Gas Valve  (GasValve.Closed, GasOn, GasValve.Open)
(GasValve.Open, GasOff, GasValve.Closed)

Threshold >4 sec  Gas Valve  None

Observation Gas Valve  None

Interval <30 sec

Ignition Igniter (Igniter.Off, IgnitionOn, Igniter.On)

Attempted (Igniter.On, IgnitionOft, Igniter. Off)

Electrical Shortcut None None

Fig. 16. Partial formation of the OR gate.

occurrence” with “state-nonoccurrence” (if present) will be
added to the equivalent transition column. Let us consider
Air_Present, the first leaf node in the formula. Checking
the statechart in Fig. 14 for a component that has the
functionality to represent this leaf node will result in the
AirValve statechart component. Checking the transitions of
this component will show that the transition caused by the
event AirOn is equivalent to the Air_Present leaf node and
will cause the state of air to be true, while the event AirOff
will cause the state of air to stop or be false.

Step 4: Only one of the requirements of the fault tree (Electrical

short in the cable leaf node) cannot be implemented. This
leaf node will be assumed to be implementable just for OR
gate representation purposes. Therefore, there is no need
for assumptions. The next thing to do is to start integration
by working on the formula from left to right beginning
with the first operand, then the next operand, and so on.
Therefore, the first thing to construct is the OR gate with its
two inputs. The formula is

Fire = (V, Gas Explodes, Electrical short in cables).

Following the rule for the OR gate as in Fig. 10, Gas
Explodes is integrated with the initial state as shown in
Fig. 16.

The presence of Gas Explodes is not checked in the se-
mantics table because it is an intermediate (not leaf) node.
The next step is to check the Electrical short in cables,
which is a leaf node and located in the semantics table. It
has no semantic interpretation in the library because it is
hardware related. It is interpreted as an event occurrence
that results in a transition from the superstate (the initial
state with the integration of Gas Explodes) to the fire state,
as can be seen in Fig. 17. The figure also shows that the
fire state can be reached by either a transition from the
Gas Explodes state (the occurrence of the Gas Explodes
intermediate node) or a transition from any state in the
superstate by the occurrence of a shortcut event. This is
exactly what the fault tree in Fig. 15 indicates.
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Fig. 17. OR gate as a statechart.
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Fig. 18. Applying transformation rule to Gas Explodes.

What is left for the OR statechart in Fig. 17 is to transform
the Gas Explodes node into a statechart, where Gas Explodes
has the following Boolean formula:

Gas Explodes
= (A, (A, Air_Present,
(A, (A, Gas_Present, threshold > 4 s),
Observation_Interval < 305s)),
Ignition Attempted) .

The next operand is a priority AND gate of two inputs. Gas
Explodes now becomes

Gas Explodes
= (A, Unsafe Environment, Ignition Attempted)
= (A A,B)

where

A = (A, Air_Present, (A, (A, Gas_Present, threshold > 4 s),
Observation_Interval < 30 s));

B = Ignition Attempted.

The priority AND gate has two inputs, where A is not an
event but B (as in the semantics table) is an event. Following
the priority AND gate rule, A is now represented as shown in
Fig. 18.

To represent B, we check the semantics table, which indicates
that Ignition Attempted (B) has an equivalent statechart repre-
sentation in the gas burner statechart, and the Igniter statechart
component responsible for the presence of ignition should be
modified. The modification is done by changing the Igniter
transition to integrate B as an input in the priority AND gate.
That means that, whenever B is present, the Fire statechart
component in Fig. 20 should change its current state to reflect
this change. We are not concerned with the ignition being
stopped because, when there is an Unsafe Environment and
an ignition is attempted, the failure (fire) will occur. There is
no need to modify the IgnitionOff event. Fig. 19 shows the
modification done to the Igniter component (the addition of the
Fire.Incr action).

In order for the priority AND gate to be triggered, A should
occur first, then followed by B. Now, the integration of A with

IgniteOn
/‘F ire Incr

off [ | On
| gm’teOf?

Fig. 19. Modified Igniter component (B).

S
A .
No Unsafe Fire.Incr
Faults — Environment| »
) Shortcut in
cables
Fire

Fig. 20. Partial statechart for the fault tree in Fig. 15.
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occurrence Entry:AA
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Fig. 22. Partial statechart for the fault tree in Fig. 21.

the initial state as indicated before will change the statechart
representation of the fault tree from Figs. 17-20.

The next step is to work on A (the next operand and its
inputs) and then transform it into a statechart notation. Here,
the operand is an AND gate with two inputs. The fault tree
representation of A is shown in Fig. 21, where Al and A2
represent the two inputs for the AND gate.

Following the conversion rule for an AND gate and using
method 2, the orthogonal state A of Fig. 20 will be transformed
into that of Fig. 22. For every input, an orthogonal component
is formed. A.Incr indicates the transition to a state where one of
the inputs Al or A2 is now present. A.Decr indicates the loss of
availability of one of these inputs. Therefore, two consecutive
A.Incr events are needed for A to occur.
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AIrOff/A Decr

Fig. 23. Modified Air Valve component (Al).
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/ A2.Decr~ J A2 Decr \Exit: A.Decr
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Fig. 24.  Applying transformation rule 2 to A2.

The next step is to represent Al and A2. Al is a leaf
node. The semantics table shows that Air Present (A1) has an
equivalent statechart representation, and the Air Valve state-
chart component responsible for the presence of air should be
modified. The modification is done by changing the Air Valve
transition to integrate Al as an input in the AND gate. That
means that, whenever Al is present or ceases to be present, the
A statechart component in Fig. 22 should change its current
state to reflect this change. Fig. 23 shows these modifications
(additions of the A.Incr and A.Decr actions).

Now, we consider A2. Its statechart representation depends
on how its respective fault tree representation is interpreted.
One interpretation is that, when the gas leaks, the leak should be
continuous. That means that the gas should leak in a continuous
manner for more than 4 s during the 30-s duration. This defini-
tion does not consider the fact that gas could leak for 2 s, stop
leaking for a certain duration, and then leak again for 3 s during
the 30-s duration. An alternative is to consider discontinuous
gas leaks, which will be used in the statechart representation.
Here, A2 is an AND gate with two inputs, where one of the
inputs is an AND gate with two inputs

A2 = (A, (A, Gas_Present, threshold > 4 s),
Observation_Interval < 30s) .

Fig. 24 shows a partial statechart representation of A2 using
method 2 of the first conversion rule. A2 is an AND gate of
two inputs, where each input is represented as an orthogonal
component. The colored orthogonal components represent the
same colored input nodes in Fig. 21. The occurrence of any of
the A2 inputs will trigger an A2.Incr event, while the loss of
availability of any of these inputs will trigger an A2.Decr event.
The occurrence of both inputs will trigger this AND gate and
thus will cause the occurrence of the A2 input in Fig. 22. This
can be seen in Fig. 24 where the occurrence of two A2.Incr
events will cause a transition to an Excess of Gas state. Upon
entering this state, an A.Incr event will be generated and thus
will cause a transition in the A component in Fig. 22.

The A2 gate has two inputs, where one of these inputs is a
leaf node (A2.2) while the other is an AND gate of two inputs.
Starting with the leaf node (simple definition), the semantics
table shows that the Observation Interval < 30 s is not
represented by the gas burner statechart. The table also shows

A

GasOff/
A2.Decr

Entry: A2.Incr
Observation

Observation Interval (30 sec)

Fig. 25. Representation of A2.2.

Closed
A

GasOn GasOff

) 4
<1 sec

Open

Timeout/A2.1.Incr

Fig. 26. Modified Gas Valve component.

that the Gas Valve component has the functionality to represent
this node. This leaf node is a case of an elapse of time simple
definition. Rule 4 will be used in order to represent this node.
Fig. 25 shows the statechart representation for A2.2. A bounded
state is used to keep track of the observation interval, and a
time-out event will be triggered whenever the recorded time
exceeds the bounded time. The Idle state indicates that there
is no need to keep track of the observation interval when the
gas valve is closed.

Gas Valve is the statechart component responsible for the
inputs of the AND gate of A2.1. Looking at the semantics table,
the first input has an equivalent statechart transition, while the
second does not have any equivalent notation. Therefore, the
leaf node Gas Present has an equivalent statechart representa-
tion in the Gas Valve statechart. To incorporate the leaf Gas
Present in the A2.1 AND component, the Gas Valve component
is modified as shown in Fig. 26.

The only modification to the Gas Valve component is chang-
ing the Open state into a 1-s bounded state that will increase the
threshold by one (through the use of the A2./.Incr action) for
every second that the gas is being released.

As for the Threshold > 4 s node, the semantics table shows
that the Gas Valve component has the functionality to represent
this node but there is no equivalent statechart representation.
This leaf node is responsible for keeping track of the gas leak-
age. Here, we only consider the case of the discontinuous gas
leakage. The T'hreshold > 4 s leaf node cannot be represented
using an elapse of time (rule 4) because this representation only
keeps track of the continuous time. The counter representation
(rule 5) can model the discontinuous gas leakage and will
therefore be used instead of a bounded state. As it is the case
that A2.1 is an AND gate of two inputs and the T'hreshold > 4 s
node is a counter (conditional connective), then this leaf node
can be directly included in the A2.1 AND component without
the need for an additional orthogonal component. Therefore,
instead of using a state labeled / fault occurrence, this state is
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Fig. 27. Representation of A2.1.

replaced with the representation of the T'hreshold > 4 s. The
A2.1 component representation is shown in Fig. 27. The leaf
node is represented as a counter (with a variable called sec)
that keeps track of how many seconds in which the gas is still
open. When the variable exceeds 4 s, then a transition to a Gas
Leak state occurs. The counter is cleared (the sec variable is set
to zero) every time the observation interval in Fig. 25 times out.

What is left is to integrate the newly constructed statechart
components into the gas burner statechart. Fig. 28 shows the
complete representation of the gas burner statechart with the fire
failure. The new statechart components are added as orthogonal
parts. The controller statechart component should show that
a fire might occur. This is done by adding a new state to the
controller where the transition will be triggered when the gray-
colored state in the Fire orthogonal statechart component is
reached, and a Start_Fire action is emitted.

B. Analysis

The fault tree in Fig. 15 shows the configuration of the faults
that will cause a fire failure in the gas burner. Still, the figure
does not really help in identifying how these faults are linked to
the gas burner specification model. The fault tree does not cover
all the faults that might cause the failure but only considers
the fault modes that are necessary for the safety analysis of the
gas burner system. Mostly, the focus of the FTA will be on the
system and its components and not on the software that controls
the system. This is why it is difficult to relate the failure in
Fig. 15 to the gas burner statechart or the system functionalities
when the gas burner is not functioning properly.

This also implies that the fault tree is not mainly intended for
the safety analysis of software due to the underlying difference
between software and hardware, although there are some com-
mon safety concerns between the two systems and the software
that controls them. As a result, taking safety into consideration
through the use of two separate models, the statechart for the
correct behavior of the software and fault trees for system
failures will raise some difficulties.

1) The fault tree is mostly hardware or system specific, and
some faults might not be found in the system specifica-
tion. For instance, the leaf node Electrical short in cables
is a hardware error and has no match in the gas burner
statechart.

2) Ambiguities: The leaf node might be interpreted by soft-
ware engineers in different ways due to the lack of their
understanding of the system functionalities. For instance,
in the case of the gas burner, the Gas Leaks > 4 s leaf
node has different interpretations. Does gas leak mean
that the gas valve cannot close after it is opened or that
the valve is functioning correctly but was left open for a

duration of time which resulted in an excess of gas? In
addition, should the leak be continuous for 4 s, or can
it leak for a couple of seconds, function normally for a
while, and then leak for an additional 2 s? Moreover,
it is not quite easy for software engineers, with their
understanding of only the correct behavior of the system,
to locate the functional component or subcomponents
that are responsible for the two leaf nodes Observation
Interval < 30 s and Gas Leaks > 4 s. Therefore, their in-
terpretation of those two leaf nodes might be incomplete
or incorrect. For example, the Gas Leaks > 4 s leaf node
is not easily related to the gas burner statechart in Fig. 14,
and its representation depends on the representation of the
Observation Interval < 30 s leaf node.

3) Order of occurrence: Should the order of the occurrence
of faults be considered? When should the order of the
occurrence of faults be sequential (one fault occurring
after the other, where the order might or might not be
important), and when should faults occur at the same time
so that the parent node can occur? For instance, in the case
of the gas burner, should the presence of air, the excess of
gas, and the ignition attempted occur one after the other,
or should all of them be present at the same time?

4) Statecharts only emphasize the functional behavior of
the system. Thus, software engineers only understand the
system from its intended behavior and do not clearly un-
derstand the consequences of one or more malfunctioning
components on the system behavior. For instance, what
will happen to the gas burner if the gas valve does not
close when it should close? One of the requirements for
the gas burner states that the gas concentration should
not exceed a certain threshold, and therefore, the failure
violates this requirement. Yet, this requirement cannot
be clearly identified and understood in the gas burner
statechart. It is not possible from the statechart to identify
the gas concentration of a burner or what should be the
threshold for this gas concentration. Furthermore, both
the requirement and the statechart representation do not
indicate the outcomes and safety concerns for having a
gas burner that operates in an unsafe environment.

5) Looking at the fault tree gives no idea on how the
software behavior affects or is affected by the faults and
failures.

Through the process of failure integration to the gas burner,
we got a better understanding about how the components of
both software and hardware affect, and are affected by, failures.
The process identifies the safety critical software components
that are responsible for the failures. In other words, the inte-
gration process identifies that the air valve and gas valve from
the gas burner are safety critical components and should be
given special attention through the system development pro-
cess. Through this integrated model, failure becomes part of the
software behavior and not a separate entity that targets only the
hardware components. The integrated model in Fig. 28 shows
that the excess of gas fault can be easily identified and under-
stood through its interaction with the system functionalities. In
addition, the correct behavior of the system is, to a great extent,
separated from the faulty behavior. Only minor modifications
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Fig. 28. Modified statechart for the gas burner.

were done to the functional behavior. The newly added fault
tree components can be easily spotted from the statechart. This
improves the understanding of separated interest, such as focus-
ing only on the functional or faulty behavior of the gas burner.

C. Validation

The specification of a computer-controlled system describes
the behavior, functionality, and restrictions of the system. The
role of the specification is to guide the implementation process
so that the system meets its requirements. In other words, if the
system’s behavior and functionality follow precisely the sys-
tem’s specifications, then the requirements should not be vio-
lated. Therefore, it is crucial for the specifications to be correct,
complete, and consistent so that the system requirements are
met successfully. Validation is a fundamental step in proving
that the specifications have no ambiguities, errors, conflicts,
or inconsistencies. Popular requirement validation techniques,
such as the formal technical review, only consider the correct
behavior of the system during the validation process. The aim
of our method is to demonstrate that integrating failure in the
behavior of the system plays an important role in requirement
validation.

In the case of the gas burner, the fire failure deals with the
gas burner specification that is responsible for realizing the
requirement that “at all times, the gas concentration in the sur-
roundings of the gas burner should not exceed a certain
threshold.” The integration process identifies the system func-
tionalities and behavior that are in concern for this specific
failure. Looking at the integrated model, particularly the Fire
component, shows that, for the fire to occur, two conditions
should take place in a certain order (keeping in mind that
the shortcut in cables event is only depicted in the statechart
representation for demonstration purposes). Therefore, the gas
burner will be on fire with the occurrence of the A event
followed by the Fire.Incr event. Through the IFSS model, it
is easy to identify the components or states that are responsible
for triggering these two events (the conditions that cause the
fire failure). The integrated model shows that a transition to the
Igniter On state will trigger a Fire.Incr action, while a transition
to an Unsafe Env state in the A component will trigger the
A action. For the Unsafe Env to occur, as can be seen in the
A component, a transition to the Air Valve Open state and a
transition to the Excess of Gas state should occur at the same
time. In order for the excess of gas to occur, as indicated by
the A2 component, two A2.Incr events should be present at
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the same time. The integrated model shows the inexistence of
any restrictions by the system specification in order to prevent
the two conditions from the Fire component from occurring
simultaneously. Therefore, the integration process showed that
an implemented gas burner that follows these specifications
has a safety vulnerability of a fire occurrence. In other words,
the gas burner statechart with respect to the gas concentration
requirement is not complete and violates this requirement when
an ignition is present while the burner environment is unsafe
(the gas concentration exceeds 4 s). The current specification
is also inconsistent because it asks the gas burner to perform
something (an ignition attempt with an excess concentration of
gas) that is impossible to do, and as a result, the fire starts. The
integration process of the fire occurrence failure into the gas
burner statechart was capable of showing that the specifications
with respect to the requirements are inconsistent, incomplete,
and thus incorrect.

The IFSS model also helps in identifying and representing
system constraints in the integrated model in order to correct the
specification and thus prevent the fire occurrence failure. In the
original gas burner statechart, without the failure integration,
this problem can be partially solved by adding a constraint
(a time-out of 4 s) to the Igniting state in the Controller
component. This restriction does not make the specification
completely correct because fire can occur in a repeated attempt
(for instance, 4 s caused by the time-out followed immediately
by another attempt with a delay in ignition of one or more
seconds) to ignite the gas burner. A complete solution to this
problem requires the statechart to have the representation of the
observation interval of 30 s in order to add another restriction.
This restriction cannot be applied to the original statechart,
while it can be applied to the integrated model. Therefore, the
integrated model acts as a basis model for the prevention of
failures and thus acts as a safety model.

D. Summary

The inclusion of failure into the system specification im-
proves the software quality. Safety can be stressed, and weak-
nesses in the design can be mitigated at an early stage in the
development process. The case study showed that the IFSS
model helps in depicting how the system behaves under failure
and in the identification of safety vulnerabilities. Other advan-
tages and findings are discussed in the following paragraphs.

First, not all failures have the same impact on the validation
process. Some failures help in the identification of inconsis-
tencies, incompleteness, or missing constraints in the system
specifications. This was the case with the gas burner case study.
The Fire failure showed that the gas burner specification was
incorrect. The failure also identified the required restrictions
which are to be added to the specifications. On the other hand,
other failures only prove that the requirements are met by the
specification. In that case, the integration of failures confirms
that the functional behavior correctly implements the system
requirements.

Second, only minor modifications were applied to the func-
tional behavior. This can be seen in the gas burner case study.
Only action events and a failure state were added to the func-

tional components. These action events and all of the action
events in the failure components do not trigger or affect the
functional behavior. Therefore, the functional behavior is not
affected or altered during the integration process.

Third, our approach integrates one fault tree at a time. This
choice of integration is beneficial because it can detect potential
conflicts and inconsistencies between fault trees. In certain
cases, the order in which fault trees are integrated might have
different or incorrect IFSS models. This is the case only when
two or more failures cause a conflict to the system behavior. The
IFSS model detects these conflicts and prevents inconsistencies
in the system behavior.

V. RELATED WORK

The necessity to avoid failures in a safety critical system is
crucial in order to ensure that system services can be trusted
and thus can be considered to be safe. Although organizational
practices that target safety are useful for enhancing it, they are
not that effective, and they face difficulties when applied to
complex large scale safety critical systems [21]. Therefore, a
more rigorous approach is needed for the analysis, identifica-
tion, and correction of hazards. The early consideration of faults
with software was mainly in the area of fault-based testing [5],
[22]. This paper focuses mainly on syntactic errors and neglects
semantic errors which are harder or more complex to identify,
analyze, and correct. In [23], FTA is applied for the first time in
software safety analysis, while in [24], different approaches are
discussed and compared. In [25], the process of constructing a
system safety model from the physical model is described.

Safety Requirements: The fault trees in [26] are used to
deduce and identify the requirements in an intrusion detection
system, and the notion of minimal cut sets is used in the
analysis. A cut set stands for the set of system components
that trigger a system failure if they simultaneously fail, while a
minimal cut set is the minimum subset of components that will
cause the system failure when they fail altogether; otherwise,
the failure will not occur [27]. In [6], software requirements
from fault trees are interpreted by using a common semantic
model for both the safety analysis and software requirement
specifications. This common model is constructed through the
use of duration calculus [28], which is a real-time interval
logic. Through this common model, the deduction of safety
requirements is done by considering every fault tree on its own
and then making sure that the root node (duration calculus
formula) does not occur. Derivation steps for every gate (AND,
OR, and priority AND) are given because the requirement de-
duction from the duration calculus model differs from one gate
to another. On the other hand, in [29], the authors try to solve
the decomposition problem and guarantee the correctness of the
safety model through the transformation of a fault tree into ob-
servational transition systems (OTSs). Then, safety requirement
specifications are directly deduced from OTSs through the use
of CafeOBJ (a formal specification language).

The focus of our approach is not only on the identification
and deduction of safety requirements. Through the integration
of fault trees into the statechart, the resultant IFSS model
depicts both the functional and faulty behavior of a system.
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This IFSS model not only represents the safety requirements
but also allows the validation of both the functional and safety
requirements. In addition, the IFSS model helps in the identifi-
cation and representation of system constraints in the integrated
model in order to mitigate failures or correct the functional and
safety specifications.

Integrating Safety Analysis With Functional Specifications:
In [30], the authors point out that traditional safety analysis
techniques, such as FTA, are constructed through the use of
the informal description of the system and thus might result in
some incorrectness, incompleteness, and ambiguities. To solve
this problem, they propose to apply FTA to formal methods,
particularly statecharts. Their experiment was only demon-
strated through an example, where system statecharts were
used to force correctness and completeness on the events and
subevents of a fault tree in order to define the formal semantics
of fault trees using duration calculus. Their suggestions were
that the specification model should be built separately from the
construction of the fault trees but each model’s construction
process should be influenced by the other process.

In [31], an event sequence graph that represents both the
system and its environment is described. This model is ca-
pable of representing certain selected risk patterns through
the use of regular expressions. Through the ordering of risk
levels, various mitigation scenarios are addressed via the use
of a defense matrix. From these regular expressions, tests
that are intended for safety requirements can be derived. In
[32], the Formale Methoden und Sicherheitsanalyse (ForMoSa)
approach is introduced to integrate failures into the correct
system behavior to formally analyze critical systems. The ap-
proach separates the occurrence pattern of failure from the
representation of failure in the system model [33]. The authors
use three rules to integrate failures into the system state-
chart. In comparison to our work, the authors do not mention
or investigate the problem of how to transform the results of the
FTA into statechart notations. In other words, they do not model
the failure itself with the faults and system components that are
responsible for its occurrence. Therefore, they do not identify
the software components that are responsible for the failure and
how to correct the model. They only consider the persistence
pattern of the failure and the effect of the failure on the system.
In addition, the resultant model is greatly modified, thus making
it difficult to identify the correct behavior from the faulty one.

The authors of [5], [7], and [8] propose a fault-based ap-
proach by integrating fault trees with the statechart model in
order to generate test cases. The analysis of fault trees is rep-
resented as duration calculus formulas, which is composed of
a collection of minimal cut sets. Each minimal cut set formula
is then integrated with the statechart system model through the
application of a set of conversion rules. Our method differs from
the work in [5]-[8], which is done on the integration of fault
trees into statecharts, and can be seen from three aspects. The
first difference is in the representation of the semantics of fault
trees. Their approach represents the analysis of fault trees in a
separate model that is based on duration calculus. The usage of
an intermediary model introduces time overhead, might restrict
or modify the initial meaning of the representation, and can
make the automation process (if possible) harder. Our method

uses conversion steps that directly transform every gate and its
inputs into statechart notations. A Boolean expression formula
that represents the analysis results is only used as guidance for
the conversion steps and can be easily dropped and replaced by
a fault tree that shows the results of the analysis.

The second difference is in the way that the integration to
the statechart is done. The authors of [5], [7], and [8] base
their integration on minimal cut sets, where each minimal cut
set is integrated one at a time into the statechart. Usually, cut
sets, system functions that result in a hazard when combined
together, concentrate more on the system and its components
rather than on the software and its specification through state-
charts. Therefore, fault tree integration based on minimal cut
sets diverts from the focus of the specifications of software
systems. Our method tries to keep the specification simple and
understandable through a well-structured modular representa-
tion of each failure. In addition, the assignment of a meaning
in [5], [7], and [8] (a duration calculus formula) for the leaf
nodes in the cut set is done, and is not shown how, before the
conversion rules are applied. Determining whether a leaf node
is an event, a state, a state transition, or a bounded state is not a
trivial step. This process (transformation into duration calculus
formulas) should check with the system statechart in order to
identify whether this leaf node can be represented by the system
or should be considered as a safety assumption. Therefore, it is
better for this step to be done during the integration with the
statechart, where a leaf node can be easily identified whether
it can be represented by the system or not. Our method takes
this issue into consideration and directly integrates each gate
one at a time with its inputs to the statechart notations without
first assigning formulas for each leaf node. The last difference
between our approach and those in [5], [7], and [8] is that their
method does not consider notations such as time or counters. In
other words, the conversion rules in [5], [7], and [8] for the leaf
nodes that are bounded in time or that require counters do not
have equivalent statechart representations.

Model-Driven Safety Analysis Techniques: Model-driven
safety analysis techniques emerged as a response to the limi-
tations found in traditional techniques such as FTA and failure
modes and effects analysis. In [34], Lisagor et al. give an
overview of two of the prominent model-driven safety analysis
approaches: failure logic modeling and failure injection. In
failure logic modeling, the approach is concerned with the
representation of the failure behavior of a system in a hi-
erarchical component-based modular approach. On the other
hand, failure injection, such as that in [35], introduces failures
into formal models and identifies, through the use of model
checking, the behavior that is hazardous or unsafe to the system.
Our approach is not a model-driven safety analysis technique,
where, in these models (particularly failure logic ones), the
analysis is done through the generation of traditional safety
analysis techniques (such as fault trees) or other probabilistic
models (such as Petri nets). On the contrary, our approach is
concerned with the integration of fault trees with the functional
specifications of a system and with the benefits that can be
achieved from this type of integration throughout the system
development process. Therefore, our main focus is to have the
safety analysis be part of the system design as one model, rather
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than dealing with separate models. In addition, model-driven
safety analysis techniques are applied to the system architecture
[36], while our approach concentrates on functional behaviors.

In [37] and [38], the authors propose a component-based
safety analysis model, the state event fault tree (SEFT), that
improves on the semantic weaknesses of fault trees when deal-
ing with software. The model differentiates between states and
events and thus narrows the semantic difference between safety
analysis and the system model. The SEFT model allows quanti-
tative analysis through the transformation of SEFT components
into deterministic and stochastic Petri nets (DSPN). The resul-
tant Petri net model is not intended, due to its complexity, to
be used and analyzed by software engineers or safety analysts.
It is neither intended to emphasize safety through the software
development life cycle. The model is only generated in order
to perform quantitative analysis. The focus is on whether the
system model passes as being safe; therefore, the result of the
analysis (or the DSPN model) does not show the components
that are responsible for the failure and how to correct the model.

The Architecture Analysis and Description Language’s
(AADL) error model annex [39] is another model-driven safety
analysis technique that differentiates between states and events.
The representation of failure is closer to the system behavior.
The AADL [40] is a modeling language for the description and
analysis of the architecture of a system. The error annex is used
to supplement the architecture description done by the AADL
with safety- and reliability-related information. The AADL’s
error annex allows either qualitative safety analysis through
the generation of standard fault trees or quantitative analysis
through the transformation of the error model into generalized
stochastic Petri nets (GSPNs). In [36], the SEFT and the AADL
are compared to other model-driven safety analysis techniques.

The analysis of both the SEFT and AADL’s error annex does
not take into consideration the mismatches between the fault
analysis and the system model, where some events cannot be
represented by the system behavior. In addition, the analysis
does not consider composite definition or the “decomposition
problem” [29], [30]. Our approach focuses on qualitative anal-
ysis rather than quantitative analysis because software failures
are deterministic in nature [41]. As the focus of the IFSS model
is on the software faults and failures and their effect on both
the software and the whole system, the concentration will be on
the reasons for failure occurrences rather than the probability
of these occurrences (which can only be applied to hardware
components).

VI. CONCLUSION

We have introduced a new approach that integrates fault trees
into statecharts. An IFSS model obtained from the integration
shows how the system behaves when a failure condition occurs
and acts as the basis model to ensure safety through require-
ment validation. The IFSS model eliminates difficulties that
are encountered through the use of separate models such as
ambiguities and the faults’ order of occurrence.

The motivation for this paper was due to the importance of
ensuring safety and improving on the limitations and ambi-
guities of the previously proposed methods. Our goal was to

maintain the semantics of both models in order for them to be
integrated. The case study was chosen to demonstrate different
aspects of fault tree notations and how they can be integrated
into system statecharts. The example showed the successful
application of the conversion rules and transformation steps
which transformed hazards into statechart notations.

The scalability of our approach largely depends on the
scalability of the fault trees and statecharts. Fault trees have
been applied successfully to safety critical systems with a wide
range of complexity. Some complex systems, such as the space
shuttle, can have hundreds of fault trees [11], and a single
fault tree can have hundreds of gates and events [42]. In our
approach, a complex tree can be handled by first dividing the
tree into independent modules [42] and then working on each
module separately as if they were different fault trees. Since
an IFSS model represents the low level behavior of a failure,
integrating complex fault trees will increase the number of
states and transitions in the resultant IFSS model. However,
statecharts can deal with a large number of states through the
use of hierarchical decomposition and concurrence.

This paper integrates two models that are heterogeneous in
both structure and semantics. The presence of a safety analyst
might still be required in the integration process to clarify
the mismatches and ambiguities. Our methodology makes it
possible to include safety into the software design process at
an early stage in order to facilitate the automation process. This
allows the safety team to collaborate with the software team
while developing the behavior of the system (and developing
the IFSS model). This collaboration is manifested through the
selection of the desired fault trees which are to be integrated
and in resolving semantic and syntactic mismatches between
the two models. Future work will concentrate on managing and
assisting this type of collaboration between the safety analysts
and the system development team through a tool support for the
IFSS model. This tool will be the starting point for the proposed
approach to be automated.

Another concern is the correctness of the conversion steps,
where the conversion rules are intended to preserve the meaning
of the fault tree gates when transformed into statechart rep-
resentations. Through the informal explanation and evaluation
of the conversion rules, these statechart representations were
demonstrated to have an identical meaning to the gate seman-
tics. In addition, the case study demonstrated that the successful
application of the conversion rules and transformation steps re-
sulted in a correct statechart representation for the failure. Nev-
ertheless, it is desirable to formally prove that the conversion
rules preserve the meaning of the gates and correctly represent
the fault tree behavior. We plan to use model checking as a
formal method for verifying the correctness of IFSS models.
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